Yield Stability and Adaptability of Spring Barley (Hordeum vulgare) Varieties in Polish Organic Field Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FiBL Statistics. 2024. Available online: https://statistics.fibl.org/europe/selected-crops-europe.html (accessed on 10 May 2024).
- Finlay, K.; Wilkinson, G. The analysis of adaptation in a plant breeding programme. Aust. J. Agr. Res. 1963, 14, 742–754. [Google Scholar] [CrossRef]
- Bleidere, M.; Grunte, I.; Legzdiņa, L. Performance and stability of agronomic and grain quality traits of Latvian spring barley varieties. Proc. Latv. Acad. Sci. Sec. B 2020, 74, 270–279. [Google Scholar] [CrossRef]
- Digby, P.G.N. Modified joint regression analysis for incomplete variety × environment data. J. Agric. Sci. 1979, 93, 81–86. [Google Scholar] [CrossRef]
- Eberhart, S.A.; Russell, W.A. Stability parameters for comparing varieties. Crop Sci. 1966, 6, 36–40. [Google Scholar] [CrossRef]
- Hilmarsson, H.S.; Rio, S.; Sánchez, J.I.y. Genotype by environment interaction analysis of agronomic spring barley traits in Iceland using AMMI, factorial regression model and linear mixed model. Agronomy 2021, 11, 499. [Google Scholar] [CrossRef]
- Yan, W.; Kang, M.S. GGE Biplot Analysis: A Graphical Tool for Breeders, Genetists and Agronomists; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Osman, A.M.; Almekinders, C.J.M.; Struik, P.C.; Lammerts van Bueren, E.T. Adapting spring wheat breeding to the needs of the organic sector. NJAS—Wagen. J. Life Sci. 2016, 76, 55–63. [Google Scholar] [CrossRef]
- Rakszegi, M.; Mikó, P.; Löschenberger, F.; Hiltbrunner, J.; Aebi, R.; Knapp, S.; Tremmel-Bede, K.; Megyeri, M.; Kovács, G.; Molnár-Láng, M.; et al. Comparison of quality parameters of wheat varieties with different breeding origin under organic and low-input conventional conditions. J. Cereal Sci. 2016, 69, 297–305. [Google Scholar] [CrossRef]
- Kucek, L.K.; Santantonio, N.; Gauch, H.G.; Dawson, J.C.; Mallory, E.B.; Darby, H.M.; Sorrells, M.E. Genotype × environment interactions and stability in organic wheat. Crop Sci. 2019, 58, 1–8. [Google Scholar] [CrossRef]
- Annicchiarico, P. Genotype × Environment Interactions: Challenges and Opportunities for Plant Breeding and Cultivar Recommendations; FAO: Rome, Italy, 2002; Volume 1. [Google Scholar]
- Massman, C.; Meints, B.; Hernandez, J.; Kunze, K.; Hayes, P.M.; Sorrells, M.E.; Smith, K.P.; Dawson, J.C.; Gutierrez, L. Genetic characterization of agronomic traits and grain threshability for organic naked barley in the northern United States. Crop Sci. 2022, 62, 690–703. [Google Scholar] [CrossRef]
- Kunze, K.H.; Meints, B.; Massman, C.; Gutiérrez, L.; Hayes, P.M.; Smith, K.P.; Sorrells, M.E. Genotype × environment interactions of organic winter naked barley for agronomic, disease, and grain quality traits. Crop Sci. 2024, 64, 678–696. [Google Scholar] [CrossRef]
- Przystalski, M.; Lenartowicz, T. Organic system vs. conventional—A Bayesian analysis of Polish potato post-registration trials. J. Agric. Sci. 2023, 161, 97–108. [Google Scholar] [CrossRef]
- Dias, K.O.G.; dos Santos, J.P.R.; Krause, M.D.; Piepho, H.P.; Guimarães, L.J.M.; Pastina, M.M.; Garcia, A.A.F. Leveraging probability concepts for cultivar recommendation in multi-environment trials. Theor. Appl. Genet. 2022, 135, 1385–1399. [Google Scholar] [CrossRef]
- Edwards, J.W.; Jannink, J.L. Bayesian modeling of heterogeneous error and genotype × environment interaction variances. Crop Sci. 2006, 46, 820–833. [Google Scholar] [CrossRef]
- Przystalski, M.; Lenartowicz, T. Yielding stability of early maturing potato varieties: Bayesian analysis. J. Agric. Sci. 2020, 158, 564–573. [Google Scholar] [CrossRef]
- Colombari Filho, J.M.; de Resende, M.D.V.; de Morais, O.P.; de Castro, A.P.; Guimaraes, E.P.; Pereira, J.A.; Utumi, M.M.; Breseghello, F. Upland rice breeding in Brazil: A simultaneous genotypic evaluation of stability, adaptability and grain yield. Euphytica 2013, 192, 117–129. [Google Scholar] [CrossRef]
