Effects of Reducing Chemical Fertilisers Application on Tea Production and Soils Quality: An In Situ Field Experiment in Jiangsu, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and the Field Experiment
2.2. Tea Yield and Quality Determination
2.3. Soil Sampling and Measurements
2.4. Fertiliser Use Efficiency and Economic Benefit
2.5. Statistical Analysis
3. Results
3.1. Tea Yields and Quality Response to Different Fertilisation Regimes
3.2. Soil Properties Variations under Different Fertilisation Regimes
3.3. Fertiliser Use Efficiency and Economic Benefits under Different Fertilisation Regimes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashihara, H. Occurrence, biosynthesis and metabolism of theanine (gamma-Glutamyl-L-ethylamide) in plants: A comprehensive review. Nat. Prod. Commun. 2015, 10, 803–810. [Google Scholar] [PubMed]
- Ni, K.; Liao, W.; Yi, X.; Niu, S.; Ma, L.; Shi, Y.; Zhang, Q.; Liu, M.; Ruan, J. Fertilization status and reduction potential in tea gardens of China. J. Plant Nutr. Fertil. 2019, 25, 421–432. [Google Scholar]
- Ruan, J.; Ma, L.; Yi, X.; Shi, Y.; Ni, K.; Liu, M.; Zhang, Q. Integrated nutrient management in tea plantation to reduce chemical fertilizer and increase nutrient use efficiency. J. Tea Sci. 2020, 40, 85–95. [Google Scholar]
- Yan, P.; Wu, L.; Wang, D.; Fu, J.; Shen, C.; Li, X.; Zhang, L.; Zhang, L.; Fan, L.; Wenyan, H. Soil acidification in Chinese tea plantations. Sci. Total Environ. 2020, 715, 136963. [Google Scholar] [CrossRef]
- Ye, J.; Wang, Y.; Wang, Y.; Hong, L.; Jia, X.; Kang, J.; Lin, S.; Wu, Z.; Wang, H. Improvement of soil acidification in tea plantations by long-term use of organic fertilizers and its effect on tea yield and quality. Front. Plant Sci. 2022, 13, 1055900. [Google Scholar] [CrossRef]
- Zhu, T.; Zhang, J.; Meng, T.; Zhang, Y.; Yang, J.; Müller, C.; Cai, Z. Tea plantation destroys soil retention of NO3− and increases N2O emissions in subtropical China. Soil Biol. Biochem. 2014, 73, 106–114. [Google Scholar] [CrossRef]
- Han, W.Y.; Xu, J.M.; Yi, X.Y.; Lin, Y.D. Net and gross nitrification in tea soils of varying productivity and their adjacent forest and vegetable soils. Soil Sci. Plant Nutr. 2012, 58, 173–182. [Google Scholar] [CrossRef]
- Ruan, J.; Zhang, F.; Wong, M.H. Effect of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of Camellia sinensis L. Plant Soil 2000, 223, 65–73. [Google Scholar] [CrossRef]
- Fan, K.; Fan, D.M.; Ding, Z.T.; Su, Y.H.; Wang, X.C. Cs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant (Camellia sinensis L.). Plant Physiol. Biochem. 2015, 97, 350–360. [Google Scholar] [CrossRef]
- Venkatesan, S.; Murugesan, S.; Ganapathy, M.N.K.; Verma, D.P. Long-term impact of nitrogen and potassium fertilizers on yield, soil nutrients and biochemical parameters of tea. J. Sci. Food Agric. 2004, 84, 1939–1944. [Google Scholar] [CrossRef]
- OkANo, K.; Chutani, K.; Matsuo, K. Suitable level of nitrogen fertilizer for tea (Camellia sinensis L.) plants in relation to growth, photosynthesis, nitrogen uptake and accumulation of free amino acids. JPN J. Crop Sci. 1997, 66, 279–287. [Google Scholar] [CrossRef]
