N Fertilizer in Combination with Straw Improves Soil Physicochemical Properties and Crop Productivity in Sub-Humid, Drought-Prone Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Soil Sampling and Analysis Methods
2.3.1. Soil Properties
2.3.2. Crop Evapotranspiration (ETa)
2.4. Yield Measurements
2.5. Statistical Analysis
3. Results
3.1. Climatic Features
3.2. Soil Water and ETa
3.3. Soil Aggregates
3.4. Soil Organic Carbon and Total Nitrogen
3.5. Grain Yield and Related Harvest Factors
3.6. Water Use Efficiency
3.7. Relationships between Rainfall Plus Irrigation (RI), ETa, Crop Yield, and WUE
4. Discussion
4.1. Soil Water
4.2. Soil Aggregates
4.3. Soil Organic Carbon and Total Nitrogen
4.4. Crop Yield and WUE
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year | Treatment | Maize (Zea mays L.) | Wheat (Triticum aestivum L.) | ||||||
---|---|---|---|---|---|---|---|---|---|
Kernels (Per Spike) | Mean Weight (g/100 Kernels) | Yield (kg ha−1) | Biomass (kg ha−1) | Kernels (Per Spike) | Mean Weight (g/1000 Kernels) | Yield (kg ha−1) | Biomass (kg ha−1) | ||
2011–2012 | CK | 479.5 b | 31.8 b | 6432 c | 11,886 b | 37.3 b | 54.6 a | 8683 c | 18,052 b |
LSM | 497.7 a | 34.4 a | 7045 b | 12,988 a | 37.9 b | 54.3 a | 9404 b | 18,855 b | |
ALSP | 498.3 a | 34.1 a | 7460 a | 13,121 a | 40.3 a | 51.8 b | 10,305 a | 21,843 a | |
2012–2013 | CK | 554.8 b | 33.2 b | 9113 c | 14,996 b | 37.2 b | 55.3 a | 7790 b | 15,928 b |
LSM | 599.7 a | 36.4 a | 9981 b | 16,084 a | 37.7 b | 55 a | 8438 a | 16,638 b | |
ALSP | 594.3 a | 35.1 a | 10,316 a | 16,231 a | 40.1 a | 53.8 a | 8695 a | 17,731 a | |
2013–2014 | CK | 535.8 b | 30.4 c | 9565 c | 15,712 b | 36.9 b | 55.1 a | 7545 c | 16,767 b |
LSM | 588.2 a | 33.8 b | 9905 b | 16,988 ab | 37.6 ab | 54.8 a | 8393 b | 17,034 ab | |
ALSP | 592.9 a | 37.6 a | 10,331 a | 17,487 a | 38.6 a | 52.6 b | 8844 a | 17,858 a | |
2014–2015 | CK | 457.4 b | 21.4 a | 5579 b | 13,662a | 36.8 b | 52.8 a | 7149 b | 14,602 b |
LSM | 461.6 b | 21.2 a | 5822 ab | 14,206 a | 36.9 b | 52.4 a | 7580 b | 15,517 b | |
ALSP | 482.7 a | 20.4 a | 6049 a | 14,288 a | 38.9 a | 50.6 a | 8376 a | 17,540 a | |
2015–2016 | CK | 545.9 b | 25.6 a | 7160 b | 9824 b | 38.6 a | 50.4 a | 4801 b | 11,951 b |
LSM | 601.7 a | 27.8 a | 8783 a | 11,885 a | 38.1 a | 49.5 a | 5028 b | 12,377 ab | |
ALSP | 618.1 a | 27.6 a | 9094 a | 12,412 a | 39.9 a | 47.5 b | 5691 a | 13,005 a |
References
- Balwinder, S.; Humphreys, E.; Gaydon, D.S.; Eberbach, P.L. Evaluation of the effects of mulch on optimum sowing date and irrigation management of zero till wheat in central Punjab, India using APSIM. Field Crops Res. 2016, 197, 83–96. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Z.; Ma, P.; Meng, Y.; Zhou, J. Effects of tillage, mulching and N management on yield, water productivity, N uptake and residual soil nitrate in a long-term wheat-summer maize cropping system. Field Crops Res. 2017, 213, 154–164. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.; Ren, G.; Khan, A.; Feng, Y.; Yang, G.; Wang, H. Integrated use of straw mulch with nitrogen fertilizer improves soil functionality and soybean production. Environ. Int. 2019, 132, 105092. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Ma, P.; Zhang, B.; Hill, R.L.; Wu, S.; Dong, Q.g.; Chen, G. Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China. Agric. Water Manag. 2019, 219, 59–71. [Google Scholar] [CrossRef]
