Development of Lettuce Growth Monitoring Model Based on Three-Dimensional Reconstruction Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Image Acquisition and Processing System
2.3. Establishment of Lettuce Growth Models Under Consistent Light Conditions
2.4. Establishment of Validation Set Under Diverse Shapes of Lettuce
2.5. Establishment of Lettuce Fresh Weight Estimation Model Based on 2D Metrics
2.6. Measurement of Plant Morphology and Growth Characteristics
2.7. Model Establishment and Evaluation
2.8. Computing Environment
2.9. Statistical Analysis
3. Results
3.1. Lettuce Growth Models Under Consistent Light Conditions
3.1.1. Plant Morphology and Growth Characteristics
3.1.2. Linear Relationship Between Plant Morphological Indicators and Fresh Weight
3.1.3. Linear Relationship Between 3D Reconstruction Volume and Correlative Metrics
3.1.4. Model Performance Based on 3D
3.2. Validation Set Under Diverse Shapes of Lettuce
3.2.1. Plant Morphology and Validation Set
3.2.2. Optimization of the Model Under Far-Red Light Supplementation Conditions
3.3. Lettuce Fresh Weight Estimation Model Based on 2D Metrics
3.3.1. Model Performance Based on 2D
3.3.2. K-Fold Cross-Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kozai, T. Plant Factories with Artificial Lighting (PFALs): Benefits, Problems, and Challenges. In Smart Plant Factory; Kozai, T., Ed.; Springer: Singapore, 2018; pp. 15–29. ISBN 9789811310645. [Google Scholar]
- Kozai, T.; Niu, G.; Takagaki, M. (Eds.) Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production, 2nd ed.; Academic Press: London, UK; Elsevier: San Diego, CA, USA, 2020; ISBN 978-0-12-816691-8. [Google Scholar]
- Chen, Y.-R.; Chao, K.; Kim, M.S. Machine Vision Technology for Agricultural Applications. Comput. Electron. Agric. 2002, 36, 173–191. [Google Scholar] [CrossRef]
- Tian, Z.; Ma, W.; Yang, Q.; Duan, F. Application Status and Challenges of Machine Vision in Plant Factory—A Review. Inf. Process. Agric. 2022, 9, 195–211. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Gu, R. Research Status and Prospects on Plant Canopy Structure Measurement Using Visual Sensors Based on Three-Dimensional Reconstruction. Agriculture 2020, 10, 462. [Google Scholar] [CrossRef]
- Cheng, L.; Chen, S.; Liu, X.; Xu, H.; Wu, Y.; Li, M.; Chen, Y. Registration of Laser Scanning Point Clouds: A Review. Sensors 2018, 18, 1641. [Google Scholar] [CrossRef] [PubMed]
- Gokturk, S.B.; Yalcin, H.; Bamji, C. A Time-Of-Flight Depth Sensor—System Description, Issues and Solutions. In Proceedings of the 2004 Conference on Computer Vision and Pattern Recognition Workshop, Washington, DC, USA, 27 June–2 July 2004; IEEE: Piscataway, NJ, USA, 2004; p. 35. [Google Scholar]
- Hennad, A.; Cockett, P.; McLauchlan, L.; Mehrubeoglu, M. Characterization of Irregularly-Shaped Objects Using 3D Structured Light Scanning. In Proceedings of the 2019 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 5–7 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 600–605. [Google Scholar]
- Lin, H.; Gao, J.; Mei, Q.; He, Y.; Liu, J.; Wang, X. Adaptive Digital Fringe Projection Technique for High Dynamic Range Three-Dimensional Shape Measurement. Opt. Express 2016, 24, 7703. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, Q.; Feng, S.; Zuo, C. Microscopic Fringe Projection Profilometry: A Review. Opt. Lasers Eng. 2020, 135, 106192. [Google Scholar] [CrossRef]