- Ruan, J.; Haerdter, R.; Gerendás, J. Impact of nitrogen supply on carbon/nitrogen allocation: A case study on amino acids and catechins in green tea [Camellia sinensis (L.) O. Kuntze] plants. Plant Biol. 2010, 12, 724–734. [Google Scholar] [CrossRef]
- Ruan, L.; Wei, K.; Wang, L.; Cheng, H.; Wu, L.; Li, H. Characteristics of free amino acids (the quality chemical components of tea) under spatial heterogeneity of different nitrogen forms in tea (Camellia sinensis) plants. Molecules 2019, 24, 415. [Google Scholar] [CrossRef]
- Qiu, Z.; Liao, J.; Chen, J.; Li, A.; Lin, M.; Liu, H.; Huang, W.; Sun, B.; Liu, J.; Liu, S.; et al. Comprehensive analysis of fresh tea (Camellia sinensis cv. Lingtou Dancong) leaf quality under different nitrogen fertilization regimes. Food Chem. 2024, 439, 138127. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.; Gerendás, J.; Hardter, R.; Sattelmacher, B. Effect of root zone pH and form and concentration of nitrogen on accumulation of quality-related components in green tea. J. Sci. Food Agric. 2010, 87, 1505–1516. [Google Scholar] [CrossRef]
- Liu, M.-Y.; Burgos, A.; Zhang, Q.; Tang, D.; Shi, Y.; Ma, L.; Yi, X.; Ruan, J. Analyses of transcriptome profiles and selected metabolites unravel the metabolic response to NH4+ and NO3− as signaling molecules in tea plant (Camellia sinensis L.). Sci. Hortic. 2017, 218, 293–303. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, N.; Hou, M.; Wu, H.; Jiang, H.; Zhou, Z.; Chang, N.; Wang, Q.; Wan, X.; Jiang, J.; et al. Contribution of K solubilising bacteria (Burkholderia sp.) promotes tea plant growth (Camellia sinesis) and leaf polyphenols content by improving soil available K level. Funct. Plant Biol. 2022, 49, 283–294. [Google Scholar] [CrossRef]
- Ruan, J.; Ma, L.; Shi, Y. Potassium management in tea plantations: Its uptake by field plants, status in soils, and efficacy on yields and quality of teas in China. J. Plant Nutr. Soil Sci. 2013, 176, 450–459. [Google Scholar] [CrossRef]
- Wei, K.; Liu, M.; Shi, Y.; Zhang, H.; Ruan, J.; Zhang, Q.; Cao, M. Metabolomics reveal that the high application of phosphorus and potassium in tea plantation inhibited amino-acid accumulation but promoted metabolism of flavonoid. Agronomy 2022, 12, 1086. [Google Scholar] [CrossRef]
- Ruan, J.Y.; Gerendas, J.; Hardter, R.; Sattelmacher, B. Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants. Ann. Bot. 2007, 99, 301–310. [Google Scholar] [CrossRef]
- Ji, L.; Ni, K.; Wu, Z.; Zhang, J.; Yi, X.; Yang, X.; Ling, N.; You, Z.; Guo, S.; Ruan, J. Effect of organic substitution rates on soil quality and fungal community composition in a tea plantation with long-term fertilization. Biol. Fertil. Soils 2020, 56, 633–646. [Google Scholar] [CrossRef]
- Yan, P.; Shen, C.; Zou, Z.; Fan, L.; Li, X.; Zhang, L.; Zhang, L.; Dong, C.; Fu, J.; Han, W. Increased soil fertility in tea gardens leads to declines in fungal diversity and complexity in subsoils. Agronomy 2022, 12, 1751. [Google Scholar] [CrossRef]
- Ma, L.; Yang, X.; Shi, Y.; Yi, X.; Ji, L.; Cheng, Y.; Ni, K.; Ruan, J. Response of tea yield, quality and soil bacterial characteristics to long-term nitrogen fertilization in an eleven-year field experiment. Appl. Soil. Ecol. 2021, 166, 103976. [Google Scholar] [CrossRef]
