The Physiological Mechanism of Exogenous Melatonin Regulating Salt Tolerance in Eggplant Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Experimental Design
2.3. Measurement of Growth Indicators
2.4. Measurement of Photosynthetic Indicators
2.5. Measurement of Physiological Indicators
2.6. RNA Extraction and Reverse Transcription of cDNA with qRT-PCR Gene Expression
2.7. Data Processing
3. Results
3.1. Effect of Exogenous MT on the Growth of Eggplant Seedlings Under Salt Stress
3.2. Effect of Exogenous MT on the Photosynthesis of Eggplant Seedlings Under Salt Stress
3.3. Effect of Exogenous MT on the Rate of O2− Production, MDA, and H2O2 Content of Eggplant Seedlings Under Salt Stress
3.4. Effect of Exogenous MT on Antioxidants in Eggplant Seedlings Under Salt Stress
3.5. Effect of Exogenous MT on the Content of Osmoregulatory Substances in Eggplant Seedlings Under Salt Stress
3.6. Effect of Exogenous MT on the Expression of Relevant Genes in Eggplant Seedlings Under Salt Stress
4. Discussion
4.1. Effect of Exogenous Melatonin on the Growth Parameters of Eggplant Seedlings Under Salt Stress
4.2. Effect of Exogenous Melatonin on the Cell Membrane of Eggplant Seedlings Under Salt Stress
4.3. Effect of Exogenous Melatonin on Antioxidant Enzyme Activities and ASA in Eggplant Seedlings Under Salt Stress
4.4. Effect of Exogenous Melatonin on Osmoregulatory Capacity of Eggplant Seedlings Under Salt Stress
4.5. Effect of Exogenous Melatonin on the Expression of Relevant Genes in Eggplant Seedlings Under Salt Stress
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Guo, M.; Wang, X.S.; Guo, H.D.; Bai, S.Y.; Khan, A.; Wang, X.M.; Gao, Y.M.; Li, J.S. Tomato salt tolerance mechanisms and their potential applications for fighting salinity: A review. Front. Plant Sci. 2022, 13, 949541. [Google Scholar] [CrossRef]
- Luan, H.; Gao, W.; Huang, S.; Tang, J.; Li, M.; Zhang, H.; Chen, X.; Masiliūnas, D. Substitution of manure for chemical fertilizer affects soil microbial community diversity, structure and function in greenhouse vegetable production systems. PLoS ONE 2020, 15, e0214041. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Li, Y.; Luo, X.; Liu, Y.; Yue, X.; Yao, B.; Xue, J.; Zhang, L.; Fan, J.; Xu, X.; et al. Manure properties, soil conditions and managerial factors regulate greenhouse vegetable yield with organic fertilizer application across China. Front. Plant Sci. 2022, 13, 1009631. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Zheng, Z.; Li, T. Effect of irrigation frequency on migration regularity of greenhouse soil salt during different growth stages of pepper. Trans. Chin. Soc. Agric. Eng. 2016, 32, 114–121. [Google Scholar] [CrossRef]
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Xu, S.; Zhang, D.; Fu, Z.; Zhang, H.; Zhu, H. Phytoremediation of Secondary Salinity in Greenhouse Soil with Astragalus sinicus, Spinacea oleracea and Lolium perenne. Agriculture 2022, 12, 212. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, H.; Lian, J.; Zhang, W.; Li, G.; Zhang, J. Combined Application of Organic Fertilizer with Microbial Inoculum Improved Aggregate Formation and Salt Leaching in a Secondary Salinized Soil. Plants 2023, 12, 2945. [Google Scholar] [CrossRef]
