Water Management of Arabica Coffee Seedlings Cultivated with a Hydroretentive Polymer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area Characterization
2.2. Experimental Design
2.3. Experiment Setup
2.4. Irrigation Management
2.5. Analyzed Variables
- -
- Plant height: measured as the distance from the collar to the apex using a graduated ruler (cm).
- -
- Leaf temperature: measured using an infrared thermometer (Brand: B-MAS, Model: M-300) at the middle third of the coffee seedling.
- -
- Collar diameter: measured 5 cm from the soil using a digital caliper (mm).
- -
- Clod structure: The seedlings were classified based on how easily they could be removed from the container, using a scale from 5 to 1, where 5—root breakage (not possible to remove the root ball); 4—very difficult to remove the root ball, but possible; 3—moderate difficulty; 2—moderately easy; and 1—easy to remove from the tube [25].
- -
- Leaf area: determined by scanning the leaves using a device with known cell areas, expressed in cm2, and estimated using the LI-COR leaf area meter model LI-3000.
- -
- Root length: measured as the distance from the surface to the deepest root (cm).
- -
- Dickson quality index: determined using Equation (6) [26].
- -
- Robustness index: obtained using Equation (7) [26].
- -
- Root volume: measured with the aid of the software for root parameters, WinRhizo version 1.0 [27].
- -
- Fresh and dry mass of leaves, stems, and roots: the plant material was divided into previously identified and weighed paper bags using an analytical balance with a precision of 0.01 g to determine the fresh mass. To obtain the dry mass, the material was placed in an oven at 65 °C for 72 h and then weighed on a balance.
2.6. Data Analysis
3. Results and Discussion
3.1. Germination
3.2. Water Consumption
3.3. Gas Exchange
3.4. Biometrics Evaluations
3.5. Phytomasses
3.6. Hydroretentive Polymer
3.7. Crop and Soil Moisture Coefficients
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samoggia, A.; Riedel, B. Coffee consumption and purchasing behavior review: Insights for further research. Appetite 2018, 129, 70–81. [Google Scholar] [CrossRef]
- Damatta, F.M.; Rahn, E.; Läderach, P.; Ghini, R.; Ramalho, J.C. Why could the coffee crop endure climate change and global warming to a greater extent than previously estimated? Clim. Change 2019, 152, 167–178. [Google Scholar] [CrossRef]
- Chekol, H.; Bezuayehu, Y.; Warkineh, B.; Shimber, T.; Adamska, A.M.; Dąbrowska, G.B.; Degu, A. Unraveling drought tolerance and sensitivity in coffee genotypes: Insights from seed traits, germination, and growth-physiological responses. Agriculture 2023, 13, 1754. [Google Scholar] [CrossRef]
- Gokavi, N.; Mote, K.; Mukharib, D.S.; Manjunath, A.N.; Raghuramulu, Y. Performance of hydrogel on seed germination and growth of young coffee seedlings in nursery. J. Pharmacogn. Phytochem. 2018, 7, 1364–1366. [Google Scholar]
- Barbosa, I.D.; Oliveira, A.C.B.; Rosado, R.D.S.; Sakiyama, N.S.; Cruz, C.D.; Pereira, A.A. Sensory analysis of arabica coffee: Cultivars of rust resistance with potential for the specialty coffee market. Euphytica 2020, 216, 165. [Google Scholar] [CrossRef]
- Abdelwahab, S.I.; Taha, M.M.E.; Jerah, A.A.; Aljahdali, I.A.; Oraibi, B.; Alfaifi, H.A.; Abdullah, S.M.; Alzahrani, A.H.; Oraibi, O.; Babiker, Y.; et al. Coffee arabica research (1932–2023): Performance, thematic evolution and mapping, global landscape, and emerging trends. Heliyon 2024, 10, e36137. [Google Scholar] [CrossRef]
- Companhia Nacional de Abastecimento (CONAB). Produção De Café De 2024 É Estimada Em 54,79 Milhões De Sacas, Influenciada Por Clima. 2024. Available online: https://www.conab.gov.br (accessed on 3 December 2024).