- Li, Z.; Lai, X.; Yang, Q.; Yang, X.; Cui, S.; Shen, Y. In search of long-term sustainable tillage and straw mulching practices for a maize-winter wheat-soybean rotation system in the Loess Plateau of China. Field Crops Res. 2018, 217, 199–210. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Aihou, K.; Aman, S.; Iwuafor, E.N.O.; Tossah, B.K.; Diels, J.; Sanginga, N.; Lyasse, O.; Merckx, R.; Deckers, J. Maize Yield as Affected by Organic Inputs and Urea in the West African Moist Savanna. Agron. J. 2001, 93, 1191–1199. [Google Scholar] [CrossRef]
- Fabrizzi, K.P.; García, F.O.; Costa, J.L.; Picone, L.I. Soil water dynamics, physical properties and corn and wheat responses to minimum and no-tillage systems in the southern Pampas of Argentina. Soil Tillage Res. 2005, 81, 57–69. [Google Scholar] [CrossRef]
- Wang, X.; Jia, Z.; Liang, L.; Zhao, Y.; Yang, B.; Ding, R.; Wang, J.; Nie, J. Changes in soil characteristics and maize yield under straw returning system in dryland farming. Field Crops Res. 2018, 218, 11–17. [Google Scholar] [CrossRef]
- Kukal, S.S.; Rehana, R.; Benbi, D.K. Soil organic carbon sequestration in relation to organic and inorganic fertilization in rice–wheat and maize–wheat systems. Soil Tillage Res. 2009, 102, 87–92. [Google Scholar] [CrossRef]
- Gentile, R.; Vanlauwe, B.; van Kessel, C.; Six, J. Managing N availability and losses by combining fertilizer-N with different quality residues in Kenya. Agric. Ecosyst. Environ. 2009, 131, 308–314. [Google Scholar] [CrossRef]
- Yang, J.; Gao, W.; Ren, S. Long-term effects of combined application of chemical nitrogen with organic materials on crop yields, soil organic carbon and total nitrogen in fluvo-aquic soil. Soil Tillage Res. 2015, 151, 67–74. [Google Scholar] [CrossRef]
- Yu, K.; Feng, H.; Wang, Z.; Ding, D. Ammoniated straw improving soil structure and winter wheat yield. Trans. Chin. Soc. Agric. Eng. 2014, 30, 165–173. [Google Scholar]
- Nyssen, J.; Poesen, J.; Moeyersons, J.; Haile, M.; Deckers, J. Dynamics of soil erosion rates and controlling factors in the Northern Ethiopian Highlands—Towards a sediment budget. Earth Surf. Process. Landf. 2008, 33, 695–711. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.; Zhang, J.; Liu, W.; Dang, Z.; Cao, W.; Qiang, Q. Effects of mulch, N fertilizer, and plant density on wheat yield, wheat nitrogen uptake, and residual soil nitrate in a dryland area of China. Nutr. Cycl. Agroecosyst. 2009, 85, 109–121. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, X.; Wei, T.; Yang, Z.; Jia, Z.; Yang, B.; Han, Q.; Ren, X. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China. Soil Tillage Res. 2016, 160, 65–72. [Google Scholar] [CrossRef]
