Characterization of Essential Oils from Seven Salvia Taxa from Greece with Chemometric Analysis
Abstract
:1. Introduction
Taxon | Section | Collection Site | Voucher Specimens No |
---|---|---|---|
S. aethiopis L. | Aethiopis Benth. | Krinida-Serres | TzSa_001 |
S. amplexicaulis Lam | Plethiosphace Benth. | Krinida-Serres | TzSa_002 |
S. argentea L. | Aethiopis Benth. | Kosani | TzSa_003 |
S. officinalis L. subsp. officinalis | Eusphace Benth. | Delvinaki-Pogoniani | TzSa_004 |
S. sclarea L. | Aethiopis Benth. | Krinida-Serres | TzSa_005 |
S. tomentosa Mill. | Eusphace Benth. | Kosani | TzSa_006 |
S. verticillata L. subsp. verticillata | Hemisphace Benth. | Negades-Ioannina | TzSa_007 |
2. Materials and Methods
2.1. Plant Materials
2.2. EOs Isolation
2.3. GC-MS Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Chemical Analysis of EOs
3.1.1. Subgenus Sclarea
Section Aethiopis
No | RIL | RIC | Compounds | Saeth | Sarg | Sscl |
---|---|---|---|---|---|---|
1 | 924 | 923 | α-thujene | tr | tr | - |
2 | 932 | 930 | α-pinene | 0.2 | 5.7 | 0.1 |
3 | 946 | 945 | camphene | 0.1 | 1.7 | tr |
4 | 969 | 968 | sabinene | tr | 0.8 | tr |
5 | 974 | 972 | β-pinene | 0.2 | 5.0 | 0.1 |
6 | 988 | 987 | myrcene | 0.1 | 0.3 | 1.5 |
7 | 1014 | 1013 | α-terpinene | tr | - | tr |
8 | 1020 | 1023 | p-cymene | 0.7 | 0.1 | - |
9 | 1024 | 1025 | limonene | - | - | 0.4 |
10 | 1026 | 1028 | 1,8-cineole | 0.8 | 2.7 | - |
11 | 1032 | 1033 | cis-ocimene | - | - | 0.8 |
12 | 1044 | 1043 | trans-ocimene | - | 0.1 | 1.5 |
13 | 1054 | 1053 | γ-terpinene | tr | 0.2 | tr |
14 | 1086 | 1087 | terpinolene | - | 0.1 | 0.5 |
15 | 1095 | 1096 | linalool | - | 0.1 | 19.9 |
16 | 1100 | 1101 | nonanal | - | - | tr |
17 | 1101 | 1103 | cis-thujone | 0.1 | 2.2 | - |
18 | 1102 | 1105 | isopentyl isovalerate | 0.4 | - | - |
19 | 1112 | 1111 | trans-thujone | 0.1 | 0.2 | - |
20 | 1122 | 1120 | α-campholenal | tr | 0.1 | - |
21 | 1135 | 1131 | trans-pinocarveol | tr | 0.1 | - |
22 | 1140 | 1137 | trans-verbenol | - | tr | - |
23 | 1141 | 1140 | camphor | 0.2 | 0.1 | - |
24 | 1160 | 1159 | pinocarvone | tr | 0.1 | - |
25 | 1165 | 1163 | borneol | tr | 0.7 | tr |
26 | 1172 | 1170 | cis-pinocamphone | - | - | 0.1 |
27 | 1174 | 1172 | terpinen-4-ol | tr | tr | 0.1 |
28 | 1186 | 1183 | α-terpineol | tr | 0.1 | 7.8 |
29 | 1194 | 1191 | myrtenol | - | tr | - |
30 | 1195 | 1194 | myrtenal | tr | 0.1 | - |
31 | 1227 | 1225 | nerol | - | - | 1.3 |
32 | 1228 | 1230 | bornyl formate | - | 0.4 | - |
33 | 1254 | 1253 | linalool acetate | tr | - | 30.3 |
34 | 1283 | 1279 | iso-bornyl acetate | - | 3.7 | - |
35 | 1284 | 1285 | bornyl acetate | 0.4 | - | - |
36 | 1335 | 1332 | δ-elemene | - | 0.1 | - |
37 | 1345 | 1350 | α-cubebene | 0.5 | - | - |
38 | 1359 | 1360 | neryl acetate | - | - | 2.4 |
39 | 1374 | 1375 | α-copaene | 14.6 | 8.3 | 0.9 |
40 | 1379 | 1378 | geranyl acetate | - | - | 4.5 |
41 | 1387 | 1386 | β-bourbonene | 0.6 | 0.5 | - |
42 | 1387 | 1388 | β-cubebene | 5.0 | 0.4 | 0.2 |