- Franzin, M.L.; Moreira, C.C.; Silva, L.N.P.; Martins, E.F.; Fadini, M.A.M.; Pallini, A.; Elliot, S.L.; Venzon, M. Metarhizium associated with coffee seedling roots: Positive effects on plant growth and protection against Leucoptera coffeella. Agriculture 2022, 12, 2030. [Google Scholar] [CrossRef]
- Hirooka, Y.; Motomura, M.; Iijima, M. Ultra-fine bubble irrigation promotes coffee (Coffea arabica) seedling growth under repeated drought stresses. Plant Prot. Sci. 2024, 27, 47–55. [Google Scholar] [CrossRef]
- Venancio, L.P.; Filgueiras, R.; Mantovani, E.C.; Amaral, C.H.; Cunha, F.F.; Silva, F.C.S.; Althoff, D.; Santos, R.A.; Cavatte, P.C. Impact of drought associated with high temperatures on Coffea canephora plantations: A case study in Espírito Santo State, Brazil. Sci. Rep. 2020, 10, 19719. [Google Scholar] [CrossRef]
- Alixandre, F.T.; Lopes, J.C.; Ferreira, A.; Alexandre, R.S.; Lima, P.A.M.; Guarçoni, R.C.; Kroling, C.A.; Dias, R.S.; Favaratto, L.F.; Alixandre, R.D.; et al. Physiological quality of seeds from traditional and new recommended groups of Arabic coffee cultivars to highland regions. Int. J. Adv. Eng. Sci. 2021, 8, 114–120. [Google Scholar] [CrossRef]
- Correia, C.C.S.A.; Cunha, F.F.; Mantovani, E.C.; Silva, D.J.H.; Dias, S.H.B.; Ferreira, T.S. Irrigation of arugula cultivars in the region of Zona da Mata Mineira. Semina 2019, 40, 1101–1114. [Google Scholar] [CrossRef]
- Cruz, G.H.M.; Cunha, F.F.; Souza, E.J.; Silva, A.J.; Filgueiras, R.; Silva, F.C.S. Irrigation frequency and vermiculite proportion in substrate for Eucalyptus grandis seedling. Semina 2020, 41, 1495–1506. [Google Scholar] [CrossRef]
- Silva, W.R.D.; Salomão, L.C.; Pereira, D.R.; Oliveira, H.F.; Pereira, A.I.D.A.; Cantuario, F.S. Irrigation levels and use of hydro retainer polymer in greenhouse lettuce production. Rev. Bras. Eng. Agric. Ambient. 2019, 23, 406–412. [Google Scholar] [CrossRef]
- Beltramin, F.A.; Silva, W.C.; Santos, C.C.; Scalon, S.P.Q.; Vieira, M.C. Water-retaining polymer mitigates the water deficit in Schinus terebinthifolia: Photosynthetic metabolism and initial growth. Agric. Eng. 2020, 40, 684–691. [Google Scholar] [CrossRef]
- Patra, S.K.; Poddar, R.; Brestic, M.; Acharjee, P.U.; Bhattacharya, P.; Sengupta, S.; Pal, P.; Bam, B.; Biswas, B.; Barek, V.; et al. Prospects of hydrogels in agriculture for enhancing crop and water productivity under water deficit condition. Int. J. Polym. Sci. 2022, 2022, 4914836. [Google Scholar] [CrossRef]
- Choi, H.; Park, J.; Lee, J. Sustainable bio-based superabsorbent polymer: Poly (itaconic acid) with superior swelling properties. Appl. Polym. Mater. 2022, 4, 4098–4108. [Google Scholar] [CrossRef]
- UPL. Polímero Vegetal, UPDT®. 2024. Available online: https://www.upl-ltd.com/br (accessed on 3 December 2024).
