Impact of Rapeseed Sequential Follow Paddy Crop on Its 2-Acetyl-1-pyrroline Biosynthesis and Economic Yield under the Double-Cropping System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Details
2.2. Determination of Soil Chemical Properties
2.3. Determination of Grain Yield and Yield-Related Traits
2.4. Measurement of Grain Quality Parameters
2.5. Measurement of Net Photosynthetic Rate, Leaf Area Index, and Dry Matter Accumulation
2.6. Determination of Grain 2-AP Content
2.7. Determination of Contents of P5C, MG, 1-Pyrroline, and Activity of ProDH
2.8. Statistical Analysis
3. Results
3.1. Effects of Winter Planting of Rapeseed on Soil Chemical Properties
3.2. Effects of Winter Planting of Rapeseed on Net Photosynthetic Rate
3.3. Effects of Winter Planting of Rapeseed on Chlorophyll Content
3.4. Effects of Winter Planting of Rapeseed on LAI
3.5. Effects of Winter Planting of Rapeseed on Dry Matter Accumulation
3.6. Effects of Winter Planting of Rapeseed on Grain Yield and Yield-Related Traits
3.7. Effects of Winter Planting of Rapeseed on Grain Quality Parameters
3.8. Effects of Winter Planting of Rapeseed on Grain 2-AP Content
3.9. Effects of Winter Planting of Rapeseed on 2-AP Biosynthesis
4. Discussion
4.1. Effects of Winter Planting of Rapeseed on Growth and Yield Formation of Fragrant Rice
4.2. The Possible Relationship between Soil Biochemical Properties and Yield Formation of Fragrant Rice after the Winter Planting of Rapeseed
4.3. Effects of Winter Planting of Rapeseed on 2-AP Biosynthesis of Fragrant Rice
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Buttery, R.G.; Ling, L.C.; Juliano, B.O.; Turnbaugh, J.G. Cooked rice aroma and 2-acetyl-1-pyrroline. J. Agric. Food. Chem. 1983, 31, 823–826. [Google Scholar] [CrossRef]
- Sakthivel, K.; Sundaram, R.M.; Rani, N.S.; Balachandran, S.M.; Neeraja, C.N. Genetic and molecular basis of fragrance in rice. Biotechnol. Adv. 2009, 27, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Wakte, K.V.; Kad, T.D.; Zanan, R.L.; Nadaf, A.B. Mechanism of 2-acetyl-1-pyrroline biosynthesis in Bassia latifolia Roxb. Flowers. Physiol. Mol. Biol. Plants 2011, 17, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Kaikavoosi, K.; Kad, T.D.; Zanan, R.L.; Nadaf, A.B. 2-Acetyl-1-Pyrroline Augmentation in Scented indica Rice (Oryza sativa L.) Varieties through △1-Pyrroline-5-Carboxylate Synthetase (P5CS) Gene Transformation. Appl. Biochem. Biotechnol. 2015, 177, 1466–1479. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Imran, M.; Yao, X.; Zhang, S.; Yi, W.; Xing, P.; Tang, X. Foliar application of glutamate and phenylalanine induced regulation in yield, protein components, aroma, and metabolites in fragrant rice. Eur. J. Agron. 2023, 149, 126899. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, Q.; Lai, R.; Zhang, S.; Yi, W.; Tang, X. Regulation of 2-Acetyl-1-pyrroline Content in Fragrant Rice under Different Temperatures at the Grain-Filling Stage. J. Agric. Food. Chem. 2024, 72, 10521–10530. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jiang, S.; Xing, D.; Du, B. Effect of Planting Density and Irrigation Management on the Growth, Yield, and 2-acetyl-△1-pyrroline Content of Fragrant Rice. J. Soil Sci. Plant Nutr. 2022, 22, 1000–1008. [Google Scholar] [CrossRef]
- Mo, Z.; Huang, J.; Xiao, D.; Ashraf, U.; Duan, M.; Pan, S.; Tian, H.; Xiao, L.; Zhong, K.; Tang, X. Supplementation of 2-Ap, Zn and La Improves 2-Acetyl-1 -Pyrroline Concentrations in Detached Aromatic Rice Panicles in Vitro. PLoS ONE 2016, 11, e0149523. [Google Scholar] [CrossRef]