43 | 1389 | 1390 | β-elemene | 1.2 | 0.7 | 0.3 |
44 | 1417 | 1415 | (E)-caryophyllene | 34.6 | 4.7 | 1.9 |
45 | 1430 | 1428 | β-copaene | 0.2 | - | tr |
46 | 1434 | 1430 | γ-elemene | - | 1.2 | - |
47 | 1442 | 1440 | 6,9-guaiadiene | - | 1.0 | - |
48 | 1452 | 1449 | α-humulene | 8.6 | 0.9 | 0.1 |
49 | 1453 | 1453 | geranylacetone | - | 0.2 | - |
50 | 1454 | 1455 | trans-β-farnesene | - | 0.1 | - |
51 | 1480 | 1481 | germacrene D | 17.3 | 8.0 | 8.8 |
52 | 1489 | 1486 | β-selinene | - | - | tr |
53 | 1496 | 1497 | viridiflorene | - | 0.2 | - |
54 | 1500 | 1499 | bicyclogermacrene | 0.2 | - | 0.7 |
55 | 1505 | 1503 | (E,E)-α-farnesene | - | 0.6 | 0.2 |
56 | 1508 | 1506 | germacrene A | 0.5 | 0.4 | tr |
57 | 1513 | 1510 | γ-cadinene | 0.7 | - | - |
58 | 1522 | 1523 | δ-cadinene | 4.0 | 6.0 | 0.3 |
59 | 1544 | 1540 | α-calacorene | tr | 0.5 | - |
60 | 1548 | 1546 | elemol | - | - | tr |
61 | 1557 | 1550 | 1,5-epoxysalvial-4(14)-ene | - | - | 0.1 |
62 | 1559 | 1556 | germacrene B | - | 8.9 | - |
63 | 1564 | 1566 | β-calacorene | - | 0.2 | - |
64 | 1574 | 1566 | germacrene D-4-ol | 0.3 | - | - |
65 | 1577 | 1575 | spathulenol | - | 0.2 | 0.6 |
66 | 1582 | 1580 | caryophyllene oxide | 4.3 | 8.6 | 0.6 |
67 | 1590 | 1587 | β-copaen-4-α-ol | - | 0.3 | - |
68 | 1592 | 1590 | viridiflorol | - | 5.7 | - |
69 | 1594 | 1593 | salvial-4(14)-en-1-one | 0.5 | - | 0.3 |
70 | 1608 | 1605 | humulene epoxide II | 0.6 | 1.3 | - |
71 | 1627 | 1625 | 1-epi-cubenol | 0.2 | - | - |
72 | 1639 | 1636 | caryophylla-4(12), 8(13)-dien-5α-ol or caryophylla-4(12), 8(13)-dien-5β-ol | 0.1 | 0.2 | - |
73 | 1644 | 1645 | α-muurolol | 0.2 | - | - |
74 | 1649 | 1647 | β-eudesmol | - | - | 0.9 |
75 | 1652 | 1650 | α-cadinol | 0.2 | - | 0.2 |
76 | 1652 | 1651 | α-eudesmol | - | - | 0.5 |
77 | 1660 | 1655 | cis-calamenen-10-ol | - | 0.3 | - |
78 | 1668 | 1666 | trans-calamenen-10-ol | - | 0.3 | - |
79 | 1691 | 1690 | vulgarol B | 0.1 | - | - |
80 | 1711 | 1715 | valerenol | 0.2 | - | - |
81 | 1826 | 1820 | 8,13-epoxy-15,16-dinorlab-12-ene | 0.1 | - | 1.0 |
82 | 1886 | 1882 | (5E,9Z)-farnesylacetone | 0.1 | - | - |
83 | 1987 | 1985 | manool oxide | - | - | 0.2 |
84 | 2009 | 2006 | 13-epi-manool oxide | - | 0.1 | tr |
85 | 2056 | 2052 | manool | - | 2.1 | 0.7 |
86 | 2149 | 2150 | abienol | - | - | tr |
87 | 2222 | 2218 | sclareol | - | - | 7.1 |
Total | 98.2 | 86.6 | 96.9 | |||
Grouped components | Saeth | Sarg | Sscl | |||
Monoterpene Hydrocarbons | 1.3 | 14.0 | 4.9 | |||
Oxygenated Monoterpenes | 2.0 | 10.6 | 66.4 | |||
Sesquiterpene Hydrocarbons | 88.0 | 42.7 | 13.4 | |||
Oxygenated Sesquiterpenes | 6.7 | 16.9 | 3.2 | |||
Oxygenated Diterpenes | 0.1 | 2.2 | 9.0 | |||
Hydrocarbons–Ketones | 0.1 | 0.2 | - | |||
Hydrocarbons–Aldehydes | - | - | tr | |||
Total | 98.2 | 86.6 | 96.9 |
Section Plethiosphace
No | RIL | RIC | Compounds | Sampl |
---|---|---|---|---|
1 | 1345 | 1350 | α-cubebene | tr |
2 | 1374 | 1375 | α-copaene | 1.9 |
3 | 1387 | 1386 | β-bourbonene | 3.7 |