- Schorn, L.A.; Pandini, G.; Bittencourt, R.; Fenilli, T.A.B. Definição de idades ótimas para expedição de mudas de Araucaria angustifolia (Bertol.) Kuntze (Araucariaceae) em função de sua qualidade e volume de recipientes. Biotemas 2019, 32, 19–27. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Moura, W.M.; Soares, L.G. Implantação de Lavoura de Café em Sistema Orgânico; Circular Técnica; Empresa de Pesquisa Agropecuária de Minas Gerais—EPAMIG: Belo Horizonte, Brazil, 2022; Volume 372, p. 7. [Google Scholar]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos; Empresa Brasileira de Pesquisa Agropecuária—Embrapa: Brasília, Brazil, 2018; p. 355. [Google Scholar]
- Nascimento, H.R.; Moura, L.O.; Duarte, A.B.; Dantas, S.A.G.; Ferreira, D.O.; Rosmaninho, L.B.C.; Cavallin, I.C.; Cunha, F.F.; Silva, F.L. A new methodological approach for simulating water deficit in soybean genotypes. J. Agron. Crop Sci. 2021, 207, 946–955. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. In FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. 300. [Google Scholar]
- Rodrigues, L.A.; Figueiredo, N.A.; Porto, V.G.V.; Barroso, D.G. Clod structure and the quality of moringa seedlings (Moringa oleifera LAM.) grown in commercial substrate and in organic composts. Rev. Árvore 2021, 45, e450135. [Google Scholar] [CrossRef]
- Dickson, A.; Leaf, A.L.; Hosner, J.F. Quality appraisal of white spruce and white pine seedling stock in nurseries. For. Chron. 1960, 36, 10–13. [Google Scholar] [CrossRef]
- Bauhus, J.; Messier, C. Evaluation of fine root length and diameter measurements obtained using WinRhizo image analysis. Agron. J. 1999, 91, 142–147. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; 4.4.2 Version; R Development Core Team: Vienna, Austria, 2023; Available online: www.r-project.org/ (accessed on 11 November 2024).
- Araújo, E.D.; Assis, M.O.; Guimarães, C.M.; Araújo, E.F.; Borges, A.C.; Cunha, F.F. Superabsorbent polymers and sanitary sewage change water availability during the cowpea emergence phase. Nativa 2024, 12, 37–48. [Google Scholar] [CrossRef]
- Maguire, M.P. Variability in length and arm ratio of the pachytene chromosomes corn. Cytologia 1962, 27, 248–257. [Google Scholar] [CrossRef]
- Silva, A.B.; Damascena, J.F.; Lima, E.F.; Pereira, J.A.; Silva, C.M.; Silva, W.A. Germinação e desenvolvimento inicial de rosa do deserto em diferentes substratos. J. Environ. Anal. Prog. 2022, 7, 127–134. [Google Scholar] [CrossRef]
- Agaba, H.; Orikiriza, L.J.B.; Esegu, J.F.O.; Obua, J.; Kabasa, J.D.; Hüttermann, A. Effects of hydrogel amendment to different soils on plant available water and survival of trees under drought conditions. Clean Soil Air Water 2010, 38, 328–335. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Fisiologia Vegetal; Artmed: Porto Alegre, Brazil, 2017; p. 719. [Google Scholar]