- Chen, S.; Liu, S.; Zheng, X.; Yin, M.; Chu, G.; Xu, C.; Yan, J.; Chen, L.; Wang, D.; Zhang, X. Effect of various crop rotations on rice yield and nitrogen use efficiency in paddy–upland systems in southeastern China. Crop J. 2018, 6, 576–588. [Google Scholar] [CrossRef]
- Zegada-Lizarazu, W.; Monti, A. Energy crops in rotation. A review. Biomass Bioenergy 2011, 35, 12–25. [Google Scholar] [CrossRef]
- Weiser, C.; Fuß, R.; Kage, H.; Flessa, H. Do farmers in Germany exploit the potential yield and nitrogen benefits from preceding oilseed rape in winter wheat cultivation? Arch. Acker-Pflanzenba Bodenkd. 2018, 64, 25–37. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Y.; Zhang, K.; Jeong, J.; Zeng, Z.; Zang, H. Does crop rotation yield more in China? A meta-analysis. Field Crops Res. 2020, 245, 107659. [Google Scholar] [CrossRef]
- Lu, S.; Lepo, J.E.; Song, H.; Guan, C.; Zhang, Z. Increased rice yield in long-term crop rotation regimes through improved soil structure, rhizosphere microbial communities, and nutrient bioavailability in paddy soil. Biol. Fertil. Soils 2018, 54, 909–923. [Google Scholar] [CrossRef]
- Mcewen, J.; Darby, R.J.; Hewitt, M.V.; Yeoman, D.P. Effects of field beans, fallow, lupins, oats, oilseed rape, peas, ryegrass, sunflowers and wheat on nitrogen residues in the soil and on the growth of a subsequent wheat crop. J. Agric. Sci. 1990, 115, 209–219. [Google Scholar] [CrossRef]
- Zhang, G. Soil Survey Laboratory Methods. Sci. Press 2012, 38, 47–49. [Google Scholar]
- Peverill, K.I. Soil Analysis: An Interpretation Manual; Reprinted Edition; CSIRO Publishing: Melbourne, Australia, 2005. [Google Scholar]
- Yang, T.; Xiong, R.; Tan, X.; Huang, S.; Pan, X.; Guo, L.; Zhang, J.; Zeng, Y. The impacts of post-anthesis warming on grain yield and quality of double-cropping high-quality indica rice in Jiangxi Rrovince, China. Eur. J. Agron. 2022, 139, 126551. [Google Scholar] [CrossRef]
- Mo, Z.; Li, W.; Pan, S.; Fitzgerald, T.L.; Xiao, F.; Tang, Y.; Wang, Y.; Duan, M.; Tian, H.; Tang, X. Shading during the grain filling period increases 2-acetyl-1-pyrroline content in fragrant rice. Rice 2015, 8, 9. [Google Scholar] [CrossRef]
- Wu, M.L.; Chou, K.L.; Wu, C.R.; Chen, J.K.; Huang, T.C. Characterization and the Possible Formation Mechanism of 2-Acetyl-1-Pyrroline in Aromatic Vegetable Soybean (Glycine max L.). J. Food Sci. 2009, 74, S192–S197. [Google Scholar] [CrossRef]
- Yadav, S.K.; Singla-Pareek, S.L.; Ray, M.; Reddy, M.K.; Sopory, S.K. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem. Biophys. Res. Commun. 2005, 337, 61–67. [Google Scholar] [CrossRef]
- Banu, M.N.A.; Hoque, M.A.; Watanabe-Sugimoto, M.; Islam, M.M.; Uraji, M.; Matsuoka, K.; Nakamura, Y.; Murata, Y. Proline and Glycinebetaine Ameliorated NaCl Stressvia Scavenging of Hydrogen Peroxide and Methylglyoxal but Not Superoxide or Nitric Oxide in Tobacco Cultured Cells. Biosci. Biotechnol. Biochem. 2010, 74, 2043–2049. [Google Scholar] [CrossRef]
- Hill, J.M. The inactivation of pea-seedling diamine oxidase by peroxidase and 1,5-diaminopentane. Biochem. J. 1967, 104, 1048–1055. [Google Scholar] [CrossRef]
- Tateishi, Y.; Nakagawa, T.; Esaka, M. Osmotolerance and growth stimulation of transgenic tobacco cells accumulating free proline by silencing proline dehydrogenase expression with double-stranded RNA interference technique. Physiol. Plant. 2005, 125, 224–234. [Google Scholar] [CrossRef]