4 | 1389 | 1390 | β-elemene | tr |
5 | 1417 | 1415 | (E)-caryophyllene | 7.8 |
6 | 1452 | 1449 | α-humulene | tr |
7 | 1458 | 1459 | allo-aromadendrene | 3.2 |
8 | 1478 | 1475 | γ-muurolene | 4.2 |
9 | 1480 | 1481 | germacrene D | 28.6 |
10 | 1500 | 1501 | α-muurolene | 3.0 |
11 | 1513 | 1510 | γ-cadinene | tr |
12 | 1522 | 1523 | δ-cadinene | 3.3 |
13 | 1577 | 1575 | spathulenol | 14.6 |
14 | 1582 | 1580 | caryophyllene oxide | 15.0 |
15 | 1594 | 1593 | salvial-4(14)-en-1-one | 12.0 |
16 | 1711 | 1715 | valerenol | tr |
Total | 97.3 | |||
Grouped components | Svert | |||
Sesquiterpene Hydrocarbons | 55.7 | |||
Oxygenated Sesquiterpenes | 41.6 | |||
Total | 97.3 |
3.1.2. Subgenus Salvia
Section Eusphace
No | RIL | RIC | Compounds | Soff | Stom |
---|---|---|---|---|---|
1 | 921 | 920 | tricyclene | 0.2 | 0.2 |
2 | 924 | 923 | α-thujene | 0.1 | 0.1 |
3 | 932 | 930 | α-pinene | 7.0 | 9.2 |
4 | 946 | 945 | camphene | 3.4 | 3.2 |
5 | 969 | 968 | sabinene | tr | - |
6 | 974 | 972 | β-pinene | 4.7 | 4.9 |
7 | 979 | 980 | 3-octanone | tr | tr |
8 | 988 | 987 | myrcene | 0.7 | 1.0 |
9 | 1002 | 1003 | α-phellandrene | 0.1 | 0.2 |
10 | 1008 | 1007 | δ-3-carene | - | tr |
11 | 1014 | 1013 | α-terpinene | 0.3 | 0.5 |
12 | 1020 | 1023 | p-cymene | tr | 1.1 |
13 | 1026 | 1028 | 1,8-cineole | 14.7 | 18.2 |
14 | 1032 | 1033 | cis-ocimene | 0.1 | 1.1 |
15 | 1044 | 1043 | trans-ocimene | tr | 0.2 |
16 | 1054 | 1053 | γ-terpinene | 0.5 | 0.7 |
17 | 1065 | 1062 | cis-sabinene hydrate | 0.1 | tr |
18 | 1067 | 1068 | cis-linalool oxide | tr | tr |
19 | 1086 | 1087 | terpinolene | 0.4 | 0.3 |
20 | 1098 | 1099 | trans-sabinene hydrate | tr | tr |
21 | 1101 | 1103 | cis-thujone | 11.1 | 17.9 |
22 | 1112 | 1111 | trans-thujone | 1.4 | 3.7 |
23 | 1122 | 1120 | α-campholenal | tr | tr |
24 | 1128 | 1126 | allo-ocimene | - | tr |
25 | 1135 | 1131 | trans-pinocarveol | - | 0.1 |
26 | 1141 | 1140 | camphor | 7.8 | 3.7 |
27 | 1145 | 1143 | camphene hydrate | tr | 0.1 |
28 | 1149 | 1147 | neo-3-thujanol | - | tr |
29 | 1155 | 1153 | isoborneol | tr | tr |
30 | 1158 | 1156 | trans-pinocamphone | 0.1 | 0.2 |
31 | 1165 | 1163 | borneol | 9.4 | 6.7 |
32 | 1172 | 1170 | cis-pinocamphone | tr | 0.1 |
33 | 1174 | 1172 | terpinen-4-ol | 0.2 | 0.4 |
34 | 1179 | 1178 | p-cymen-8-ol | tr | tr |
35 | 1186 | 1183 | α-terpineol | 0.2 | 0.4 |
36 | 1194 | 1191 | myrtenol | tr | 0.1 |
37 | 1195 | 1194 | myrtenal | - | tr |
38 | 1207 | 1212 | trans-piperitol | tr | tr |
39 | 1215 | 1216 | trans-carveol | tr | tr |
40 | 1226 | 1223 | cis-carveol | tr | - |
41 | 1284 | 1285 | bornyl acetate | 2.0 | 2.2 |
42 | 1289 | 1290 | thymol | tr | tr |
43 | 1289 | 1293 | trans-sabinyl acetate | - | 0.1 |
44 | 1295 | 1294 | 3-thujanol acetate | tr | - |
45 | 1298 | 1296 | carvacrol | tr | 0.1 |
46 | 1324 | 1320 | myrtenyl acetate | tr | 0.1 |
47 | 1339 | 1335 | trans-carvyl acetate | - | tr |
48 | 1345 | 1350 | α-cubebene | - | tr |
49 | 1356 | 1353 | eugenol | tr | - |