- Memon, M.; Guo, J.; Tagar, A.; Perveen, N.; Ji, C.; Memon, S.; Memon, N. The Effects of Tillage and Straw Incorporation on Soil Organic Carbon Status, Rice Crop Productivity, and Sustainability in the Rice-Wheat Cropping System of Eastern China. Sustainability 2018, 10, 961. [Google Scholar] [CrossRef]
- Jingguo, W.; Bakken, L.R. Competition for nitrogen during decomposition of plant residues in soil: Effect of spatial placement of N-rich and N-poor plant residues. Soil Biol. Biochem. 1997, 29, 153–162. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, H.; Yu, K.; Zhang, C.; Wang, C. Effects of Different Straw Utilization on Farmland Moisture and Crop Yield with Rotation of Summer Maize and Winter Wheat. Trans. Chin. Soc. Agric. Mach. 2013, 44, 114–119. [Google Scholar]
- Li, Y.; Chen, H.; Feng, H.; Dong, Q.g.; Wu, W.; Zou, Y.; Chau, H.W.; Siddique, K.H.M. Influence of straw incorporation on soil water utilization and summer maize productivity: A five-year field study on the Loess Plateau of China. Agric. Water Manag. 2020, 233, 106106. [Google Scholar] [CrossRef]
- Yu, K.; Dong, Q.G.; Chen, H.X.; Feng, H.; Zhao, Y.; Si, B.C.; Li, Y.; Hopkins, D.W. Incorporation of Pre-Treated Straw Improves Soil Aggregate Stability and Increases Crop Productivity. Agron. J. 2017, 109, 2253–2265. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Helmy, M.; Prescher, A.; Osborne, B.; Lanigan, G.; Forristal, D.; Killi, D.; Maratha, P.; Williams, M.; et al. Assessing the combined use of reduced tillage and cover crops for mitigating greenhouse gas emissions from arable ecosystem. Geoderma 2014, 223–225, 9–20. [Google Scholar] [CrossRef]
- Bossuyt, H.; Denef, K.; Six, J.; Frey, S.D.; Merckx, R.; Paustian, K. Influence of microbial populations and residue quality on aggregate stability. Appl. Soil Ecol. 2001, 16, 195–208. [Google Scholar] [CrossRef]
- Morris, N.L.; Miller, P.C.H.; Orson, J.H.; Froud-Williams, R.J. The effect of wheat straw residue on the emergence and early growth of sugar beet (Beta vulgaris) and oilseed rape (Brassica napus). Eur. J. Agron. 2009, 30, 151–162. [Google Scholar] [CrossRef]
- Yin, W.; Fan, Z.-l.; Hu, F.-l.; Fan, H.; He, W.; Sun, Y.-l.; Wang, F.; Zhao, C.; Yu, A.-z.; Chai, Q. No-tillage with straw mulching boosts wheat grain yield by improving the eco-physiological characteristics in arid regions. J. Integr. Agric. 2023, 22, 3416–3429. [Google Scholar] [CrossRef]
- Song, F.; Liu, M.; Zhang, Z.; Qi, Z.; Li, T.; Du, S.; Li, A.; Liu, J. No-tillage with straw mulching increased maize yield and nitrogen fertilizer recovery rate in northeast China. Agric. Water Manag. 2024, 292, 108687. [Google Scholar] [CrossRef]
- Hu, N.; Wang, B.; Gu, Z.; Tao, B.; Zhang, Z.; Hu, S.; Zhu, L.; Meng, Y. Effects of different straw returning modes on greenhouse gas emissions and crop yields in a rice–wheat rotation system. Agric. Ecosyst. Environ. 2016, 223, 115–122. [Google Scholar] [CrossRef]