- Su, Y.; Liao, W.; Ding, Y.; Wang, H.; Xia, X. Effects of nitrogen fertilizaiton on yield and quality of tea. J. Plant Nutr. Soil Sci. 2011, 17, 1430–1436. [Google Scholar]
- Wang, Z.T.; Geng, Y.B.; Liang, T. Optimization of reduced chemical fertilizer use in tea gardens based on the assessment of related environmental and economic benefits. Sci. Total Environ. 2020, 713, 136439. [Google Scholar] [CrossRef]
- Ma, L.; Chen, H.; Shan, Y.; Jiang, M.; Zhang, G.; Wu, L.; Ruan, J.; Lv, J.; Shi, Y.; Pan, L. Status and suggestions of tea garden fertilization on main green tea-producing counties in Zhejiang province. J. Tea Sci. 2013, 33, 74–84. [Google Scholar]
- Yi, X.; Ma, L.; Shi, Y.; Ruan, J. Study on the effect of reducing chemical fertilizer on increasing yield and income of tea special fertilizer. China Tea 2017, 39, 26–27. [Google Scholar]
- Li, Y.C.; Li, Z.; Li, Z.W.; Jiang, Y.H.; Weng, B.Q.; Lin, W.X. Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach. J. Appl. Microbiol. 2016, 121, 787–799. [Google Scholar] [CrossRef]
- GB/T 23776-2018; Chinese National Standard. Methodology for sensory evaluation of tea. National Technical Committee 339 on Tea of Standard Administration of China: Hangzhou, China, 2018.
- GB/T 8312-2013; Chinese National Standard. Tea-Determination of caffeine content. National Technical Committee 339 on Tea of Standard Administration of China: Hangzhou, China, 2013.
- GB/T 8305-2013; Chinese National Standard. Tea-Determination of water extracts content. National Technical Committee 339 on Tea of Standard Administration of China: Hangzhou, China, 2013.
- Ziadi, N.; Tran, T.S. Mehlich 3-extractable elements. In Soil Sampling and Methods of Analysis; CRC Press: Boca Raton, FL, USA, 2008; pp. 81–88. [Google Scholar]
- Pansu, M.; Gautheyrou, J. PH measurement. In Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods; Springer: Berlin/Heidelberg, Germany, 2006; pp. 551–579. [Google Scholar]
- GB/T 22105.2-2008; Chinese National Standard. Soil Quality-Analysis of Total Mercury, Arsenic and Lead Contents-Atomic Fluorescence Spectrometry-Part 2: Analysis of Total Arsenic Contents in Soils. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2008.
- GB/T 22105.3-2008; Chinese National Standard. Soil Quality-Analysis of Total Mercury, Arsenic and Lead Contents-Atomic Fluorescence Spectrometry-Part 3: Analysis of Total Lead Contents in Soils. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2008.
- GB/T 17141-1997; Chinese National Standard. Soil Quality-Determination of Lead, Cadmium-Graphite Furnace Atomic Absorption Spectrophotometry. China National Environmental Protection Bureau: Beijing, China, 1997.
- GB/T 17137-1997; Chinese National Standard. Soil Quality-Determination of Total Chromium-Flame Atomic Absorption Spectrophotometry. China National Environmental Protection Bureau: Beijing, China, 1997.
- GB/T 17138-1997; Chinese National Standard. Soil Quality-Determination of Copper, Zinc-Flame Atomic Absorption Spectrophotometry. China National Environmental Monitoring Centre: Beijing, China, 1997.