- Feng, C.; Gao, H.; Zhou, Y.; Jing, Y.; Li, S.; Yan, Z.; Xu, K.; Zhou, F.; Zhang, W.; Yang, X.; et al. Unfolding molecular switches for salt stress resilience in soybean: Recent advances and prospects for salt-tolerant smart plant production. Front. Plant Sci. 2023, 14, 1162014. [Google Scholar] [CrossRef]
- Balasubramaniam, T.; Shen, G.; Esmaeili, N.; Zhang, H. Plants’ Response Mechanisms to Salinity Stress. Plants 2023, 12, 2253. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Y.; Dong, G.; Zhu, G.; Zhou, G. Progress of Research on the Physiology and Molecular Regulation of Sorghum Growth Under Salt Stress by Gibberellin. Int. J. Mol. Sci. 2023, 24, 6777. [Google Scholar] [CrossRef]
- Martínez-Ispizua, E.; Calatayud, Á.; Marsal, J.I.; Mateos-Fernández, R.; Díez, M.J.; Soler, S.; Valcárcel, J.V.; Martínez-Cuenca, M.R. Phenotyping Local Eggplant Varieties: Commitment to Biodiversity and Nutritional Quality Preservation. Front. Plant Sci. 2021, 12, 696272. [Google Scholar] [CrossRef] [PubMed]
- Muftaudeen, T.K. Genetic Diversity and Utilization of Cultivated Eggplant Germplasm in Varietal Improvement. Plants 2021, 10, 1714. [Google Scholar] [CrossRef]
- Mokabel, S.; Olama, Z.; Ali, S.; El-Dakak, R. The Role of Plant Growth Promoting Rhizosphere Microbiome as Alternative Biofertilizer in Boosting Solanum melongena L. Adaptation to Salinity Stress. Plants 2022, 11, 659. [Google Scholar] [CrossRef] [PubMed]
- Gaccione, L.; Martina, M.; Barchi, L.; Portis, E. A Compendium for Novel Marker-Based Breeding Strategies in Eggplant. Plants 2023, 12, 1016. [Google Scholar] [CrossRef] [PubMed]
- Hannachi, S.; Steppe, K.; Eloudi, M.; Mechi, L.; Bahrini, I.; Van Labeke, M.C. Salt Stress Induced Changes in Photosynthesis and Metabolic Profiles of One Tolerant (‘Bonica’) and One Sensitive (‘Black Beauty’) Eggplant Cultivars (Solanum melongena L.). Plants 2022, 11, 590. [Google Scholar] [CrossRef]
- Shen, L.; Zhao, E.; Liu, R.; Yang, X. Transcriptome Analysis of Eggplant Under Salt Stress: AP2/ERF Transcription Factor SmERF1 Acts as a Positive Regulator of Salt Stress. Plants 2022, 11, 2205. [Google Scholar] [CrossRef]
- Jameel, J.; Anwar, T.; Majeed, S.; Qureshi, H.; Siddiqi, E.H.; Sana, S.; Zaman, W.; Ali, H.M. Effect of salinity on growth and biochemical responses of brinjal varieties: Implications for salt tolerance and antioxidant mechanisms. BMC Plant Biol. 2024, 24, 128. [Google Scholar] [CrossRef]
- Ortega-Albero, N.; González-Orenga, S.; Vicente, O.; Rodríguez-Burruezo, A.; Fita, A. Responses to Salt Stress of the Interspecific Hybrid Solanum insanum × Solanum melongena and Its Parental Species. Plants 2023, 12, 295. [Google Scholar] [CrossRef]
- Guo, J.; Shan, C.; Zhang, Y.; Wang, X.; Tian, H.; Han, G.; Zhang, Y.; Wang, B. Mechanisms of Salt Tolerance and Molecular Breeding of Salt-Tolerant Ornamental Plants. Front. Plant Sci. 2022, 13, 854116. [Google Scholar] [CrossRef]
- Fu, H.; Yang, Y. How Plants Tolerate Salt Stress. Curr. Issues Mol. Biol. 2023, 45, 5914–5934. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Nafees, M.; Chen, J.; Darras, A.; Ferrante, A.; Hancock, J.T.; Ashraf, M.; Zaid, A.; Latif, N.; Corpas, F.J.; et al. Chemical priming enhances plant tolerance to salt stress. Front. Plant Sci. 2022, 13, 946922. [Google Scholar] [CrossRef] [PubMed]
