Onion (Allium cepa) Profit Maximization via Ensemble Learning-Based Framework for Efficient Nitrogen Fertilizer Use
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Ensemble Learning Module for Development of a Yield Estimation Model
2.2.1. Linear Regression
2.2.2. Ridge and Lasso Regression
2.2.3. Support Vector Regressor
2.2.4. Decision Tree Regressor
2.2.5. Polynomial Regression
2.3. Optimization Module for Economic Production of Onions
3. Results
3.1. Yield Estimation Modeling
3.2. Onion Profit Maximization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schlenker, W.; Hanemann, W.M.; Fisher, A.C. The impact of global warming on US agriculture: An econometric analysis of optimal growing conditions. Rev. Econ. Stat. 2006, 88, 113–125. [Google Scholar] [CrossRef]
- Shah, F.; Wu, W. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability 2019, 11, 1485. [Google Scholar] [CrossRef]
- Kang, Y.; Khan, S.; Ma, X. Climate change impacts on crop yield, crop water productivity and food security–A review. Prog. Nat. Sci. 2009, 19, 1665–1674. [Google Scholar] [CrossRef]
- Ziervogel, G.; Ericksen, P.J. Adapting to climate change to sustain food security. Wiley Interdiscip. Rev. Clim. Change 2010, 1, 525–540. [Google Scholar] [CrossRef]
- Kim, Y.; On, Y.; So, J.; Kim, S.; Kim, S. A Decision support software application for the design of agrophotovoltaic systems in Republic of Korea. Sustainability 2023, 15, 8830. [Google Scholar] [CrossRef]
- Rural Development Administration. The 3rd Basic Plan for Rural Development Projects. Available online: https://www.rda.go.kr/org/pln/pln_defaultQuery.do?mode=html&prgId=pln_defaultQuery (accessed on 2 July 2024).
- 2050 Carbon Neutral Green Growth Committee. Sustainable Agriculture Strategy Forum for Climate Crisis Adaptation. Available online: https://www.2050cnc.go.kr/storage/board/base/2023/11/10/BOARD_ATTACH_1699599840812.pdf (accessed on 1 September 2024).
- Rural Development Administration. Onion Seeks Response to Climate Change. Available online: https://www.nics.go.kr/bbs/file/dwld.do?fileSn=6016&bbsId=news&m=100000020 (accessed on 1 September 2024).
- Chomba, S.K.; Okalebo, J.R.; Imo, M.; Mutuo, P.K.; Walsh, M. Predicting maize response to fertilizer application using growth curves in western Kenya. Glob. J. Arable Crop Prod. 2013, 1, 78–85. [Google Scholar]
- Shastry, A.; Sanjay, H.; Bhanusree, E. Prediction of crop yield using regression techniques. Int. J. Soft Comput. 2017, 12, 96–102. [Google Scholar]
- Kim, S.; Kim, S.; Green, C.H.; Jeong, J. Multivariate polynomial regression modeling of total dissolved-solids in rangeland stormwater runoff in the Colorado River Basin. Environ. Model. Softw. 2022, 157, 105523. [Google Scholar] [CrossRef]
- Yoon, C.Y.; Kim, S.; Cho, J.; Kim, S. Modeling the impacts of climate change on yields of various Korean soybean sprout cultivars. Agronomy 2021, 11, 1590. [Google Scholar] [CrossRef]
- Shafiee, S.; Lied, L.M.; Burud, I.; Dieseth, J.A.; Alsheikh, M.; Lillemo, M. Sequential forward selection and support vector regression in comparison to LASSO regression for spring wheat yield prediction based on UAV imagery. Comput. Electron. Agric. 2021, 183, 106036. [Google Scholar] [CrossRef]
- Cedric, L.S.; Adoni, W.Y.H.; Aworka, R.; Zoueu, J.T.; Mutombo, F.K.; Krichen, M.; Kimpolo, C.L.M. Crops yield prediction based on machine learning models: Case of West African countries. Smart Agric. Technol. 2022, 2, 100049. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.; Yoon, C.-Y. An efficient structure of an agrophotovoltaic system in a temperate climate region. Agronomy 2021, 11, 1584. [Google Scholar] [CrossRef]
- Lischeid, G.; Webber, H.; Sommer, M.; Nendel, C.; Ewert, F. Machine learning in crop yield modelling: A powerful tool, but no surrogate for science. Agric. For. Meteorol. 2022, 312, 108698. [Google Scholar] [CrossRef]
- Jones, H.; Mann, L. Onions and Their Allies; London Leonard Hill: London, UK; Limited Interscience Publishers Inc.: New York, NY, USA, 1963; Volume 284. [Google Scholar]
- Khokhar, K.M.; Hadley, P.; Pearson, S. Effect of photoperiod and temperature on inflorescence appearance and subsequent development towards flowering in onion raised from sets. Sci. Hortic. 2007, 112, 9–15. [Google Scholar] [CrossRef]
- Brewster, J. Effects of photoperiod, nitrogen nutrition and temperature on inflorescence initiation and development in onion (Allium cepa L.). Ann. Bot. 1983, 51, 429–440. [Google Scholar] [CrossRef]
- Paterson, D.; Blackhurst, H.; Siddiqui, S. Some effects of nitrogen and phosphoric acid on premature seedstalk development, yield and composition of three onion varieties. Proc. Am. Soc. Hortic. Sci. 1960, 76, 460–467. [Google Scholar]
- Stuart, N.; Griffin, D. The influence of nitrogen nutrition on onion seed production in the greenhouse. Proc. Am. Soc. Hortic. Sci. 1946, 48, 398–402. [Google Scholar]
- Korean Statistical Information Service. Vegetable Production (Spice & Culinary Vegetables). Available online: https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0291&conn_path=I2&language=en (accessed on 10 July 2024).