- Guo, J.; Ling, N.; Chen, Z.; Xue, C.; Li, L.; Liu, L.; Gao, L.; Wang, M.; Ruan, J.; Guo, S. Soil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processes. New Phytol. 2019, 226, 232–243. [Google Scholar] [CrossRef]
- Shang, Q.; Ling, N.; Feng, X.; Yang, X.; Wu, P.; Zou, J.; Shen, Q.; Guo, S. Soil fertility and its significance to crop productivity and sustainability in typical agroecosystem: A summary of long-term fertilizer experiments in China. Plant Soil 2014, 381, 13–23. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, F.; Wu, Z.; Jiang, F.; Yu, W.; Yang, J.; Chen, J.; Jian, G.; You, Z.; Zeng, L. Effects of long-term nitrogen fertilization on the formation of metabolites related to tea quality in subtropical china. Metabolites 2021, 11, 146. [Google Scholar] [CrossRef]
- Xie, S.; Feng, H.; Yang, F.; Zhao, Z.; Hu, X.; Wei, C.; Liang, T.; Li, H.; Geng, Y. Does dual reduction in chemical fertilizer and pesticides improve nutrient loss and tea yield and quality? A pilot study in a green tea garden in Shaoxing, Zhejiang Province, China. Environ. Sci. Pollut. R. 2019, 26, 2464–2476. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, C.; Wei, K.; Liu, M.; Shi, Y.; Yang, X.; Fang, L.; Ruan, J.; Zhang, Q. The reduction of tea quality caused by irrational phosphate application is associated with anthocyanin metabolism. Beverage Plant Res. 2023, 3, 10. [Google Scholar] [CrossRef]
- Chen, C.-F.; Hu, C.-Y.; Liou, M.-L.; Wu, C.-C.; Su, Y.-S.; Liu, C.-J. Application of Low-Phosphorous Fertilizers on Tea Plantations as a Novel Best Management Practice. Sustainability 2014, 6, 6985–6997. [Google Scholar] [CrossRef]
- Yang, X.D.; Ni, K.; Shi, Y.Z.; Yi, X.Y.; Zhang, Q.F.; Fang, L.; Ma, L.F.; Ruan, J.Y. Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China. Agric. Ecosyst. Environ. 2018, 252, 74–82. [Google Scholar] [CrossRef]
- Morita, A.; Suzuki, R.; Yokota, H. Effect of ammonium application on the oxalate content of tea plants (Camellia sinensis L.). Soil Sci. Plant Nutr. 2004, 50, 763–769. [Google Scholar] [CrossRef]
- Li, H.; Hu, Z.; Wan, Q.; Mu, B.; Li, G.; Yang, Y. Integrated application of inorganic and organic fertilizer enhances soil organo-mineral associations and nutrients in tea garden soil. Agronomy 2022, 12, 1330. [Google Scholar] [CrossRef]
- Yang, W.; Li, C.; Wang, S.; Zhou, B.; Mao, Y.; Rensing, C.; Xing, S. Influence of biochar and biochar-based fertilizer on yield, quality of tea and microbial community in an acid tea orchard soil. Appl. Soil. Ecol. 2021, 166, 104005. [Google Scholar] [CrossRef]