- Ncube, B.; Finnie, J.F.; Van Staden, J. Dissecting the stress metabolic alterations in in vitro Cyrtanthus regenerants. Plant Physiol. Biochem. 2013, 65, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Ren, T.; Zhang, S.; Liu, Y.; Liao, S.; Li, X.; Cong, R.; Lu, J. Rotation with oilseed rape as the winter crop enhances rice yield and improves soil indigenous nutrient supply. Soil Tillage Res. 2021, 212, 105065. [Google Scholar] [CrossRef]
- Khaki, S.; Wang, L.; Archontoulis, S.V. A CNN-RNN Framework for Crop Yield Prediction. Front. Plant Sci. 2020, 10, 1750. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Zhang, J.; Fang, S.; Wei, H.; Zhang, H. Effects of temperature and solar radiation on yield of good eating-quality rice in the lower reaches of the Huai River Basin, China. J. Integr. Agric. 2021, 20, 1762–1774. [Google Scholar] [CrossRef]
- Jin, C.Q. Effects of Different Planting Methods on the Growth and Development of Rice and Its Subsequent Wheat. Master′s Thesis, Huazhong Agriculture University, Wuhan, China, China 2020. [Google Scholar]
- Yang, H.; Chen, G.; Li, Z.; Li, W.; Zhang, Y.; Li, C.; Hu, M.; He, X.; Zhang, Q.; Zhu, C.; et al. Responses of Yield and Photosynthetic Characteristics of Rice to Climate Resources under Different Crop Rotation Patterns and Planting Methods. Plants 2024, 13, 526. [Google Scholar] [CrossRef] [PubMed]
- Emerson, R. Chlorophyll content and rate of photosynthesis. Proc. Natl. Acad. Sci. USA 1929, 15, 281–284. [Google Scholar] [CrossRef]
- Shi, Y.; Guo, E.; Cheng, X.; Wang, L.; Jiang, S.; Yang, X.; Ma, H.; Zhang, T.; Li, T.; Yang, X. Effects of chilling at different growth stages on rice photosynthesis, plant growth, and yield. Environ. Exp. Bot. 2022, 203, 105045. [Google Scholar] [CrossRef]
- Gautam, P.; Lal, B.; Tripathi, R.; Shahid, M.; Baig, M.J.; Maharana, S.; Puree, C.; Nayak, A.K. Beneficial effects of potassium application in improving submergence tolerance of rice (Oryza sativa L.). Environ. Exp. Bot. 2016, 128, 18–30. [Google Scholar] [CrossRef]
- Maschmann, E.T.; Slaton, N.A.; Cartwright, R.D.; Norman, R.J. Rate and Timing of Potassium Fertilization and Fungicide Influence Rice Yield and Stem Rot. Agron. J. 2010, 102, 163–170. [Google Scholar] [CrossRef]
- Lian, W.; Geng, A.; Wang, Y.; Liu, M.; Zhang, Y.; Wang, X.; Chen, G. The Molecular Mechanism of Potassium Absorption, Transport, and Utilization in Rice. Int. J. Mol. Sci. 2023, 24, 16682. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The Critical Role of Potassium in Plant Stress Response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Duan, M.; Xing, P.; Xie, H.; Tang, X. Foliar application of procyanidins enhanced the biosynthesis of 2-acetyl-1-pyrroline in aromatic rice (Oryza sativa L.). BMC Plant Biol. 2022, 22, 376. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Huang, Y.; Hung, H.; Ho, C.; Wu, M. Δ1 -Pyrroline-5-carboxylic Acid Formed by Proline Dehydrogenase from the Bacillus subtilis ssp. Natto Expressed in Escherichia coli as a Precursor for 2-Acetyl-1-pyrroline. J. Agric. Food. Chem. 2007, 55, 5097–5102. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, Q.; Jiang, W.; Qiu, S.; Wei, H.; Zhang, H.; Liu, G.; Xing, Z.; Hu, Y.; Guo, B.; et al. Effects of mid-stage nitrogen application timing on the morphological structure and physicochemical properties of japonica rice starch. J. Sci. Food. Agric. 2021, 101, 2463–2471. [Google Scholar] [CrossRef]
- Yang, S.; Zhu, Y.; Zhang, R.; Liu, G.; Wei, H.; Zhang, H.; Zhang, H. Mid-stage nitrogen application timing regulates yield formation, quality traits and 2-acetyl-1-pyrroline biosynthesis of fragrant rice. Field Crops Res. 2022, 287, 108667. [Google Scholar] [CrossRef]