- Mannino, G.; Pernici, C.; Serio, G.; Gentile, C.; Bertea, C.M. Melatonin and Phytomelatonin: Chemistry, Biosynthesis, Metabolism, Distribution and Bioactivity in Plants and Animals—An Overview. Int. J. Mol. Sci. 2021, 22, 9996. [Google Scholar] [CrossRef] [PubMed]
- Colombage, R.; Singh, M.B.; Bhalla, P.L. Melatonin and Abiotic Stress Tolerance in Crop Plants. Int. J. Mol. Sci. 2023, 24, 7447. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, J.; Shao, Z.; Dai, Z.; Li, D. Melatonin-Mediated Modulation of Grapevine Resistance Physiology, Endogenous Hormonal Dynamics, and Fruit Quality Under Varying Irrigation Amounts. Int. J. Mol. Sci. 2024, 25, 13081. [Google Scholar] [CrossRef]
- Gu, Q.; Xiao, Q.; Chen, Z.; Han, Y. Crosstalk between Melatonin and Reactive Oxygen Species in Plant Abiotic Stress Responses: An Update. Int. J. Mol. Sci. 2022, 23, 5666. [Google Scholar] [CrossRef]
- Khan, M.; Ali, S.; Manghwar, H.; Saqib, S.; Ullah, F.; Ayaz, A.; Zaman, W. Melatonin Function and Crosstalk with Other Phytohormones Under Normal and Stressful Conditions. Genes 2022, 13, 1699. [Google Scholar] [CrossRef]
- Huo, L.; Wang, H.; Wang, Q.; Gao, Y.; Xu, K.; Sun, X. Exogenous treatment with melatonin enhances waterlogging tolerance of kiwifruit plants. Front. Plant Sci. 2022, 13, 1081787. [Google Scholar] [CrossRef]
- Rahmatullah, J.; Saleem, A.; Sajjad, A.; Lubna; Du, X.X.; Park, J.R.; Nari, K.; Bhatta, D.; Lee, I.; Kim, K.-M. Melatonin alleviates arsenic (As) toxicity in rice plants via modulating antioxidant defense system and secondary metabolites and reducing oxidative stress. Environ. Pollut. 2022, 318, 120868. [Google Scholar]
- Lei, Y.; He, H.; Raza, A.; Liu, Z.; Ding, X.; Wang, G.; Lv, Y.; Cheng, Y.; Zou, X. Exogenous melatonin confers cold tolerance in rapeseed (Brassica napus L.) seedlings by improving antioxidants and genes expression. Plant Signal Behav. 2022, 17, 2129289. [Google Scholar] [CrossRef]
- Kuppusamy, A.; Alagarswamy, S.; Karuppusami, K.M.; Maduraimuthu, D.; Natesan, S.; Ramalingam, K.; Muniyappan, U.; Subramanian, M.; Kanagarajan, S. Melatonin Enhances the Photosynthesis and Antioxidant Enzyme Activities of Mung Bean Under Drought and High-Temperature Stress Conditions. Plants 2023, 12, 2535. [Google Scholar] [CrossRef]
- Wang, J.; Lv, P.; Yan, D.; Zhang, Z.; Xu, X.; Wang, T.; Wang, Y.; Peng, Z.; Yu, C.; Gao, Y.; et al. Exogenous Melatonin Improves Seed Germination of Wheat (Triticum aestivum L.) Under Salt Stress. Int. J. Mol. Sci. 2022, 23, 8436. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, A.; Hao, Y.; Su, W.; Sun, G.; Song, S.; Liu, H.; Chen, R. Nitric Oxide Is Essential for Melatonin to Enhance Nitrate Tolerance of Cucumber Seedlings. Molecules 2022, 27, 5806. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, A.; Pishkar, L.; Saravi, K.V.; Chen, M. Melatonin-mediated endogenous nitric oxide coordinately boosts stability through proline and nitrogen metabolism, antioxidant capacity, and Na+/K+ transporters in tomato under NaCl stress. Front. Plant Sci. 2023, 14, 1135943. [Google Scholar] [CrossRef]