- Yan, P.; Zou, Z.; Zhang, J.; Yuan, L.; Shen, C.; Ni, K.; Sun, Y.; Li, X.; Zhang, L.; Zhang, L.; et al. Crop growth inhibited by over-liming in tea plantations. Beverage Plant Res. 2021, 1, 9. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, F.; Wu, Z.; Zhang, W.; Weng, B.; You, Z. Effects of chemical fertilizer reduction on yield, quality, fertilizer utilization efficiency and economic benefit of oolong tea. J. Tea Sci. 2020, 40, 758–770. [Google Scholar]
- Tang, S.; Zheng, N.; Ma, Q.; Zhou, J.; Sun, T.; Zhang, X.; Wu, L. Applying Nutrient Expert system for rational fertilisation to tea (Camellia sinensis) reduces environmental risks and increases economic benefits. J. Clean. Prod. 2021, 305, 127197. [Google Scholar] [CrossRef]
- Han, W.Y.; Ma, L.F.; Shi, Y.Z.; Ruan, J.Y.; Kemmitt, S.J. Nitrogen release dynamics and transformation of slow release fertiliser products and their effects on tea yield and quality. J. Sci. Food Agric. 2008, 88, 839–846. [Google Scholar] [CrossRef]
- Ma, L.; Su, K.; Li, J.; Shi, Y.; Yi, X.; Fang, L.; Ruan, J. Effects of controlled-release nitrogen fertilizer on tea yield, quality, nitrogen use efficiency and economic benefit. J. Tea Sci. 2015, 35, 354–362. [Google Scholar]
Treatment | Organic Fertiliser (kg ha−1) | Chemical Fertiliser (kg ha−1) | Total NPK | Chemical Fertilisation Reduction Ratio (%) | |||||
---|---|---|---|---|---|---|---|---|---|
N | P2O5 | K2O | N | P2O5 | K2O | Sum | |||
CK | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
CF | 64 | 38 | 26 | 675 | 345 | 345 | 1365 | 1493 | |
T1 | 0 | 0 | 0 | 303 | 60 | 90 | 453 | 453 | 66.8 |
T2 | 0 | 0 | 0 | 303 | 60 | 114 | 477 | 477 | 65.1 |
T3 | 90 | 270 | 150 | 212 | 60 | 90 | 362 | 871 | 73.5 |
T4 | 0 | 0 | 0 | 300 | 80 | 110 | 490 | 490 | 64.1 |
T5 | 0 | 0 | 0 | 270 | 135 | 180 | 585 | 585 | 57.1 |
Treatment | AA (%) | TP (%) | TP/AA | Water Extract (%) |
---|---|---|---|---|
CK | 3.31 ± 1.25 | 23.02 ± 2.15a | 7.13 ± 2.30a | 42.61 ± 2.81 |
CF | 4.25 ± 1.30 | 21.32 ± 1.28b | 5.46 ± 1.66b | 41.47 ± 3.22 |
T1 | 3.82 ± 1.31 | 22.42 ± 1.93ab | 6.49 ± 2.06ab | 43.95 ± 3.53 |
T2 | 3.55 ± 1.26 | 23.00 ± 2.05a | 7.35 ± 2.66a | 43.98 ± 3.36 |
T3 | 3.59 ± 1.21 | 22.96 ± 2.00a | 7.06 ± 2.17ab | 42.97 ± 3.89 |
T4 | 3.89 ± 1.14 | 22.66 ± 1.98a | 6.39 ± 2.18ab | 42.56 ± 4.64 |
T5 | 3.90 ± 1.41 | 22.81 ± 1.91a | 6.54 ± 2.12ab | 41.80 ± 4.45 |
Treatment | pH | TN (g kg−1) | SOM (g kg−1) | AP (mg kg−1) | AK (mg kg−1) | SFI |
---|---|---|---|---|---|---|
CK | 5.31 ± 0.39a | 0.96 ± 0.14c | 15.36 ± 1.75c | 45.09 ± 25.51c | 118.25 ± 25.79b | 0.50 ± 0.14b |
CF | 4.49 ± 0.16b | 1.59 ± 0.18a | 27.03 ± 3.33a | 149.32 ± 27.63a | 208.75 ± 10.72a | 0.88 ± 0.08a |
T1 | 4.86 ± 0.22b | 1.28 ± 0.15abc | 21.30 ± 3.04ab | 98.08 ± 26.98b | 212.5 ± 29.44a | 0.74 ± 0.07a |