- Zheng, H.; Mei, P.; Wang, W.; Yin, Y.; Li, H.; Zheng, M.; Ou, X.; Cui, Z. Effects of super absorbent polymer on crop yield, water productivity and soil properties: A global meta-analysis. Agric. Water Manag. 2023, 282, 108290. [Google Scholar] [CrossRef]
- Pacholczak, A.; Nowakowska, K.; Monder, M.J. Starch-based superabsorbent enhances the growth and physiological traits of ornamental shrubs. Agriculture 2023, 13, 1893. [Google Scholar] [CrossRef]
- Batista, R.C.M.; Carvalho, J.S.B.; Coqueiro, D.R.; Aquino, P.G.V.; Alves, L.Z. Growth, gas exchange and essential oil production of Mentha spicata L. under water deficiency. Pesqui. Agropecu. Trop. 2023, 53, e76893. [Google Scholar] [CrossRef]
- Sousa, J.T.M.; Sousa, A.B.O.; Rosal, G.B.; Lima Junior, J.C.; Lacerda, C.F.; Oliveira, A.M.S. Gas exchanges and thermal index of strawberry cultivars grown under hydrogel doses. Rev. Bras. Eng. Agric. Ambient. 2024, 28, e280160. [Google Scholar] [CrossRef]
- Bezerra, F.T.C.; Bezerra, M.A.F.; Nascimento, R.R.A.; Pereira, W.E.; Oliveira, C.J.A.; Souza, G.L.F.; Ribeiro, J.E.S. Physiology in Talisia esculenta seedlings under irrigation with saline water on substrate with hydrogel. Semin. Cienc. Agrar. 2022, 43, 751–774. [Google Scholar] [CrossRef]
- Badr, E.A.; Bakhoum, G.S.; Sadak, M.S.; Al-Ashkar, I.; Islam, M.S.; El Sabagh, A.; Abdelhamid, M.T. Enhancing canola yield and photosynthesis under water stress with hydrogel polymers. Phyton Int. J. Exp. Bot. 2024, 93, 1623–1645. [Google Scholar] [CrossRef]
- Ren, Y.; Li, X.; Cheng, B.; Yue, L.; Cao, X.; Wang, C.; Wang, Z. Carbon dot-embedded hydrogels promote maize germination and growth under drought stress. Environ. Sci. 2024, 11, 2239–2248. [Google Scholar] [CrossRef]
- Grossnickle, S.C.; Macdonald, J.E. Why seedlings grow: Influence of plant attributes. New For. 2018, 49, 1–34. [Google Scholar] [CrossRef]
- Jagadish, S.V.K.; Way, D.A.; Sharkey, T.D. Plant heat stress: Concepts directing future research. Plant Cell Environ. 2021, 44, 1992–2005. [Google Scholar] [CrossRef] [PubMed]
- Freitas, T.A.S.D.; Oliveira, M.F.; Souza, L.S.; Dias, C.N.; Quintela, M.P. Qualidades de mudas de Myracrodruon urundeuva Fr. All. conduzidas sob diferentes volumes de recipientes. Cienc. Florest. 2022, 32, 19–42. [Google Scholar] [CrossRef]
- Mote, K.; Gokavi, N. Performance of hydrogel on post planting behavior of young coffee cv. CXR. J. Crop Weed 2020, 2, 197–203. [Google Scholar] [CrossRef]
- Pattanaaik, S.K.; Wangchu, L.; Singh, B.; Hazarika, B.N.; Singh, S.M.; Pandey, A.K. Effect of hydrogel on water and nutrient management of Citrus reticulata. Res. Crops 2015, 16, 98–103. [Google Scholar] [CrossRef]