50 | 1373 | 1370 | α-ylangene | - | 0.1 |
51 | 1374 | 1373 | isoledene | tr | - |
52 | 1374 | 1375 | α-copaene | tr | 0.1 |
53 | 1387 | 1386 | β-bourbonene | - | tr |
54 | 1408 | 1406 | (Z)-caryophyllene | tr | tr |
55 | 1409 | 1410 | α-gurjunene | tr | - |
56 | 1417 | 1415 | (E)-caryophyllene | 9.1 | 5.3 |
57 | 1419 | 1417 | β-ylangene | tr | - |
58 | 1431 | 1430 | β-gurjunene | tr | - |
59 | 1439 | 1438 | aromadendrene | 0.2 | - |
60 | 1452 | 1449 | α-humulene | 5.8 | 1.0 |
61 | 1458 | 1459 | allo-aromadendrene | 0.1 | 0.1 |
62 | 1478 | 1475 | γ-muurolene | - | 0.2 |
63 | 1480 | 1481 | germacrene D | tr | - |
64 | 1483 | 1482 | α-amorphene | - | tr |
65 | 1489 | 1486 | β-selinene | tr | tr |
66 | 1496 | 1497 | viridiflorene | 0.1 | 0.1 |
67 | 1500 | 1501 | α-muurolene | tr | 0.1 |
68 | 1513 | 1510 | γ-cadinene | tr | 0.1 |
69 | 1521 | 1520 | trans-calamenene | - | 0.1 |
70 | 1522 | 1523 | δ-cadinene | tr | 0.3 |
71 | 1537 | 1535 | α-cadinene | - | tr |
72 | 1544 | 1540 | α-calacorene | - | tr |
73 | 1577 | 1575 | spathulenol | tr | tr |
74 | 1582 | 1580 | caryophyllene oxide | 0.6 | 0.6 |
75 | 1592 | 1590 | viridiflorol | 7.2 | 8.5 |
76 | 1602 | 1595 | ledol | 0.1 | 0.1 |
77 | 1608 | 1605 | humulene epoxide II | 0.5 | 0.2 |
78 | 1639 | 1636 | caryophylla-4(12),8(13)-dien-5α-ol or caryophylla-4(12),8(13)-dien-5β-ol | 0.1 | 0.1 |
79 | 1640 | 1641 | epi-α-muurolol | - | 0.1 |
80 | 1649 | 1647 | β-eudesmol | tr | - |
81 | 1652 | 1650 | α-cadinol | - | tr |
82 | 1652 | 1651 | α-eudesmol | tr | - |
83 | 1666 | 1662 | 14-hydroxy-(Z)-caryophyllene | - | 0.2 |
84 | 2056 | 2052 | manool | 8.5 | 3.5 |
Total | 96.8 | 97.6 | |||
Grouped components | Soff | Stom | |||
Monoterpene Hydrocarbons | 17.5 | 22.7 | |||
Oxygenated Monoterpenes | 47.0 | 54.1 | |||
Sesquiterpene Hydrocarbons | 15.3 | 7.5 | |||
Oxygenated Sesquiterpenes | 8.5 | 9.8 | |||
Oxygenated Diterpenes | 8.5 | 3.5 | |||
Hydrocarbons–Ketones | tr | tr | |||
Phenylpropanoids | tr | - | |||
Total | 96.8 | 97.6 |
3.1.3. Subgenus Leonia
Section Hemisphace
No | RIL | RIC | Compounds | Svert |
---|---|---|---|---|
1 | 924 | 923 | α-thujene | 0.7 |
2 | 932 | 930 | α-pinene | 1.1 |
3 | 946 | 945 | camphene | tr |
4 | 969 | 968 | sabinene | 0.5 |
5 | 974 | 972 | β-pinene | 0.3 |
6 | 979 | 980 | 3-octanone | tr |
7 | 988 | 987 | myrcene | 1.3 |
8 | 1002 | 1003 | α-phellandrene | 0.7 |
9 | 1008 | 1007 | δ-3-carene | 0.1 |
10 | 1014 | 1013 | α-terpinene | 0.1 |
11 | 1020 | 1023 | p-cymene | 0.4 |
12 | 1025 | 1027 | β-phellandrene | 10.3 |
13 | 1032 | 1033 | cis-ocimene | 0.8 |
14 | 1044 | 1043 | trans-ocimene | 0.6 |
15 | 1054 | 1053 | γ-terpinene | 0.2 |
16 | 1086 | 1087 | terpinolene | 0.1 |
17 | 1095 | 1096 | linalool | tr |
18 | 1100 | 1101 | n-nonanal | 0.3 |
19 | 1165 | 1166 | n-nonanol | tr |
20 | 1174 | 1172 | terpinen-4-ol | 0.1 |
21 | 1186 | 1183 | α-terpineol | tr |
22 | 1201 | 1203 | n-decanal | 0.1 |
23 | 1266 | 1268 | n-decanol | tr |
24 | 1289 | 1290 | thymol | tr |