- Jilani, M.S.; Ghaffoor, A.; Waseem, K.; Farooqi, J.I. Effect of different levels of nitrogen on growth and yield of three onion varieties. Int. J. Agric. Biol. 2004, 6, 507–510. [Google Scholar]
- Halvorson, A.D.; Bartolo, M.E.; Reule, C.A.; Berrada, A. Nitrogen effects on onion yield under drip and furrow irrigation. Agron. J. 2008, 100, 1062–1069. [Google Scholar] [CrossRef]
- Gonçalves, F.D.C.; Grangeiro, L.C.; Sousa, V.D.F.D.; Santos, J.P.D.; Souza, F.I.D.; Silva, L.R.D. Yield and quality of densely cultivated onion cultivars as function of nitrogen fertilization. Rev. Bras. Eng. Agrícola Ambient. 2019, 23, 847–851. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Tekeste, N.; Dechassa, N.; Woldetsadik, K.; Dessalegne, L.; Takele, A. Influence of nitrogen and phosphorus application on bulb yield and yield components of onion (Allium cepa L.). Open Agric. J. 2018, 12, 194–206. [Google Scholar] [CrossRef]
- Lee, J.; Min, B. Evaluation of controlled release fertilizer on bulb yield, nutrient content, and storage quality of overwintering intermediate-day onions. Korean J. Soil Sci. Fertil. 2022, 55, 324–342. [Google Scholar] [CrossRef]
- Visual Crossing Corporation. Historical Weather Data. Available online: https://www.visualcrossing.com/weather-data (accessed on 1 September 2024).
- World Bank Group. Historical Weather Data. Available online: https://climateknowledgeportal.worldbank.org/country/pakistan/climate-data-historical (accessed on 1 September 2024).
- Polikar, R. Ensemble learning. In Ensemble Machine Learning: Methods and Applications; Springer: New York, NY, USA, 2012; pp. 1–34. [Google Scholar]
- Gu, Z.; Qi, Z.; Burghate, R.; Yuan, S.; Jiao, X.; Xu, J. Irrigation scheduling approaches and applications: A review. J. Irrig. Drain. Eng. 2020, 146, 04020007. [Google Scholar] [CrossRef]
- Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [Google Scholar] [CrossRef]
- Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Maulud, D.; Abdulazeez, A.M. A review on linear regression comprehensive in machine learning. J. Appl. Sci. Technol. Trends 2020, 1, 140–147. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Kim, S.; Seo, J.; Kim, S. Machine Learning Technologies in the Supply Chain Management Research of Biodiesel: A Review. Energies 2024, 17, 1316. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Society. Ser. C (Appl. Stat.) 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Awad, M.; Khanna, R.; Awad, M.; Khanna, R. Support vector regression. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers; Apress: Berkeley, CA, USA, 2015; pp. 67–80. [Google Scholar]
- Tso, G.K.; Yau, K.K. Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy 2007, 32, 1761–1768. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R.; Taylor, J. Linear regression. In An Introduction to Statistical Learning: With Applications in Python; Springer: Berlin/Heidelberg, Germany, 2023; pp. 69–134. [Google Scholar]
- Sridhara, S.; Ramesh, N.; Gopakkali, P.; Das, B.; Venkatappa, S.D.; Sanjivaiah, S.H.; Kumar Singh, K.; Singh, P.; El-Ansary, D.O.; Mahmoud, E.A. Weather-based neural network, stepwise linear and sparse regression approach for rabi sorghum yield forecasting of Karnataka, India. Agronomy 2020, 10, 1645. [Google Scholar] [CrossRef]