- Silva, O.M.C.; Hernández, M.M.; Araújo, G.C.R.; Cunha, F.L.; Evangelista, D.V.P.; Leles, P.S.S.; Melo, L.A. Potencial uso da casca de café como constituinte de substrato para produção de mudas de espécies florestais. Cienc. Florest. 2020, 30, 1161–1175. [Google Scholar] [CrossRef]
- Carneiro, J.G.A. Produção e controle de qualidade de mudas florestais. In FUPEF Fundação de Apoio da Universidade Federal do Paraná; UFPR: Curitiba, Brazil, 1995; p. 451. [Google Scholar]
- Melo, L.A.; Abreu, A.H.M.; Leles, P.S.S.; Oliveira, R.R.; Silva, D.T. Qualidade e crescimento inicial de mudas de Mimosa caesalpiniifolia Benth. produzidas em diferentes volumes de recipientes. Cienc. Florest. 2018, 28, 47–55. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, G.; Guo, Q.; Peng, C.; Liu, Y.; Zhang, M.; Li, Z.; Zhou, Y.; Duan, L. Increase in root density induced by coronatine improves maize drought resistance in North China. Crop J. 2023, 11, 278–290. [Google Scholar] [CrossRef]
- Deans, R.M.; Brodribb, T.J.; Busch, F.A.; Farquhar, G.D. Optimization can provide the fundamental link between leaf photosynthesis, gas exchange and water relations. Nat. Plants 2020, 6, 1116–1125. [Google Scholar] [CrossRef] [PubMed]
- Alface, A.B.; Pereira, S.B.; Filgueiras, R.; Cunha, F.F. Sugarcane spatial-temporal monitoring and crop coefficient estimation through NDVI. Rev. Bras. Eng. Agric. Ambient. 2019, 23, 330–335. [Google Scholar] [CrossRef]
- Oliveira, R.M.; Cunha, F.F.; Silva, G.H.; Andrade, L.M.; Morais, C.V.; Ferreira, P.M.O. Evapotranspiration and crop coefficients of Italian zucchini cultivated with recycled paper as mulch. PLoS ONE 2020, 15, e0232554. [Google Scholar] [CrossRef]
- Rodríguez, C.A.; Araújo, W.F.; Chagas, P.C.; Siqueira, R.H.S.; Chagas, E.A.; Paulichi, M.G.; Lima, J.V.G.; Sakazaki, R.T.; Monteiro Neto, J.L.L.; Valero, M.A.M.; et al. Determination of evapotranspiration and crop coefficient of Myrciaria dubia (Kunth) McVaugh for domestication and conservation on uplands. Rev. Chapingo Ser. Hortic. 2020, 26, 175–188. [Google Scholar] [CrossRef]
Hydroretentive Polymer | FG (%) | GVI | MGT (Days) | MGS (Seeds Days−1) | ||||
---|---|---|---|---|---|---|---|---|
II 2 | II 4 | II 2 | II 4 | II 2 | II 4 | II 2 | II 4 | |
0% | 46.25 Ab | 25.00 Ba | 25.77 Ab | 35.37 Aa | 16.52 Ab | 23.11 Aa | 7.000 Aa | 4.432 Ba |
0.25% | 78.75 Aa | 25.00 Ba | 46.12 Aa | 49.81 Aa | 28.13 Aa | 30.91 Aa | 3.675 Ab | 3.264 Aa |
0.5% | 87.50 Aa | 25.00 Ba | 48.49 Aa | 40.63 Aa | 31.82 Aa | 26.89 Aa | 3.156 Ab | 4.049 Aa |
1% | 87.50 Aa | 25.00 Ba | 51.66 Aa | 44.52 Aa | 31.82 Aa | 28.30 Aa | 3.202 Ab | 3.696 Aa |