25 | 1345 | 1350 | α-cubebene | 0.6 |
26 | 1356 | 1353 | eugenol | tr |
27 | 1373 | 1370 | α-ylangene | 0.2 |
28 | 1374 | 1375 | α-copaene | 0.5 |
29 | 1387 | 1386 | β-bourbonene | 0.6 |
30 | 1387 | 1388 | β-cubebene | 0.4 |
31 | 1389 | 1390 | β-elemene | 0.1 |
32 | 1408 | 1406 | (Z)-caryophyllene | 0.1 |
33 | 1417 | 1415 | (E)-caryophyllene | 27.1 |
34 | 1430 | 1428 | β-copaene | 1.0 |
35 | 1431 | 1430 | β-gurjunene | tr |
36 | 1439 | 1438 | aromadendrene | 0.2 |
37 | 1452 | 1449 | α-humulene | 14.6 |
38 | 1454 | 1455 | trans-β-farnesene | 0.7 |
39 | 1465 | 1460 | cis-muurola-4(14),5-diene | 0.4 |
40 | 1480 | 1481 | germacrene D | 9.3 |
41 | 1487 | 1484 | trans-β-ionone | 0.4 |
42 | 1493 | 1490 | trans-muurola-4(14),5-diene | 0.2 |
43 | 1500 | 1499 | bicyclogermacrene | 1.4 |
44 | 1500 | 1501 | α-muurolene | 0.7 |
45 | 1513 | 1510 | γ-cadinene | 1.2 |
46 | 1521 | 1520 | trans-calamenene | 0.2 |
47 | 1522 | 1523 | δ-cadinene | 2.1 |
48 | 1533 | 1530 | 10-epi-cubebol | tr |
49 | 1533 | 1532 | trans-cadina-1,4-diene | 0.1 |
50 | 1537 | 1535 | α-cadinene | 0.1 |
51 | 1544 | 1540 | α-calacorene | 0.1 |
52 | 1561 | 1558 | (E)-nerolidol | 0.2 |
53 | 1564 | 1566 | β-calacorene | 0.1 |
54 | 1577 | 1575 | spathulenol | 2.2 |
55 | 1582 | 1580 | caryophyllene oxide | 3.9 |
56 | 1594 | 1593 | salvial-4(14)-en-1-one | 0.6 |
57 | 1608 | 1605 | humulene epoxide II | 1.7 |
58 | 1627 | 1625 | 1-epi-cubenol | 0.1 |
59 | 1639 | 1636 | caryophylla-4(12), 8(13)-dien-5α-ol or caryophylla-4(12), 8(13)-dien-5β-ol | 0.4 |
60 | 1640 | 1641 | epi-α-muurolol | 0.6 |
61 | 1652 | 1650 | α-cadinol | 0.4 |
62 | 1666 | 1662 | 14-hydroxy-(Z)-caryophyllene | 0.4 |
63 | 1913 | 1911 | (5E,9E)-farnesylacetone | 0.1 |
64 | 1942 | 1948 | phytol | 0.2 |
Total | 90.9 | |||
Grouped components | Svert | |||
Monoterpene Hydrocarbons | 17.2 | |||
Oxygenated Monoterpenes | 0.1 | |||
Sesquiterpene Hydrocarbons | 62.0 | |||
Oxygenated Sesquiterpenes | 10.5 | |||
Oxygenated Diterpenes | 0.2 | |||
Hydrocarbons–Alcohols | tr | |||
Hydrocarbons–Aldehydes | 0.4 | |||
Hydrocarbons–Ketones | 0.5 | |||
Phenylpropanoids | tr | |||
Total | 90.9 |
3.2. Chemometric Analysis
3.2.1. Chemical Compounds
3.2.2. Chemical Groups
3.2.3. Thujone Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rose, J.P.; Kriebel, R.; Kahan, L.; DiNicola, A.; González-Gallegos, J.G.; Celep, F.; Lemmon, E.M.; Lemmon, A.R.; Sytsma, K.J.; Drew, B.T. Sage insights into the phylogeny of Salvia: Dealing with sources of discordance within and across genomes. Front. Plant Sci. 2021, 12, 767478. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.B.; Sytsma, K.J.; Treutlein, J.; Wink, M. Salvia (Lamiaceae) is not monophyletic: Implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. Am. J. Bot. 2004, 91, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Drew, B.T.; González-Gallegos, J.G.; Xiang, C.-L.; Kriebel, R.; Drummond, C.P.; Walked, J.B.; Sytsma, K.J. Salvia united: The greatest good for the greatest number. Taxon 2017, 66, 133–145. [Google Scholar] [CrossRef]