Cropping Season | Cultivar | Treatment | Effective Panicle Number per Plant | Grain Number per Panicle | Seed-Setting Rate (%) | 1000-Grain Weight (g) | Yield (t/ha) |
---|---|---|---|---|---|---|---|
Early cropping season | |||||||
19xiang | |||||||
CK | 9.39 ± 0.06 b | 61.63 ± 0.45 b | 143.42 ± 10.20 a | 20.86 ± 0.54 a | 3.86 ± 0.03 b | ||
WR | 11.95 ± 0.19 a | 65.00 ± 0.97 a | 133.81 ± 0.32 a | 19.55 ± 0.52 a | 4.68 ± 0.14 a | ||
Nanjingxiangzhan | |||||||
CK | 10.08 ± 0.30 b | 85.60 ± 0.96 a | 125.92 ± 1.90 a | 22.58 ± 0.76 a | 5.18 ± 0.05 b | ||
WR | 12.52 ± 0.04 a | 85.68 ± 1.44 a | 121.59 ± 8.09 a | 21.92 ± 0.14 a | 6.04 ± 0.18 a | ||
Late cropping season | |||||||
19xiang | |||||||
CK | 11.17 ± 0.66 b | 61.89 ± 1.44 a | 142.71 ± 7.13 a | 20.58 ± 0.51 a | 3.54 ± 0.04 b | ||
WR | 13.79 ± 0.39 a | 53.21 ± 0.76 b | 144.31 ± 15.00 a | 19.94 ± 0.08 a | 4.16 ± 0.17 a | ||
Nanjingxiangzhan | |||||||
CK | 9.64 ± 0.19 b | 83.00 ± 0.57 a | 118.74 ± 6.77 a | 22.76 ± 0.67 a | 4.77 ± 0.11 b | ||
WR | 11.68 ± 0.36 a | 83.70 ± 1.97 a | 123.17 ± 6.41 a | 22.36 ± 0.12 a | 5.12 ± 0.04 a |
Cropping Season | Cultivar | Treatment | Brown Rice Rate (%) | Milled Rice Rate (%) | Head Rice Rate (%) | Chalky Rice Rate (%) | Chalkiness Degree (%) |
---|---|---|---|---|---|---|---|
Early cropping season | |||||||
19xiang | |||||||
CK | 75.16 ± 0.85 a | 61.38 ± 0.28 b | 42.95 ± 0.35 a | 0.58 ± 0.19 a | 2.33 ± 0.33 a | ||
WR | 71.18 ± 0.18 b | 63.89 ± 0.52 a | 39.23 ± 0.35 b | 0.64 ± 0.34 a | 2.33 ± 0.67 a | ||
Nanjingxiangzhan | |||||||
CK | |||||||
WR | 77.31 ± 0.38 a | 66.53 ± 0.30 a | 42.66 ± 0.10 a | 0.41 ± 0.35 a | 3.33 ± 1.45 a | ||
Late cropping season | 75.75 ± 0.13 b | 67.05 ± 0.03 a | 42.97 ± 0.58 a | 0.41 ± 0.14 a | 3.00 ± 0.58 a | ||
19xiang | |||||||
CK | 74.32 ± 0.22 a | 61.60 ± 0.38 b | 39.69 ± 0.53 b | 0.62 ± 0.2 a | 3.33 ± 0.67 a | ||
WR | 72.10 ± 0.26 b | 64.03 ± 0.49 a | 44.39 ± 0.15 a | 0.77 ± 0.31 a | 4.00 ± 1.00 a | ||
Nanjingxiangzhan | |||||||
CK | 75.41 ± 0.23 a | 66.29 ± 0.19 a | 50.10 ± 0.41 a | 0.72 ± 0.33 a | 2.00 ± 0.58 a | ||
WR | 74.03 ± 0.23 b | 65.59 ± 0.21 a | 50.28 ± 0.16 a | 0.5 ± 0.17 a | 3.33 ± 0.33 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, W.; Luo, H.; Zhang, M.; Sun, Z.; Gu, Q.; Deng, S.; Wu, Y.; Yan, Y.; Chen, Z.; Qi, J.; et al. Impact of Rapeseed Sequential Follow Paddy Crop on Its 2-Acetyl-1-pyrroline Biosynthesis and Economic Yield under the Double-Cropping System. Agronomy 2024, 14, 1760. https://doi.org/10.3390/agronomy14081760
Yi W, Luo H, Zhang M, Sun Z, Gu Q, Deng S, Wu Y, Yan Y, Chen Z, Qi J, et al. Impact of Rapeseed Sequential Follow Paddy Crop on Its 2-Acetyl-1-pyrroline Biosynthesis and Economic Yield under the Double-Cropping System. Agronomy. 2024; 14(8):1760. https://doi.org/10.3390/agronomy14081760
Chicago/Turabian StyleYi, Wentao, Haowen Luo, Mingliang Zhang, Zhigui Sun, Qichang Gu, Sicheng Deng, Yizhu Wu, Yugang Yan, Zisheng Chen, Jianying Qi, and et al. 2024. "Impact of Rapeseed Sequential Follow Paddy Crop on Its 2-Acetyl-1-pyrroline Biosynthesis and Economic Yield under the Double-Cropping System" Agronomy 14, no. 8: 1760. https://doi.org/10.3390/agronomy14081760
APA StyleYi, W., Luo, H., Zhang, M., Sun, Z., Gu, Q., Deng, S., Wu, Y., Yan, Y., Chen, Z., Qi, J., Liu, D., & Tang, X. (2024). Impact of Rapeseed Sequential Follow Paddy Crop on Its 2-Acetyl-1-pyrroline Biosynthesis and Economic Yield under the Double-Cropping System. Agronomy, 14(8), 1760. https://doi.org/10.3390/agronomy14081760