T2 | 5.32 ± 0.31a | 1.37 ± 0.34ab | 22.22 ± 5.28ab | 79.84 ± 44.91bc | 235.25 ± 49.92a | 0.77 ± 0.14a |
T3 | 4.64 ± 0.07b | 1.35 ± 0.22ab | 23.03 ± 3.35ab | 62.13 ± 28.28bc | 179.00 ± 6.93a | 0.76 ± 0.12a |
T4 | 4.65 ± 0.16b | 1.37 ± 0.23ab | 22.53 ± 3.44ab | 73.18 ± 24.10bc | 184.75 ± 50.71a | 0.77 ± 0.09a |
T5 | 4.82 ± 0.07b | 1.18 ± 0.19bc | 19.64 ± 3.36bc | 100.34 ± 23.93b | 196.00 ± 32.03a | 0.70 ± 0.08a |
Treatment | AE (kg kg−1) | NUE (%) | PFP (kg kg−1) |
---|---|---|---|
CF | 0.01 ± 0.01 | 0.08 ± 0.09 | 0.06 ± 0.01 |
T1 | 0.10 ± 0.01 | 0.87 ± 0.06 | 0.27 ± 0.01 |
T2 | 0.05 ± 0.03 | 0.42 ± 0.22 | 0.21 ± 0.01 |
T3 | 0.03 ± 0.01 | 0.28 ± 0.16 | 0.11 ± 0 |
T4 | 0.04 ± 0.02 | 0.41 ± 0.18 | 0.19 ± 0 |
T5 | 0.06 ± 0.03 | 0.62 ± 0.30 | 0.19 ± 0.02 |
Treatment | Gross Income (CNY ha−1) | Labor Cost (CNY ha−1) | Fertiliser Cost (CNY ha−1) | Net Income (CNY ha−1) | Net Income Increment (%) |
---|---|---|---|---|---|
CK | 6372.69 ± 2557.58 | 5027.43 ± 2020.23 | 0 ± 0 | 1345.23 ± 543.34ab | |
CF | 7692.04 ± 3035.11 | 5886.47 ± 2377.26 | 614.3 ± 0 | 1191.3 ± 699.87b | |
T1 | 10,346.71 ± 3365.02 | 7370.73 ± 2637.86 | 173.1 ± 0 | 2802.87 ± 728.71a | 197.39 ± 182.77 |
T2 | 8781.43 ± 3770.73 | 6616.43 ± 2923.46 | 394.1 ± 0 | 1770.87 ± 847.92ab | 68.24 ± 67.99 |
T3 | 9578.14 ± 4923.42 | 7055.27 ± 3641.22 | 527.1 ± 0 | 1995.77 ± 1282.2ab | 80.63 ± 71.23 |
T4 | 8102.89 ± 2921.53 | 6127.27 ± 2382.37 | 330.8 ± 0 | 1644.77 ± 548.36ab | 72.02 ± 104.8 |
T5 | 9729.77 ± 3356.3 | 7121.77 ± 2858.07 | 1019.4 ± 0 | 1588.60 ± 498.52ab | 60.22 ± 78.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Li, H.; Ji, L.; Yang, Y. Effects of Reducing Chemical Fertilisers Application on Tea Production and Soils Quality: An In Situ Field Experiment in Jiangsu, China. Agronomy 2024, 14, 1864. https://doi.org/10.3390/agronomy14081864
Hu Z, Li H, Ji L, Yang Y. Effects of Reducing Chemical Fertilisers Application on Tea Production and Soils Quality: An In Situ Field Experiment in Jiangsu, China. Agronomy. 2024; 14(8):1864. https://doi.org/10.3390/agronomy14081864
Chicago/Turabian StyleHu, Zhenmin, Huan Li, Lingfei Ji, and Yiyang Yang. 2024. "Effects of Reducing Chemical Fertilisers Application on Tea Production and Soils Quality: An In Situ Field Experiment in Jiangsu, China" Agronomy 14, no. 8: 1864. https://doi.org/10.3390/agronomy14081864
APA StyleHu, Z., Li, H., Ji, L., & Yang, Y. (2024). Effects of Reducing Chemical Fertilisers Application on Tea Production and Soils Quality: An In Situ Field Experiment in Jiangsu, China. Agronomy, 14(8), 1864. https://doi.org/10.3390/agronomy14081864