Mean Value | 75.00 A | 25.00 B | 43.01 A | 42.58 A | 27.07 A | 27.30 A | 4.258 A | 3.860 A |
II | 2.00 × 104 ** | 1.46 × 100 ns | 4.34 × 10−1 ns | 1.27 × 100 ns | ||||
HPD | 7.69 × 102 ** | 5.53 × 102 ** | 1.94 × 102 ** | 9.80 × 100 ** | ||||
IIxHPD | 7.69 × 102 ** | 1.45 × 102 ns | 5.85 × 101 ns | 4.78 × 100 * | ||||
MSD (II) | 17.92 | 17.34 | 9.37 | 2.118 | ||||
MSD (HPD) | 23.43 | 20.17 | 10.75 | 2.384 | ||||
CV (%) | 26.14 | 33.74 | 29.30 | 44.75 |
Hydroretentive Polymer | Irrigation Interval of 2 Days | Irrigation Interval of 4 Days |
---|---|---|
0% | 147.10 | 79.20 |
0.25% | 150.56 | 96.28 |
0.5% | 151.78 | 103.50 |
1% | 118.82 | 115.24 |
Hydro- Retentive Polymer Doses | A (μmol CO2 m−2 s−1) | gs (mol H2O m−2 s−1) | E (mmol H2O m−2 s−1) | Ci (μmol CO2 m−2 s−1) | WUE [(μmol CO2 m−2 s−1) (mol H2O m−2 s−1)−1] | EiC [(μmol CO2 m−2 s−1) (μmol CO2 mol−1)−1] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
II 2 | II 4 | II 2 | II 4 | II 2 | II 4 | II 2 | II 4 | II 2 | II 4 | II 2 | II 4 | |
0% | 3.488 Ac | 3.158 Ab | 0.228 Ab | 0.168 Bb | 1.600 Aa | 1.700 Aa | 328.0 Aa | 327.5 Aa | 2.232 Aa | 1.877 Aa | 0.0106 Ac | 0.0096 Ab |
0.25% | 5.400 Aa | 4.585 Ba | 0.308 Aa | 0.280 Aa | 2.318 Aa | 2.113 Aa | 341.0 Aa | 341.3 Aa | 2.392 Aa | 2.173 Aa | 0.0159 Aa | 0.0135 Aa |
0.5% | 4.773 Aab | 4.008 Bab | 0.233 Aab | 0.218 Aab | 1.675 Aa | 1.655 Aa | 332.5 Aa | 320.0 Aa | 2.971 Aa | 2.720 Aa | 0.0144 Aab | 0.0125 Aab |
1% | 4.048 Abc | 3.448 Ab | 0.238 Aab | 0.210 Aab | 1.953 Aa | 1.798 Aa | 330.3 Aa | 328.5 Aa | 2.071 Aa | 1.930 Aa | 0.0123 Abc | 0.0105 Aab |
Mean Value | 4.427 A | 3.799 B | 0.251 A | 0.219 A | 1.886 A | 1.816 A | 332.9 A | 329.3 A | 2.416 A | 2.175 A | 0.0133 A | 0.0115 A |
II | 3.15 × 100 * | 8.45 × 10−3 ns | 3.92 × 10−2 ns | 1.05 × 102 ns | 4.66 × 10−1 ns | 3.41 × 10−5 ns | ||||||
HPD | 4.29 × 100 ** | 4.07 × 10−2 ** | 5.55 × 10−1 * | 3.69 × 102 ns | 1.19 × 100 * | 3.17 × 10−5 ** | ||||||
IIxHPD | 9.56 × 10−2 ns | 2.22 × 10−3 ns | 3.79 × 10−2 ns | 7.14 × 101 ns | 1.57 × 10−2 ns | 1.82 × 10−7 ns | ||||||
MSD (II) | 0.757 | 0.053 | 0.610 | 26.9 | 0.854 | 0.0026 | ||||||
MSD (HPD) | 1.035 | 0.076 | 0.795 | 34.8 | 1.092 | 0.0032 | ||||||
CV (%) | 12.14 | 12.47 | 24.23 | 5.98 | 28.25 | 16.82 |
Hydroret. Polymer | H (cm) | LT (°C) | SD (mm) | CS | ||||
---|---|---|---|---|---|---|---|---|
II 2 | II 4 | II 2 | II 4 | II 2 | II 4 | II 2 | II 4 | |
0% | 13.08 Aa | 11.00 Bb | 24.33 Aa | 20.72 Ba | 2.542 Aab | 2.363 Aa | 1.313 Aa | 1.313 Aa |
0.25% | 14.18 Aa | 12.93 Aa | 21.82 Aa | 17.44 Ba | 2.556 Aa | 2.335 Ba | 1.125 Aa | 1.000 Aa |
0.5% | 14.09 Aa | 12.18 Bab | 22.20 Aa | 17.57 Ba | 2.255 Ab | 2.307 Aa | 1.125 Aa | 1.188 Aa |
1% | 12.66 Aa | 11.74 Aab | 21.93 Aa | 18.41 Ba | 2.310 Aab | 2.273 Aa | 1.063 Aa | 1.000 Aa |