- Will, M.; Claßen-Bockhoff, R. Time to split Salvia s.l. (lamiaceae)—New insights from old world Salvia phylogeny. Mol. Phylogenet. Evol. 2017, 109, 33–58. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.-X.; Takano, A.; Drew, B.T.; Liu, E.-D.; Soltis, D.E.; Soltis, P.S.; Peng, H.; Xiang, C.-L. Phylogeny and staminal evolution of Salvia (Lamiaceae, Nepetoideae) in East Asia. Ann. Bot. 2018, 122, 649–668. [Google Scholar] [CrossRef] [PubMed]
- Kriebel, R.; Drew, B.T.; Drummond, C.P.; González-Gallegos, J.G.; Celep, F.; Mahdjoub, M.M.; Rose, J.P.; Xiang, C.-L.; Hu, G.-X.; Walker, J.B.; et al. Tracking temporal shifts in area, biomes, and pollinators in the radiation of Salvia (sages) across continents: Leveraging anchored hybrid enrichment and targeted sequence data. Am. J. Bot. 2019, 106, 573–597. [Google Scholar] [CrossRef]
- Vascular Plants of Greece Checklist | Flora of Greece—An Annotated Checklist. Available online: https://portal.cybertaxonomy.org/flora-greece/intro (accessed on 25 November 2024).
- Hedge, I.C. Salvia L. In Flora Europaea; Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A., Eds.; Cambridge University Press: Cambridge, UK, 1972; Volume 3, pp. 188–192. [Google Scholar]
- Fu, Z.; Wang, H.; Hu, X.; Sun, Z.; Han, C. The Pharmacological Properties of Salvia Essential Oils. J. Appl. Pharm. Sci. 2013, 3, 122–127. [Google Scholar]
- Assessment Report on Salvia officinalis L., Folium and Salvia officinalis L., Aetheroleum. EMA/HMPC/150801/2015 Committee on Herbal Medicinal Products (HMPC). Available online: https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-salvia-officinalis-l-folium-and-salvia-officinalis-l-aetheroleum-revision-1_en.pdf (accessed on 13 January 2025).
- Tomou, E.-M.; Fraskou, P.; Dimakopoulou, K.; Dariotis, E.; Krigas, N.; Skaltsa, H. Chemometric analysis evidencing the variability in the composition of essential oils in 10 Salvia species from different taxonomic sections or phylogenetic clades. Molecules 2024, 29, 1547. [Google Scholar] [CrossRef]
- Couladis, M.; Tzakou, O.; Mimica-Dukić, N.; Jančić, R.; Stojanović, D. Essential Oil of Salvia officinalis L. from Serbia and Montenegro. Flavour Fragr. J. 2002, 17, 119–126. [Google Scholar] [CrossRef]
- Leontaritou, P.; Lamari, F.N.; Papasotiropoulos, V.; Iatrou, G. Morphological, genetic and essential oil variation of Greek Sage (Salvia fruticosa Mill.) populations from Greece. Ind. Crops Prod. 2020, 150, 112346. [Google Scholar] [CrossRef]
- Rajabi, Z.; Ebrahimi, M.; Farajpour, M.; Mirza, M.; Ramshini, H. Compositions and yield variation of essential oils among and within nine Salvia species from various areas of Iran. Ind. Crops Prod. 2014, 61, 233–239. [Google Scholar] [CrossRef]
- EMA/HMPC/732886/2010. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/public-statement-use-herbal-medicinal-products-containing-thujone-revision-1_en.pdf (accessed on 13 January 2025).