- Pinheiro, E.F.M.; Pereira, M.G.; Anjos, L.H.C. Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a Red Latosol from Brazil. Soil Tillage Res. 2004, 77, 79–84. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Soil and crop response to harvesting corn residues for biofuel production. Geoderma 2007, 141, 355–362. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Sá, J.C.d.M.; Lal, R. Stratification ratio of soil organic matter pools as an indicator of carbon sequestration in a tillage chronosequence on a Brazilian Oxisol. Soil Tillage Res. 2009, 103, 46–56. [Google Scholar] [CrossRef]
- Halder, M.; Ahmad, S.J.; Rahman, T.; Joardar, J.C.; Siddique, M.A.B.; Islam, M.S.; Islam, M.U.; Liu, S.; Rabbi, S.; Peng, X. Effects of straw incorporation and straw-burning on aggregate stability and soil organic carbon in a clay soil of Bangladesh. Geoderma Reg. 2023, 32, e00620. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Zhang, H.; Lu, Y.; Kalkhajeh, Y.K.; Hu, H.; Huang, J. Long-term in situ straw returning increased soil aggregation and aggregate associated organic carbon fractions in a paddy soil. Heliyon 2024, 10, e32392. [Google Scholar] [CrossRef]
- Sébastien, F.; Sébastien, B.; Pierre, B.; Nadia, B.; Bruno, M.; Cornelia, R. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 2007, 450, 277–280. [Google Scholar]
- Liang, B.; Zhao, W.; Yang, X.; Zhou, J. Fate of nitrogen-15 as influenced by soil and nutrient management history in a 19-year wheat–maize experiment. Field Crops Res. 2013, 144, 126–134. [Google Scholar] [CrossRef]
- Wang, X.; Lv, G.; Zhang, Y.; Yu, Y.; Wang, X.; Peixoto, L.; Qian, C.; Pang, H. Annual burying of straw after pelletizing: A novel and feasible way to improve soil fertility and productivity in Northeast China. Soil Tillage Res. 2023, 230, 105699. [Google Scholar] [CrossRef]
- Anning, D.K.; Ghanney, P.; Qiu, H.; Abalori, T.A.; Zhang, C.; Luo, C. Stimulation of soil organic matter fractions by maize straw return and nitrogen fertilization in the Loess Plateau of Northwest China. Appl. Soil Ecol. 2023, 191, 105061. [Google Scholar] [CrossRef]
- Yadav, G.S.; Das, A.; Lal, R.; Babu, S.; Datta, M.; Meena, R.S.; Patil, S.B.; Singh, R. Impact of no-till and mulching on soil carbon sequestration under rice (Oryza sativa L.)-rapeseed (Brassica campestris L. var. rapeseed) cropping system in hilly agro-ecosystem of the Eastern Himalayas, India. Agric. Ecosyst. Environ. 2019, 275, 81–92. [Google Scholar] [CrossRef]
- Dikgwatlhe, S.B.; Chen, Z.-D.; Lal, R.; Zhang, H.-L.; Chen, F. Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat–maize cropping system in the North China Plain. Soil Tillage Res. 2014, 144, 110–118. [Google Scholar] [CrossRef]
- Jop, V. The littlest farmhands: Scientists are discovering thousands of microbes that help plants survive and thrive. Could these symbionts help farmers as well? Science 2015, 349, 680. [Google Scholar]
- Gami, S.K.; Lauren, J.G.; Duxbury, J.M. Soil organic carbon and nitrogen stocks in Nepal long-term soil fertility experiments. Soil Tillage Res. 2009, 106, 95–103. [Google Scholar] [CrossRef]
- Shao, Y.; Xie, Y.; Wang, C.; Yue, J.; Yao, Y.; Li, X.; Liu, W.; Zhu, Y.; Guo, T. Effects of different soil conservation tillage approaches on soil nutrients, water use and wheat-maize yield in rainfed dry-land regions of North China. Eur. J. Agron. 2016, 81, 37–45. [Google Scholar] [CrossRef]