Mean Value | 13.50 A | 11.96 B | 22.57 A | 18.53 B | 2.416 A | 2.319 A | 1.156 A | 1.125 A |
II | 1.89 × 101 * | 1.30 × 102 ** | 7.40 × 10−2 ns | 7.81 × 10−3 ns | ||||
HPD | 4.26 × 100 ** | 1.42 × 101 * | 7.07 × 10−2 * | 1.28 × 10−1 ns | ||||
IIxHPD | 6.02 × 10−1 ns | 6.13 × 10−1 ns | 3.20 × 10−2 ns | 1.30 × 10−2 ns | ||||
MSD (II) | 1.34 | 2.58 | 0.201 | 0.318 | ||||
MSD (HPD) | 1.65 | 3.95 | 0.292 | 0.468 | ||||
CV (%) | 8.30 | 3.36 | 4.22 | 13.42 |
Hydroret. Polymer | LA (cm2) | RL (cm) | DQI | RI (cm mm−1) | RV (cm3) | |||||
---|---|---|---|---|---|---|---|---|---|---|
II 2 | II 4 | II 2 | II 4 | II 2 | II 4 | II 2 | II 4 | II 2 | II 4 | |
0% | 171.0 Aa | 149.0 Aa | 14.44 Aa | 13.33 Aa | 0.146 Aa | 0.126 Aa | 5.177 Ab | 4.819 Aa | 133.5 Aa | 133.3 Aa |
0.25% | 224.3 Aa | 179.3 Aa | 16.58 Aa | 15.33 Aa | 0.149 Aa | 0.134 Aa | 5.586 Aab | 5.575 Aa | 143.6 Aa | 119.6 Aa |
0.5% | 203.1 Aa | 174.3 Aa | 13.60 Aa | 11.71 Aa | 0.142 Aa | 0.114 Aa | 6.294 Aa | 5.359 Ba | 131.3 Aa | 122.7 Aa |
1% | 205.9 Aa | 158.2 Aa | 17.31 Aa | 12.53 Aa | 0.149 Aa | 0.103 Aa | 5.503 Aab | 5.183 Aa | 123.4 Aa | 105.0 Aa |
Mean Value | 201.1 A | 165.2 A | 15.48 A | 13.23 A | 0.146 A | 0.119 A | 5.640 A | 5.234 A | 132.9 A | 120.1 A |
II | 1.03 × 104 ns | 4.07 × 101 ns | 5.92 × 10−3 ns | 1.32 × 100 ns | 1.31 × 103 ns | |||||
HPD | 2.44 × 103 ns | 1.59 × 101 ns | 4.23 × 10−4 ns | 9.98 × 10−1 * | 6.02 × 102 ns | |||||
IIxHPD | 3.09 × 102 ns | 5.90 × 100 ns | 3.77 × 10−4 ns | 2.97 × 10−1 ns | 2.22 × 102 ns | |||||
MSD (II) | 58.3 | 5.07 | 0.039 | 0.776 | 64.7 | |||||
MSD (HPD) | 79.7 | 6.02 | 0.045 | 0.917 | 87.4 | |||||
CV (%) | 21.04 | 29.20 | 24.88 | 11.90 | 34.62 |
Hydroret. Polymer | LFM (g) | LDM (g) | SFM (g) | SDM (g) | RFM (g) | RDM (g) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
II 2 | II 4 | II 2 | II 4 | II 2 | II 4 | II 2 | II 4 | II 2 | II 4 | II 2 | II 4 | |
0% | 3.332 Ab | 3.308 Aa | 0.891 Aa | 0.796 Aa | 0.680 Aa | 0.560 Aa | 0.166 Aa | 0.143 Aa | 1.994 Aa | 1.464 Aa | 0.297 Aa | 0.213 Aa |
0.25% | 4.095 Aa | 3.308 Ba | 1.073 Aa | 0.817 Ba | 0.694 Aa | 0.691 Aa | 0.177 Aa | 0.181 Aa | 2.215 Aa | 1.636 Aa | 0.277 Aa | 0.259 Aa |
0.5% | 4.019 Aab | 3.182 Ba | 1.043 Aa | 0.727 Ba | 0.757 Aa | 0.691 Aa | 0.185 Aa | 0.176 Aa | 2.109 Aa | 1.808 Aa | 0.267 Aa | 0.249 Aa |
1% | 3.860 Aab | 2.923 Ba | 1.023 Aa | 0.724 Ba | 0.661 Aa | 0.645 Aa | 0.164 Aa | 0.154 Aa | 2.206 Aa | 1.475 Ba | 0.271 Aa | 0.189 Aa |
Mean Value | 3.827 A | 3.180 A | 1.008 A | 0.766 B | 0.698 A | 0.647 A | 0.173 A | 0.164 A | 2.131 A | 1.596 B | 0.278 A | 0.228 A |
II | 3.34 × 100 ns | 4.67 × 10−1 * | 2.09 × 10−2 ns | 7.26 × 10−4 ns | 2.29 × 100 * | 2.01 × 10−2 ns | ||||||