- Paulus, S. Measuring Crops in 3D: Using Geometry for Plant Phenotyping. Plant Methods 2019, 15, 103. [Google Scholar] [CrossRef]
- Teng, X.; Zhou, G.; Wu, Y.; Huang, C.; Dong, W.; Xu, S. Three-Dimensional Reconstruction Method of Rapeseed Plants in the Whole Growth Period Using RGB-D Camera. Sensors 2021, 21, 4628. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Arellano, M.; Paraforos, D.S.; Reiser, D.; Garrido-Izard, M.; Griepentrog, H.W. Determination of Stem Position and Height of Reconstructed Maize Plants Using a Time-of-Flight Camera. Comput. Electron. Agric. 2018, 154, 276–288. [Google Scholar] [CrossRef]
- Xie, W.; Wei, S.; Yang, D. Morphological Measurement for Carrot Based on Three-Dimensional Reconstruction with a ToF Sensor. Postharvest Biol. Technol. 2023, 197, 112216. [Google Scholar] [CrossRef]
- Guo, R. Improved 3D Point Cloud Segmentation for Accurate Phenotypic Analysis of Cabbage Plants Using Deep Learning and Clustering Algorithms. Comput. Electron. Agric. 2023, 211, 108014. [Google Scholar] [CrossRef]
- Moons, T. 3D Reconstruction from Multiple Images Part 1: Principles. Found. Trends® Comput. Graph. Vis. 2008, 4, 287–404. [Google Scholar] [CrossRef]
- Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from Motion Photogrammetry in Forestry: A Review. Curr. For. Rep. 2019, 5, 155–168. [Google Scholar] [CrossRef]
- Liu, R.; Yao, L.; Yan, L.; Li, H.; Liu, X.; Yang, Y. Research on Real Scene 3D Modelling Based on Multi-View. J. Phys. Conf. Ser. 2021, 1852, 022080. [Google Scholar] [CrossRef]
- Xiao, S.; Chai, H.; Shao, K.; Shen, M.; Wang, Q.; Wang, R.; Sui, Y.; Ma, Y. Image-Based Dynamic Quantification of Aboveground Structure of Sugar Beet in Field. Remote Sens. 2020, 12, 269. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Y.; Chen, Z.; Khan, A.; Salvaggio, C.; Lu, G. 3D Plant Root System Reconstruction Based on Fusion of Deep Structure-from-Motion and IMU. Multimed. Tools Appl. 2021, 80, 17315–17331. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, L.; Wang, M.; Wang, Y.; Li, M. Kinect-Based 3D Reconstruction of Leaf Lettuce. In Proceedings of the 2020 ASABE Annual International Virtual Meeting, American Society of Agricultural and Biological Engineers, Omaha, NE, USA, 13–15 July 2020. [Google Scholar]
- Lou, M.; Lu, J.; Wang, L.; Jiang, H.; Zhou, M. Growth Parameter Acquisition and Geometric Point Cloud Completion of Lettuce. Front. Plant Sci. 2022, 13, 947690. [Google Scholar] [CrossRef] [PubMed]
- Petropoulou, A.S.; Van Marrewijk, B.; De Zwart, F.; Elings, A.; Bijlaard, M.; Van Daalen, T.; Jansen, G.; Hemming, S. Lettuce Production in Intelligent Greenhouses—3D Imaging and Computer Vision for Plant Spacing Decisions. Sensors 2023, 23, 2929. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.E.; Harith, H.H. Performance of Structure-from-Motion Approach on Plant Phenotyping Using Images from Smartphone. IOP Conf. Ser. Earth Environ. Sci. 2022, 1038, 012031. [Google Scholar] [CrossRef]
- Wada, K.C.; Hayashi, A.; Lee, U.; Tanabata, T.; Isobe, S.; Itoh, H.; Maeda, H.; Fujisako, S.; Kochi, N. A Novel Method for Quantifying Plant Morphological Characteristics Using Normal Vectors and Local Curvature Data via 3D Modelling—A Case Study in Leaf Lettuce. Sensors 2023, 23, 6825. [Google Scholar] [CrossRef]