- Bentham, G. Salvia. In Labiatarum Genera et Species, 1st ed.; Bentham, G., Ed.; Ridgway and Sons: London, UK, 1832–1836; pp. 190–312. [Google Scholar]
- Hellenic Pharmacopoeia, 5th ed; National Organization for Medicines of Greece: Athens, Greece, 2002; Chapter 28.12.
- van Den Dool, H.; Kratz, P.D. A Generalization of the retention index system including linear temperature programmed Gas—Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Adams, R.P.M. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4.1 ed.; Allured Publishing: Carol Stream, IL, USA, 2017. [Google Scholar]
- Rustaiyan, A.; Masoudi, S.; Monfared, A.; Komeilizadeh, H. Volatile constituents of three Salvia species grown wild in Iran. Flavour Fragr. J. 1999, 14, 276–278. [Google Scholar] [CrossRef]
- Morteza-Semnani, K.; Goodarzi, A.; Azadbakht, M. The essential oil of Salvia aethiopis L. J. Essent. Oil Res. 2005, 17, 274–275. [Google Scholar] [CrossRef]
- Tajbakhsh, M.; Rineh, A.; Khalilzadeh, M.A.; Eslami, B. Chemical constituents of the essential oils from leaves, flowers, stem and aerial parts of Salvia aethiopis L. from Iran. J. Essent. Oil Res. 2007, 19, 569–571. [Google Scholar] [CrossRef]
- Lioliou, A.E. Comparative Study of the Chemical Composition of Essential Oils as Well as Hydroalcoholic Extracts of the Genus Salvia and Their Bioactivity. Master’s Thesis, Agricultural University of Athens, Athens, Greece, 2021. (In Greek). [Google Scholar]
- Riccobono, L.; Maggio, A.; Rosselli, S.; Ilardi, V.; Senatore, F.; Bruno, M. Chemical composition of volatile and fixed oils from of Salvia argentea L. (Lamiaceae) growing wild in Sicily. Nat. Prod. Res. 2016, 30, 25–34. [Google Scholar] [CrossRef]
- Holeman, M.A.; Berrada, M.; Bellakhdar, J.; Ilidrissi, A.; Pinel, R. Comparative chemical study on essential oils from Salvia officinalis, S. aucheri, S. verbenaca, S. phlomoides and S. argentea. Fitoterapia 1984, 55, 143–148. [Google Scholar]
- Couladis, M.; Tzakou, O.; Stojanovic, D.; Mimica-Dukic, N.; Jancic, R. The essential oil composition of Salvia argentea L. Flavour Fragr. J. 2001, 16, 227–229. [Google Scholar] [CrossRef]
- Velickovic, D.T.; Ristic, M.S.; Milosavljevic, N.P.; Davidovic, D.N.; Bogdanovic, S.Z. Chemical composition of the essential oil of Salvia argentea L. Agro Food Ind. Hi Tech 2014, 25, 70–72. [Google Scholar]
- Farhat, M.B.; Landoulsi, A.; Chaouch-Hamada, R.; Sotomayor, J.A.; Jordán, M.J. Profiling of essential oils and polyphenolics of Salvia argentea and evaluation of its by-products antioxidant activity. Ind. Crops Prod. 2013, 47, 106–112. [Google Scholar] [CrossRef]
- Rayouf, M.B.T.; Msaada, K.; Hosni, K.; Marzouk, B. Essential oil constituents of Salvia argentea L. from Tunisia: Phenological variations. Med. Aromat. Plant Sci. Biotechnol. 2013, 7, 40–44. [Google Scholar]
- Koutsaviti, A.; Tzini, D.I.; Tzakou, O. Greek Salvia sclarea L. Essential oils: Effect of hydrodistillation time, comparison of the aroma chemicals using hydrodistillation and HS-SPME techniques. Rec. Nat. Prod. 2016, 10, 800–805. [Google Scholar]
- Souleles, C.; Argyriadou, N. Constituents of the essential oil of Salvia sclarea growing wild in Greece. Int. J. Pharmacogn. 1997, 35, 218–220. [Google Scholar] [CrossRef]