- Zhou, L.-M.; Jin, S.-L.; Liu, C.-A.; Xiong, Y.-C.; Si, J.-T.; Li, X.-G.; Gan, Y.-T.; Li, F.-M. Ridge-furrow and plastic-mulching tillage enhances maize–soil interactions: Opportunities and challenges in a semiarid agroecosystem. Field Crops Res. 2012, 126, 181–188. [Google Scholar] [CrossRef]
- Karami, A.; Homaee, M.; Afzalinia, S.; Ruhipour, H.; Basirat, S. Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties. Agric. Ecosyst. Environ. 2012, 148, 22–28. [Google Scholar] [CrossRef]
- Devêvre, O.C.; Horwáth, W.R. Stabilization of Fertilizer Nitrogen-15 into Humic Substances in Aerobic vs. Waterlogged Soil Following Straw Incorporation. Soil Sci. Soc. Am. J. 2001, 65, 499–510. [Google Scholar] [CrossRef]
- Aziz, K.; Yuen, T.D.K.; Zahir, A.M.; Honghai, L.; Atta, T.S.; Mir, A.; Shah, F. Nitrogen fertility and abiotic stresses management in cotton crop: A review. Environ. Sci. Pollut. Res. Int. 2017, 24, 14551–14566. [Google Scholar]
- Mi, W.; Wu, L.; Brookes, P.C.; Liu, Y.; Zhang, X.; Yang, X. Changes in soil organic carbon fractions under integrated management systems in a low-productivity paddy soil given different organic amendments and chemical fertilizers. Soil Tillage Res. 2016, 163, 64–70. [Google Scholar] [CrossRef]
- Hao, M.; Fan, J.; Wei, X.; Pen, L.; Lai, L. Effect of Fertilization on Soil Fertility and Wheat Yield of Dryland in the Loess Plateau. Pedosphere 2005, 15, 189–195. [Google Scholar]
- Bai, Y.-l.; Wang, L.; Lu, Y.-l.; Yang, L.-p.; Zhou, L.-p.; Ni, L.; Cheng, M.-f. Effects of long-term full straw return on yield and potassium response in wheat-maize rotation. J. Integr. Agric. 2015, 14, 2467–2476. [Google Scholar] [CrossRef]
- Singh, G.; Jalota, S.K.; Singh, Y. Manuring and residue management effects on physical properties of a soil under the rice–wheat system in Punjab, India. Soil Tillage Res. 2007, 94, 229–238. [Google Scholar] [CrossRef]
- Huang, G.-b.; Chai, Q.; Feng, F.-x.; Yu, A.-z. Effects of Different Tillage Systems on Soil Properties, Root Growth, Grain Yield, and Water Use Efficiency of Winter Wheat (Triticum aestivum L.) in Arid Northwest China. J. Integr. Agric. 2012, 11, 1286–1296. [Google Scholar] [CrossRef]
Sand (%) | Silt (%) | Clay (%) | BD (g cm−3) | SOC (g kg−1) | TN (g kg−1) | NO3−-N (mg kg−1) | NH4+-N (mg kg−1) | P (mg kg−1) | K (mg kg−1) | pH |
---|---|---|---|---|---|---|---|---|---|---|
8.3 | 73.6 | 18.1 | 1.45 | 9.94 | 0.95 | 5.19 | 1.31 | 12.28 | 174.6 | 8.4 |
Treatment | Crop | N (kg kg−1) | P (kg ha−1) | Straw (t ha−1) |
---|---|---|---|---|
CK | maize | 225 | 90 | 0 |
wheat | 150 | 100 | 0 | |
LSM | maize | 225 | 90 | 4 |
wheat | 150 | 100 | 4 | |
ALSP | maize | 173 | 90 | 4 |
52 (use to ammoniate straw) | ||||
wheat | 98 | 100 | 4 | |
52 (use to ammoniate straw) |
Crop | Growing Season | Year | Rainfall (mm) | Irrigation (mm) |
---|---|---|---|---|
Maize | June–October | 2011 | 616.5 | 0 |
2012 | 432.5 | 0 | ||
2013 | 224.1 | 80 | ||
2014 | 379.6 | 0 | ||
2015 | 283.2 | 0 | ||
Wheat | October–June | 2011–2012 | 192.3 | 180 |