HPD | 2.53 × 10−1 ns | 1.46 × 10−2 ns | 1.65 × 10−2 ns | 1.44 × 10−3 ns | 8.37 × 10−2 ns | 2.10 × 10−3 ns | ||||||
IIxHPD | 3.52 × 10−1 ns | 2.04 × 10−2 ns | 5.71 × 10−3 ns | 2.53 × 10−4 ns | 6.32 × 10−2 ns | 2.85 × 10−3 ns | ||||||
MSD (II) | 0.690 | 0.176 | 0.155 | 0.034 | 0.647 | 0.087 | ||||||
MSD (HPD) | 0.732 | 0.219 | 0.189 | 0.051 | 0.849 | 0.103 | ||||||
CV (%) | 17.70 | 15.55 | 18.63 | 7.00 | 25.09 | 28.42 |
Variable | II | Adjusted Equations | r2 |
FG (%) | 2 | 0.8779 | |
4 | - | ||
GVI | 2 | 0.7837 | |
4 | 0.5598 | ||
MGT (day) | 2 | 0.8896 | |
4 | 0.5935 | ||
MGS (seeds day−1) | 2 | 0.5516 | |
4 | - | ||
A (μmol CO2 m−2 s−1) | 2 | 0.9426 | |
4 | 0.9185 | ||
gs (mol H2O m−2 s−1) | 2 | 0.6779 | |
4 | 0.7316 | ||
E (mmol H2O m−2 s−1) | 2 | - | |
4 | - | ||
Ci (μmol CO2 m−2 s−1) | 2 | - | |
4 | - | ||
WUE [(μmol CO2 m−2 s−1) (mmol H2O m−2 s−1)−1] | 2 | 0.7840 | |
4 | 0.8585 | ||
EiC [(μmol CO2 m−2 s−1) (μmol CO2 mol−1)−1] | 2 | 0.9590 | |
4 | 0.9847 | ||
H (cm) | 2 | 0.9992 | |
4 | 0.8855 | ||
LT (°C) | 2 | 0.4447 | |
4 | - | ||
SD (mm) | 2 | 0.5741 | |
4 | 0.9844 | ||
CS | 2 | 0.7143 | |
4 | 0.4063 | ||
LA (cm2) | 2 | 0.8110 | |
4 | 0.8464 | ||
RL (cm) | 2 | - | |
4 | - | ||
DQI (cm2) | 2 | 0.8681 | |
4 | 0.9323 | ||
RI (cm mm−1) | 2 | 0.8681 | |
4 | 0.9323 | ||
RV (cm3) | 2 | 0.8434 | |
4 | 0.8786 | ||
LFM (g) | 2 | 0.8382 | |
4 | 0.9873 | ||
LDM (g) | 2 | 0.7857 | |
4 | 0.6398 | ||
SFM (g) | 2 | 0.7607 | |
4 | 0.9066 | ||
SDM (g) | 2 | 0.9719 | |
4 | 0.8743 | ||
RFM (g) | 2 | 0.7607 | |
4 | 0.9473 | ||
RDM (g) | 2 | 0.5674 | |
4 | 0.9511 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, M.O.; Arruda, V.R.S.d.; Barbosa, F.R.S.; Firmino, M.W.M.; Pedrosa, A.W.; Cunha, F.F.d. Water Management of Arabica Coffee Seedlings Cultivated with a Hydroretentive Polymer. Agronomy 2025, 15, 218. https://doi.org/10.3390/agronomy15010218
Silva MO, Arruda VRSd, Barbosa FRS, Firmino MWM, Pedrosa AW, Cunha FFd. Water Management of Arabica Coffee Seedlings Cultivated with a Hydroretentive Polymer. Agronomy. 2025; 15(1):218. https://doi.org/10.3390/agronomy15010218
Chicago/Turabian StyleSilva, Mateus Oliveira, Vanessa Reniele Souza de Arruda, Francisco Raylan Sousa Barbosa, Michel Wakim Mendes Firmino, Adriene Woods Pedrosa, and Fernando França da Cunha. 2025. "Water Management of Arabica Coffee Seedlings Cultivated with a Hydroretentive Polymer" Agronomy 15, no. 1: 218. https://doi.org/10.3390/agronomy15010218
APA StyleSilva, M. O., Arruda, V. R. S. d., Barbosa, F. R. S., Firmino, M. W. M., Pedrosa, A. W., & Cunha, F. F. d. (2025). Water Management of Arabica Coffee Seedlings Cultivated with a Hydroretentive Polymer. Agronomy, 15(1), 218. https://doi.org/10.3390/agronomy15010218