- Pitarokili, D.; Couladis, M.; Petsikos-Panayotarou, N.; Tzakou, O. Composition and antifungal activity on soil-borne pathogens of the essential oil of Salvia sclarea from Greece. J. Agric. Food Chem. 2002, 50, 6688–6691. [Google Scholar] [CrossRef] [PubMed]
- Grigoriadou, K.; Trikka, F.A.; Tsoktouridis, G.; Krigas, N.; Sarropoulou, V.; Papanastasi, K.; Maloupa, E.; Makris, A.M. Μicropropagation and cultivation of Salvia sclarea for essential oil and sclareol production in Northern Greece. In Vitro Cell. Dev. Biol.-Plant 2020, 56, 51–59. [Google Scholar] [CrossRef]
- Sharopov, F.S.; Satyal, P.; Setzer, W.N.; Wink, M. Chemical compositions of the essential oils of three Salvia Species cultivated in Germany. Am. J. Essent. Oils Nat. Prod. 2015, 3, 26–29. [Google Scholar]
- Verma, R.S.; Padalia, R.C.; Chauhan, A. Harvesting season and plant part dependent variations in the essential oil composition of Salvia officinalis L. grown in Northern India. J. Herb. Med. 2015, 5, 165–171. [Google Scholar] [CrossRef]
- Schmiderer, C.; Torres-Londoño, P.; Novak, J. Proof of geographical origin of Albanian sage by essential oil analysis. Biochem. Syst. Ecol. 2013, 51, 70–77. [Google Scholar] [CrossRef]
- El Euch, S.K.; Hassine, D.B.; Cazaux, S.; Bouzouita, N.; Bouajila, J. Salvia officinalis essential oil: Chemical analysis and evaluation of anti-enzymatic and antioxidant bioactivities. South Afr. J. Bot. 2019, 120, 253–260. [Google Scholar] [CrossRef]
- Russo, A.; Formisano, C.; Rigano, D.; Senatore, F.; Delfine, S.; Cardile, V.; Rosselli, S.; Bruno, M. Chemical composition and anticancer activity of essential oils of Mediterranean Sage (Salvia officinalis L.) grown in different environmental conditions. Food Chem. Toxicol. 2013, 55, 42–47. [Google Scholar] [CrossRef]
- Hanlidou, E.; Karousou, R.; Lazari, D. Essential-oil diversity of Salvia tomentosa Mill. in Greece. Chem. Biodivers. 2014, 11, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
- Tabanca, N.; Demirci, B.; Aytaç, Z.; Can, K.H. The Chemical composition of Salvia verticillata L. subsp. verticillata from Turkey. Nat. Volatiles Essent. Oils 2017, 4, 18–28. [Google Scholar]
- Giuliani, C.; Ascrizzi, R.; Lupi, D.; Tassera, G.; Santagostini, L.; Giovanetti, M.; Flamini, G.; Fico, G. Salvia verticillata: Linking glandular trichomes, volatiles and pollinators. Phytochemistry 2018, 155, 53–60. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tziakas, S.; Tomou, E.-M.; Fraskou, P.; Goula, K.; Dimakopoulou, K.; Skaltsa, H. Characterization of Essential Oils from Seven Salvia Taxa from Greece with Chemometric Analysis. Agronomy 2025, 15, 227. https://doi.org/10.3390/agronomy15010227
Tziakas S, Tomou E-M, Fraskou P, Goula K, Dimakopoulou K, Skaltsa H. Characterization of Essential Oils from Seven Salvia Taxa from Greece with Chemometric Analysis. Agronomy. 2025; 15(1):227. https://doi.org/10.3390/agronomy15010227
Chicago/Turabian StyleTziakas, Spyridon, Ekaterina-Michaela Tomou, Panagiota Fraskou, Katerina Goula, Konstantina Dimakopoulou, and Helen Skaltsa. 2025. "Characterization of Essential Oils from Seven Salvia Taxa from Greece with Chemometric Analysis" Agronomy 15, no. 1: 227. https://doi.org/10.3390/agronomy15010227
APA StyleTziakas, S., Tomou, E.-M., Fraskou, P., Goula, K., Dimakopoulou, K., & Skaltsa, H. (2025). Characterization of Essential Oils from Seven Salvia Taxa from Greece with Chemometric Analysis. Agronomy, 15(1), 227. https://doi.org/10.3390/agronomy15010227