- Enwere, K.; Nduka, E.; Ogoke, U. Comparative Analysis of Ridge, Bridge and Lasso Regression Models In the Presence of Multicollinearity. IPS Intelligentsia Multidiscip. J. 2023, 3, 1–8. [Google Scholar] [CrossRef]
- Paidipati, K.K.; Chesneau, C.; Nayana, B.; Kumar, K.R.; Polisetty, K.; Kurangi, C. Prediction of rice cultivation in India—Support vector regression approach with various kernels for non-linear patterns. AgriEngineering 2021, 3, 182–198. [Google Scholar] [CrossRef]
- Kuradusenge, M.; Hitimana, E.; Hanyurwimfura, D.; Rukundo, P.; Mtonga, K.; Mukasine, A.; Uwitonze, C.; Ngabonziza, J.; Uwamahoro, A. Crop yield prediction using machine learning models: Case of Irish potato and maize. Agriculture 2023, 13, 225. [Google Scholar] [CrossRef]
- Basak, D.; Pal, S.; Patranabis, D.C. Support vector regression. Neural Inf. Process. Lett. Rev. 2007, 11, 203–224. [Google Scholar]
- Panigrahi, B.; Kathala, K.C.R.; Sujatha, M. A machine learning-based comparative approach to predict the crop yield using supervised learning with regression models. Procedia Comput. Sci. 2023, 218, 2684–2693. [Google Scholar] [CrossRef]
- Iniyan, S.; Varma, V.A.; Naidu, C.T. Crop yield prediction using machine learning techniques. Adv. Eng. Softw. 2023, 175, 103326. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S. Performance estimation modeling via machine learning of an agrophotovoltaic system in South Korea. Energies 2021, 14, 6724. [Google Scholar] [CrossRef]
- The Pennsylvania State University. Deleted Residuals. Available online: https://online.stat.psu.edu/stat501/lesson/11/11.4 (accessed on 2 September 2024).
- Choi, C.G. Agricultural Management Guide 1: Onion Management (No.11-1390000-003926-10). Rural Development Administration of South Korea: Jeonju, Republic of Korea, 2015. [Google Scholar]
- Sangeeta, S.G. Design and implementation of crop yield prediction model in agriculture. Int. J. Sci. Technol. Res. 2020, 8, 544–549. [Google Scholar]
Study A | Study B | Study C | Study D | Study E | |||||
---|---|---|---|---|---|---|---|---|---|
N (kg/ha) | Yield (ton/ha) | N (kg/ha) | Yield (ton/ha) | N (kg/ha) | Yield (ton/ha) | N (kg/ha) | Yield (ton/ha) | N (kg/ha) | Yield (ton/ha) |
0 | 5.0 | 0 | 83 | 0 | 42.66 | 0 | 25.3 | 0 | 32.78 |
40 | 8.2 | 45 | 85 | 45 | 56.66 | 34.5 | 28.64 | 48 | 38.07 |
80 | 12.4 | 90 | 95 | 90 | 70.65 | 69 | 34.35 | 96 | 40.89 |
120 | 20.4 | 135 | 99 | 135 | 71.21 | 103.5 | 37.94 | 288 | 40.44 |
160 | 19.4 | 180 | 97 | 180 | 71.21 | 138 | 37.82 | ||
200 | 18.8 | 225 | 98 | 225 | 71.21 |
Category | Year | Region | Maximum Temperature (°C) | Minimum Temperature (°C) | Average Temperature (°C) | Relative Humidity (%) | Precipitation (mm/day) |
---|---|---|---|---|---|---|---|
Study A | 2003 | Khyber Pakhtunkhwa, Pakistan | 30.1 | 20.9 | 25.6 | 60.5 | 0.98 |
Study B | 2005 | Colorado, USA | 21.0 | 5.2 | 12.7 | 53.0 | 0.68 |
Study C | 2016 | Rio Grande do Norte, Brazil | 34.8 | 23.9 | 28.5 | 66.2 | 1.54 |
Study D | 2011 | Oromiya, Ethiopia | 25.3 | 10.1 | 16.6 | 61.4 | 1.43 |