- Ju, J.; Zhang, S.; Hu, Y.; Zhang, M.; He, R.; Li, Y.; Liu, X.; Liu, H. Effects of Supplemental Red and Far-Red Light at Different Growth Stages on the Growth and Nutritional Properties of Lettuce. Agronomy 2023, 14, 55. [Google Scholar] [CrossRef]
- Geladi, P.; Kowalski, B.R. Partial Least-Squares Regression: A Tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Fushiki, T. Estimation of Prediction Error by Using K-Fold Cross-Validation. Stat. Comput. 2011, 21, 137–146. [Google Scholar] [CrossRef]
- Ariesen-Verschuur, N.; Verdouw, C.; Tekinerdogan, B. Digital Twins in Greenhouse Horticulture: A Review. Comput. Electron. Agric. 2022, 199, 107183. [Google Scholar] [CrossRef]
- Kumar, J.; Pratap, A.; Kumar, S. (Eds.) Phenomics in Crop Plants: Trends, Options and Limitations; Springer: New Delhi, India, 2015; ISBN 978-81-322-2225-5. [Google Scholar]
- Wu, S.; Wen, W.; Gou, W.; Lu, X.; Zhang, W.; Zheng, C.; Xiang, Z.; Chen, L.; Guo, X. A Miniaturized Phenotyping Platform for Individual Plants Using Multi-View Stereo 3D Reconstruction. Front. Plant Sci. 2022, 13, 897746. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, A.K.; Bender, A.; Whelan, B.; Barbour, M.M.; Sukkarieh, S.; Karstoft, H.; Gislum, R. Segmentation of Lettuce in Coloured 3D Point Clouds for Fresh Weight Estimation. Comput. Electron. Agric. 2018, 154, 373–381. [Google Scholar] [CrossRef]
- Ohsowski, B.M.; Dunfield, K.E.; Klironomos, J.N.; Hart, M.M. Improving Plant Biomass Estimation in the Field Using Partial Least Squares Regression and Ridge Regression. Botany 2016, 94, 501–508. [Google Scholar] [CrossRef]
- Zeng, W.; Xu, C.; Gang, Z.; Wu, J.; Huang, J. Estimation of Sunflower Seed Yield Using Partial Least Squares Regression and Artificial Neural Network Models. Pedosphere 2018, 28, 764–774. [Google Scholar] [CrossRef]
- Tan, J.; Hou, J.; Xu, W.; Zheng, H.; Gu, S.; Zhou, Y.; Qi, L.; Ma, R. PosNet: Estimating Lettuce Fresh Weight in Plant Factory Based on Oblique Image. Comput. Electron. Agric. 2023, 213, 108263. [Google Scholar] [CrossRef]
- Gang, M.-S.; Kim, H.-J.; Kim, D.-W. Estimation of Greenhouse Lettuce Growth Indices Based on a Two-Stage CNN Using RGB-D Images. Sensors 2022, 22, 5499. [Google Scholar] [CrossRef] [PubMed]
- Paturkar, A.; Sen Gupta, G.; Bailey, D. Making Use of 3D Models for Plant Physiognomic Analysis: A Review. Remote Sens. 2021, 13, 2232. [Google Scholar] [CrossRef]
- Tan, T.; Li, S.; Fan, Y.; Wang, Z.; Ali Raza, M.; Shafiq, I.; Wang, B.; Wu, X.; Yong, T.; Wang, X.; et al. Far-Red Light: A Regulator of Plant Morphology and Photosynthetic Capacity. Crop J. 2022, 10, 300–309. [Google Scholar] [CrossRef]
- Legendre, R.; Van Iersel, M.W. Supplemental Far-Red Light Stimulates Lettuce Growth: Disentangling Morphological and Physiological Effects. Plants 2021, 10, 166. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, Y.; Wang, H.; Ma, X.; Wang, B.; Wu, G.; Wang, H. Phytochrome-Interacting Factors Directly Suppress MIR156 Expression to Enhance Shade-Avoidance Syndrome in Arabidopsis. Nat. Commun. 2017, 8, 348. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-J.; Park, S.-Y.; Oh, M.-M. Growth and Cell Division of Lettuce Plants under Various Ratios of Red to Far-Red Light-Emitting Diodes. Hortic. Environ. Biotechnol. 2015, 56, 186–194. [Google Scholar] [CrossRef]