2012–2013 | 223.7 | 120 | ||
2013–2014 | 298.2 | 60 | ||
2014–2015 | 239.4 | 60 | ||
2015–2016 | 203.3 | 0 |
Year | Treatments | Aggregate Sizes (mm) | MWD (mm) | |||||
---|---|---|---|---|---|---|---|---|
>5 | >2~5 | >1~2 | >0.5~1 | >0.25~0.5 | ≤0.25 | |||
2013 | CK | 2.61 c | 3.93 b | 4.91 b | 9.39 b | 11.62 a | 67.55 a | 0.49 c |
LSM | 3.56 b | 4.01 b | 5.65 ab | 10.29 ab | 11.97 a | 64.53 a | 0.58 b | |
ALSP | 7.21 a | 5.81 a | 6.20 a | 11.88 a | 12.97 a | 55.94 b | 0.90 a | |
2016 | CK | 16.74 c | 3.86 b | 5.20 b | 17.13 a | 18.23 c | 38.86 a | 1.50 c |
LSM | 18.42 b | 5.06 a | 5.58 b | 17.73 a | 19.70 b | 33.54 b | 1.66 b | |
ALSP | 22.39 a | 4.88 a | 7.48 a | 15.56 b | 21.44 a | 28.26 c | 1.94 a |
Treatment | Wheat (Triticum aestivum L.) | Maize (Zea mays L.) | Annual of Equivalent Wheat | |||
---|---|---|---|---|---|---|
Yield (kg ha−1) | Increasing Rate (%) | Yield (kg ha−1) | Increasing Rate (%) | Yield (kg ha−1) | Increasing Rate (%) | |
CK | 7194 c | – | 7570 b | – | 12,434 c | – |
LSM | 7769 b | 8.0 | 8307 a | 9.7 | 13,520 b | 8.7 |
ALSP | 8382 a | 16.5 | 8650 a | 14.3 | 14,371 a | 15.6 |
Treatment | Wheat (Triticum aestivum L.) | Maize (Zea mays L.) | Annual of Equivalent Wheat | |||
---|---|---|---|---|---|---|
WUE (kg ha−1 mm−1) | Increasing Rate (%) | WUE (kg ha−1 mm−1) | Increasing Rate (%) | WUE (kg ha−1 mm−1) | Increasing Rate (%) | |
CK | 20.4 c | – | 22.9 c | – | 18.2 c | – |
LSM | 22.5 b | 10.4 | 25.5 b | 11.3 | 20.1 b | 10.5 |
ALSP | 24.3 a | 18.9 | 26.7 a | 16.3 | 21.3 a | 17.5 |
Item | Wheat (Triticum aestivum L.) | Maize (Zea mays L.) | ||||||
---|---|---|---|---|---|---|---|---|
RI | ETa | Yield | WUE | RI | ETa | Yield | WUE | |
RI | 1 | 1 | ||||||
ETa | 0.912 ** | 1 | 0.288 | 1 | ||||
Yield | 0.940 ** | 0.876 * | 1 | −0.344 | 0.476 * | 1 | ||
WUE | 0.504 ** | 0.237 | 0.674 ** | 1 | −0.580 ** | −0.365 | 0.638 ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Lu, L.; Hou, J.; Bai, J.; Dong, Q.; Feng, H.; Zou, Y.; Siddique, K.H.M. N Fertilizer in Combination with Straw Improves Soil Physicochemical Properties and Crop Productivity in Sub-Humid, Drought-Prone Areas. Agronomy 2024, 14, 1721. https://doi.org/10.3390/agronomy14081721
Liu Q, Lu L, Hou J, Bai J, Dong Q, Feng H, Zou Y, Siddique KHM. N Fertilizer in Combination with Straw Improves Soil Physicochemical Properties and Crop Productivity in Sub-Humid, Drought-Prone Areas. Agronomy. 2024; 14(8):1721. https://doi.org/10.3390/agronomy14081721
Chicago/Turabian StyleLiu, Qingyue, Liang Lu, Jian Hou, Jinling Bai, Qin’ge Dong, Hao Feng, Yufeng Zou, and Kadambot H. M. Siddique. 2024. "N Fertilizer in Combination with Straw Improves Soil Physicochemical Properties and Crop Productivity in Sub-Humid, Drought-Prone Areas" Agronomy 14, no. 8: 1721. https://doi.org/10.3390/agronomy14081721
APA StyleLiu, Q., Lu, L., Hou, J., Bai, J., Dong, Q., Feng, H., Zou, Y., & Siddique, K. H. M. (2024). N Fertilizer in Combination with Straw Improves Soil Physicochemical Properties and Crop Productivity in Sub-Humid, Drought-Prone Areas. Agronomy, 14(8), 1721. https://doi.org/10.3390/agronomy14081721