Study E | 2014~2015 | Gyeongsangnam-do, South Korea | 17.5 | 4.9 | 10.6 | 63.2 | 2.37 |
Average | 25.74 | 13.00 | 18.8 | 60.86 | 1.40 | ||
Standard deviation | 6.92 | 8.89 | 7.90 | 4.90 | 0.64 |
Category | PR | LR | DT | SVR | Ridge | Lasso |
---|---|---|---|---|---|---|
Study A | 0.92 | 0.83 | 0.93 | 0.85 | 0.83 | 0.83 |
Study B | 0.90 | 0.77 | 0.70 | 0.89 | 0.77 | 0.77 |
Study C | 0.97 | 0.70 | 0.99 | 0.83 | 0.70 | 0.70 |
Study D | 0.97 | 0.92 | 0.89 | 0.95 | 0.92 | 0.92 |
Study E | 0.99 | 0.47 | 0.66 | 0.85 | 0.47 | 0.47 |
Average | 0.95 | 0.74 | 0.83 | 0.87 | 0.74 | 0.74 |
Category | 2010 | 2011 | 2012 | 2013 | 2014 | Average |
---|---|---|---|---|---|---|
Sales price (USD/kg) | 0.57 | 0.30 | 0.26 | 0.76 | 0.33 | 0.44 |
Revenue (USD/ha) | 28,192.86 | 16,521.43 | 14,800.00 | 37,957.14 | 20,671.43 | 23,628.57 |
Profit (USD/ha) | 19,521.43 | 7185.71 | 5200.00 | 28,078.57 | 10,600.00 | 14,117.14 |
Total production cost (USD/ha) | 8671.43 | 9335.71 | 9600.00 | 9878.57 | 10,071.43 | 9511.43 |
Seed (USD/ha) | 1457.14 | 1707.14 | 1692.86 | 1750.00 | 1678.57 | 1657.14 |
Fertilizer (USD/ha) | 1135.71 | 928.57 | 1021.43 | 1500.00 | 1821.43 | 1281.43 |
Pesticide (USD/ha) | 457.14 | 535.71 | 485.71 | 528.57 | 492.86 | 500.00 |
Labor (USD/ha) | 3428.57 | 3864.29 | 4171.43 | 3764.29 | 4371.43 | 3920.00 |
Land rent (USD/ha) | 764.29 | 728.57 | 692.86 | 828.57 | 35.71 | 610.00 |
Depreciation (USD/ha) | 514.29 | 528.57 | 392.86 | 478.57 | 371.43 | 457.14 |
Material cost a (USD/ha) | 750.00 | 914.29 | 985.71 | 857.14 | 535.71 | 808.57 |
Other costs b (USD/ha) | 164.29 | 128.57 | 157.14 | 171.43 | 764.29 | 277.14 |
Category | 2010 | 2011 | 2012 | 2013 | 2014 | Average |
---|---|---|---|---|---|---|
Nitrogen fertilizer use (kg/ha) | 1628.20 | 1585.60 | 1570.40 | 1640.00 | 1594.10 | 1603.66 |
Nitrogen fertilizer cost (USD/ha) | 964.29 | 942.86 | 928.57 | 971.43 | 942.86 | 950.00 |
Yield (kg/ha) | 73,930 | 73,870 | 73,840 | 73,940 | 73,890 | 73,894 |
Revenue (USD/ha) | 42,142.86 | 22,164.29 | 18,935.71 | 56,250.00 | 24,485.71 | 32,795.71 |
Total production cost (USD/ha) a | 8500.00 | 9350.00 | 9507.14 | 9350.00 | 9192.86 | 9180.00 |
Profit (USD/ha) | 33,642.86 | 12,814.29 | 9428.57 | 46,900.00 | 15,292.86 | 23,615.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Kim, S.; Kim, S. Onion (Allium cepa) Profit Maximization via Ensemble Learning-Based Framework for Efficient Nitrogen Fertilizer Use. Agronomy 2024, 14, 2130. https://doi.org/10.3390/agronomy14092130
Kim Y, Kim S, Kim S. Onion (Allium cepa) Profit Maximization via Ensemble Learning-Based Framework for Efficient Nitrogen Fertilizer Use. Agronomy. 2024; 14(9):2130. https://doi.org/10.3390/agronomy14092130
Chicago/Turabian StyleKim, Youngjin, Sumin Kim, and Sojung Kim. 2024. "Onion (Allium cepa) Profit Maximization via Ensemble Learning-Based Framework for Efficient Nitrogen Fertilizer Use" Agronomy 14, no. 9: 2130. https://doi.org/10.3390/agronomy14092130
APA StyleKim, Y., Kim, S., & Kim, S. (2024). Onion (Allium cepa) Profit Maximization via Ensemble Learning-Based Framework for Efficient Nitrogen Fertilizer Use. Agronomy, 14(9), 2130. https://doi.org/10.3390/agronomy14092130