- Li, Y.; Wen, W.; Guo, X.; Yu, Z.; Gu, S.; Yan, H.; Zhao, C. High-Throughput Phenotyping Analysis of Maize at the Seedling Stage Using End-to-End Segmentation Network. PLoS ONE 2021, 16, e0241528. [Google Scholar] [CrossRef] [PubMed]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep Learning in Agriculture: A Survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Yu, S.; Ma, J.; Wang, W. Deep Learning for Denoising. Geophysics 2019, 84, 1ND-Z34. [Google Scholar] [CrossRef]
- Zhang, Y. Multi-Phenotypic Parameters Extraction and Biomass Estimation for Lettuce Based on Point Clouds. Measurement 2022, 204, 112094. [Google Scholar] [CrossRef]
- Xu, D.; Chen, J.; Li, B.; Ma, J. Improving Lettuce Fresh Weight Estimation Accuracy through RGB-D Fusion. Agronomy 2023, 13, 2617. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z.; Xu, D.; Ma, J.; Chen, Y.; Fu, Z. Growth Monitoring of Greenhouse Lettuce Based on a Convolutional Neural Network. Hortic. Res. 2020, 7, 124. [Google Scholar] [CrossRef] [PubMed]
Spectral Composition and Light Treatment | R:FR | R:B | ||||
---|---|---|---|---|---|---|
Spectral Composition | First 10 Days | Last 10 Days | Spectral Composition | First 10 Days | Last 10 Days | |
W | 12.36 | 12.36 | 12.36 | 0.93 | 0.93 | 0.93 |
W + R | 14.22 | - | - | 1.47 | - | - |
W + FR | 1.44 | - | - | 0.93 | - | - |
W + R + FR | 2.17 | - | - | 1.47 | - | - |
A | - | 2.17 | 2.17 | - | 1.47 | 1.47 |
FRR | - | 1.44 | 14.22 | - | 0.93 | 1.47 |
RFR | - | 14.22 | 1.44 | - | 1.47 | 0.93 |
Iteration | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE (g) | 3.9469 | 2.0599 | 3.0317 | 2.7317 | 3.4318 | 4.5367 | 3.0517 | 3.7983 | 3.6038 | 2.1027 | 3.2295 |
Iteration | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 RMSE (g) | 6.3165 | 7.5457 | 6.9247 | 5.7077 | 7.7619 | 7.2109 | 6.3770 | 6.4998 | 6.4326 | 7.1671 | 6.7944 |
Model 2 RMSE (g) | 4.8308 | 4.9606 | 5.4462 | 4.7951 | 3.5798 | 6.6737 | 4.5376 | 4.0055 | 7.5108 | 6.7830 | 5.3123 |
Iteration | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE (g) | 3.7770 | 3.0540 | 2.9767 | 2.5218 | 4.0552 | 3.2874 | 2.3303 | 4.8870 | 2.5086 | 3.6407 | 3.3039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, J.; Zhang, M.; Zhang, Y.; Chen, Q.; Gao, Y.; Yu, Y.; Wu, Z.; Hu, Y.; Liu, X.; Song, J.; et al. Development of Lettuce Growth Monitoring Model Based on Three-Dimensional Reconstruction Technology. Agronomy 2025, 15, 29. https://doi.org/10.3390/agronomy15010029
Ju J, Zhang M, Zhang Y, Chen Q, Gao Y, Yu Y, Wu Z, Hu Y, Liu X, Song J, et al. Development of Lettuce Growth Monitoring Model Based on Three-Dimensional Reconstruction Technology. Agronomy. 2025; 15(1):29. https://doi.org/10.3390/agronomy15010029
Chicago/Turabian StyleJu, Jun, Minggui Zhang, Yingjun Zhang, Qi Chen, Yiting Gao, Yangyue Yu, Zhiqiang Wu, Youzhi Hu, Xiaojuan Liu, Jiali Song, and et al. 2025. "Development of Lettuce Growth Monitoring Model Based on Three-Dimensional Reconstruction Technology" Agronomy 15, no. 1: 29. https://doi.org/10.3390/agronomy15010029
APA StyleJu, J., Zhang, M., Zhang, Y., Chen, Q., Gao, Y., Yu, Y., Wu, Z., Hu, Y., Liu, X., Song, J., & Liu, H. (2025). Development of Lettuce Growth Monitoring Model Based on Three-Dimensional Reconstruction Technology. Agronomy, 15(1), 29. https://doi.org/10.3390/agronomy15010029