- Dias, P.C.; Xavier, A.; de Resende, M.D.V.; Barbosa, M.H.P.; Biernaski, F.A.; Estopa, R.A. Genetic evaluation of Pinus taeda clones from somatic embryogenesis and their genotype × environment interaction. Crop Breed. Appl. Biotechnol. 2018, 18, 55–64. [Google Scholar] [CrossRef]
- Resende, M.D.V. Matematica e Estatistica na Analise de Experimentos e no Melhoramento Genetico; Embrapa Florestas: Colombo, Brazil, 2007. [Google Scholar]
- Knapp, S.; van der Heijden, M.G.A. A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 2018, 9, 3632. [Google Scholar] [CrossRef]
- Eskrigde, K.M. Selection of stable cultivars using a safety-first rule. Crop Sci. 1990, 30, 369–374. [Google Scholar] [CrossRef]
- Eskridge, K.M.; Mumm, R.F. Choosing plant cultivars based on the probability of outperforming a check. Theor. Appl. Genet. 1992, 84, 894–900. [Google Scholar] [CrossRef]
- Piepho, H.P. A simplified procedure for comparing the stability of cropping systems. Biometrics 1996, 52, 315–320. [Google Scholar] [CrossRef]
- Lenartowicz, T.; Bujak, H.; Przystalski, M.; Mashevska, I.; Nowosad, K.; Jończyk, K.; Feledyn-Szewczyk, B. Assessment of variety resistance to barley diseases in Polish organic trials. Agriculture 2024, 14, 789. [Google Scholar] [CrossRef]
- Drążkiewicz, K.; Skrzypek, A.; Szarzyńska, J. Cereals. Methodology for Value-for-Cultivation-and-Use (VCU) Testing in Ecological Conditions; WGO-R/S/2/2020: Słupia Wielka, Poland, 2020. (In Polish) [Google Scholar]
- Piepho, H.P. Stability analysis using the SAS system. Agron. J. 1999, 91, 154–160. [Google Scholar] [CrossRef]
- Shukla, G.K. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity 1972, 29, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Searle, S.R.; Casella, G.; McCulloch, C.E. Variance Components, 2nd ed.; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Kenward, M.G.; Roger, J.H. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 1997, 58, 545–554. [Google Scholar] [CrossRef]
- Hsu, J.C. Multiple Comparisons: Theory and Methods; Chapman & Hall: London, UK, 1996. [Google Scholar]
- Caliński, T.; Czajka, S.; Kaczmarek, Z.; Krajewski, P.; Pilarczyk, W.; Siatkowski, I.; Siatkowski, M. On mixed model analysis of multi-environment variety trials: A reconsideration of the one-stage and the two-stage models and analyses. Stat. Pap. 2017, 58, 433–465. [Google Scholar] [CrossRef]
- Craine, E.B.; Choi, H.; Schroeder, K.L.; Brueggeman, R.; Esser, A.; Murphy, K.M. Spring barley malt quality in eastern Washington and northern Idaho. Crop Sci. 2023, 63, 1148–1168. [Google Scholar] [CrossRef]
- Sandro, P.; Kucek, L.K.; Sorrells, M.E.; Dawson, J.C.; Gutierrez, L. Developing high-quality value-added cereals for organic systems in the US Upper Midwest: Hard red winter wheat (Triticum aestivum L.) breeding. Theor. Appl. Genet. 2022, 135, 4005–4027. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.J.; Dixon, P.M. Analysis of combined experiments revisited. Agron. J. 2015, 107, 763–771. [Google Scholar] [CrossRef]
- Hu, X.; Yan, S.; Shen, K. Heterogeneity of error variance and its influence on genotype comparison in multi-location trials. Field Crops Res. 2013, 149, 322–328. [Google Scholar] [CrossRef]
- Hu, X.; Yan, S.; Li, S. The influence of error variance variation on analysis of genotype stability in multi-environment trials. Field Crops Res. 2014, 156, 84–90. [Google Scholar] [CrossRef]
- Baker, B.P.; Meints, B.M.; Hayes, P.M. Organic barley producers’ desired qualities for crop improvement. Org. Agr. 2020, 10 (Suppl 1), S35–S42. [Google Scholar] [CrossRef]
- Legzdiņa, L.; Bleidere, M.; Piliksere, D.; Ločmele, I. Agronomic performance of heterogeneous spring barley populations compared to mixtures of their parents and homogeneous varieties. Sustainability 2022, 14, 9697. [Google Scholar] [CrossRef]
- De Ponti, T.; Rijk, B.; Van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Ponisio, L.C.; M’Gonigle, L.K.; Mace, K.C.; Palomino, J.; de Valpine, P.; Kremen, C. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B 2015, 282, 20141396. [Google Scholar] [CrossRef]
- Lesur-Dumoulin, C.; Malézieux, E.; Ben-Ari, T.; Langlais, C.; Makowski, D. Lower average yields but similar yield stability in organic versus conventional horticulture. A meta-analysis. Agron. Sustain. Dev. 2017, 37, 45. [Google Scholar] [CrossRef]
- Olesen, J.E.; Hansen, E.M.; Askegaard, M.; Rasmussen, I.A. The value of catch crops and organic manures for spring barley in organic arable farming. Field Crop. Res. 2007, 100, 168–178. [Google Scholar] [CrossRef]
- Löschenberger, F.; Fleck, A.; Grausgruber, H.; Hetzendorfer, H.; Hof, G.; Lafferty, J.; Marn, M.; Neumayer, A.; Pfaffinger, G.; Birschitzky, J. Breeding for organic agriculture: The example of winter wheat in Austria. Euphytica 2008, 163, 469–480. [Google Scholar] [CrossRef]
- Nuijten, E.; Messmer, M.M.; Lammerts van Bueren, E.T. Concepts and strategies of organic plant breeding in light of novel breeding techniques. Sustainability 2017, 9, 18. [Google Scholar] [CrossRef]
- Malik, W.A.; Buntaran, H.; Przystalski, M.; Lenartowicz, T.; Piepho, H.P. Assessing the between-country genetic correlation in maize yield using German and Polish official variety trials. Theor. Appl. Genet. 2022, 135, 3025–3038. [Google Scholar] [CrossRef]
- Van Eeuwijk, F.A.; Keizer, L.C.P.; Bakker, J.J. Linear and bilinear models for the analysis of multienvironmental trials: II. An application to data from the Dutch maize variety trials. Euphytica 1995, 84, 9–22. [Google Scholar] [CrossRef]
- Lenartowicz, T.; Piepho, H.P.; Przystalski, M. Stability analysis of tuber yield and starch yield in mid-late and late maturing starch cultivars of potato (Solanum tuberosum). Potato Res. 2020, 63, 179–197. [Google Scholar] [CrossRef]
Year | Mean [t/ha] | SD | Min | Med | Max |
---|---|---|---|---|---|
2020 | 4.804 | 1.426 | 2.333 | 4.394 | 7.914 |
2021 | 4.596 | 1.481 | 2.282 | 4.589 | 7.464 |
2022 | 4.777 | 1.737 | 1.626 | 4.659 | 8.687 |
Variety | Mean a,b [t/ha] | Shukla’s Stability Variance c | SSI | RPVG | Prob |
---|---|---|---|---|---|
Avatar | 4.863 ab [4] | 0.149 (0.058) [10] | 14 | 1.029 | 0.466 |
Bente | 4.931 a [1] | 0.061 (0.028) [3] | 4 | 1.045 | 0.448 |
Etoile | 4.497 c [10] | 0.145 (0.059) [9] | 19 | 0.943 | 0.560 |
Farmer | 4.577c [8] | 0.083 (0.037) [4] | 12 | 0.965 | 0.540 |
KWS Vermont | 4.812 ab [5] | 0.125 (0.051) [7] | 12 | 1.017 | 0.479 |
Mecenas | 4.878 ab [3] | 0.040 (0.021) [2] | 5 | 1.034 | 0.461 |
MHR Fajter | 4.526 c [9] | 0.123 (0.049) [6] | 15 | 0.955 | 0.552 |
Pilote | 4.619 c [7] | 0.010 (0.013) [1] | 8 | 0.976 | 0.529 |
Radek | 4.920 a [2] | 0.099 (0.042) [5] | 7 | 1.046 | 0.451 |
Rubaszek | 4.682 bc [6] | 0.133 (0.053) [8] | 14 | 0.991 | 0.512 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenartowicz, T.; Bujak, H.; Przystalski, M.; Piecuch, K.; Jończyk, K.; Feledyn-Szewczyk, B. Yield Stability and Adaptability of Spring Barley (Hordeum vulgare) Varieties in Polish Organic Field Trials. Agronomy 2024, 14, 1963. https://doi.org/10.3390/agronomy14091963
Lenartowicz T, Bujak H, Przystalski M, Piecuch K, Jończyk K, Feledyn-Szewczyk B. Yield Stability and Adaptability of Spring Barley (Hordeum vulgare) Varieties in Polish Organic Field Trials. Agronomy. 2024; 14(9):1963. https://doi.org/10.3390/agronomy14091963
Chicago/Turabian StyleLenartowicz, Tomasz, Henryk Bujak, Marcin Przystalski, Karolina Piecuch, Krzysztof Jończyk, and Beata Feledyn-Szewczyk. 2024. "Yield Stability and Adaptability of Spring Barley (Hordeum vulgare) Varieties in Polish Organic Field Trials" Agronomy 14, no. 9: 1963. https://doi.org/10.3390/agronomy14091963
APA StyleLenartowicz, T., Bujak, H., Przystalski, M., Piecuch, K., Jończyk, K., & Feledyn-Szewczyk, B. (2024). Yield Stability and Adaptability of Spring Barley (Hordeum vulgare) Varieties in Polish Organic Field Trials. Agronomy, 14(9), 1963. https://doi.org/10.3390/agronomy14091963