- Khaleghnezhad, V.; Yousefi, A.R.; Tavakoli, A.; Farajmand, B.; Mastinu, A. Concentrations-dependent effect of exogenous abscisic acid on photosynthesis, growth and phenolic content of Dracocephalum moldavica L. under drought stress. Planta 2021, 253, 127. [Google Scholar] [CrossRef]
- Khan, Z.; Jan, R.; Asif, S.; Farooq, M.; Jang, Y.H.; Kim, E.G.; Kim, N.; Kim, K.M. Exogenous melatonin induces salt and drought stress tolerance in rice by promoting plant growth and defense system. Sci. Rep. 2024, 14, 1214. [Google Scholar] [CrossRef]
- Baek, S.G.; Shin, J.W.; Nam, J.I.; Seo, J.M.; Kim, J.M.; Woo, S.Y. Drought and Salinity Stresses Response in Three Korean Native Herbaceous Plants and Their Suitability as Garden Plants. Horticulturae 2024, 10, 1225. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, K.; Wang, J.; Ma, J.; Yao, L.; Si, E.; Li, B.; Ma, X.; Shang, X.; Meng, Y.; et al. Exogenous Melatonin Enhances the Low Phosphorus Tolerance of Barley Roots of Different Genotypes. Cells 2023, 12, 1397. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Jiang, H.; Ding, Q.; Wang, Y.; Wang, M.; Yan, C.; Jia, L. Transcriptomic and metabolomic analysis reveals the molecular mechanism of exogenous melatonin improves salt tolerance in eggplants. Front. Plant Sci. 2025, 15, 1523582. [Google Scholar] [CrossRef]
- Bai, N.; Song, Y.; Li, Y.; Tan, L.; Li, J.; Luo, L.; Sui, S.; Liu, D. Evaluation of Five Asian Lily Cultivars in Chongqing Province China and Effects of Exogenous Substances on the Heat Resistance. Horticulturae 2024, 10, 1216. [Google Scholar] [CrossRef]
- Wang, Y.T.; Chen, Z.Y.; Jiang, Y.; Duan, B.B.; Xi, Z.M. Involvement of ABA and antioxidant system in brassinosteroid-induced water stress tolerance of grapevine (Vitis vinifera L.). Sci. Hortic. 2019, 256, 108596. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Zelm, E.V.; Zhang, Y.; Testerink, C. Salt Tolerance Mechanisms of Plants. Annu. Rev. Plant Biol. 2020, 71, 403–433. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhang, Q.; Liu, M.; Zhou, H.; Ma, C.; Wang, P. Regulation of Plant Responses to Salt Stress. Int. J. Mol. Sci. 2021, 22, 4609. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Yang, Q.; Wang, T.; Du, T.; Song, Z.; Dong, B. Melatonin-mediated CcARP1 alters F-actin dynamics by phosphorylation of CcADF9 to balance root growth and salt tolerance in pigeon pea. Plant Biotechnol. J. 2024, 22, 98–115. [Google Scholar] [CrossRef]
- Castaares, J.L.; Bouzo, C.A.; Laboratory, P.P. Effect of Exogenous Melatonin on Seed Germination and Seedling Growth in Melon(Cucumis melo L.) Under Salt Stress. Hortic. Plant J. 2019, 9, 79–87. [Google Scholar] [CrossRef]
- Alharbi, B.M.; Elhakem, A.H.; Alnusairi, G.S.; Soliman, M.H.; Hakeem, K.R.; Hasan, M.M.; Abdelhamid, M.T. Exogenous application of melatonin alleviates salt stress-induced decline in growth and photosynthesis in Glycine max (L.) seedlings by improving mineral uptake, antioxidant and glyoxalase system. Plant Soil Environ. 2021, 67, 208–220. [Google Scholar] [CrossRef]
- Ali, M.; Kamran, M.; Abbasi, G.H.; Fahad, S. Melatonin-Induced Salinity Tolerance by Ameliorating Osmotic and Oxidative Stress in the Seedlings of Two Tomato (Solanum lycopersicum L.) Cultivars. J. Plant Growth Regul. 2021, 40, 2236–2248. [Google Scholar] [CrossRef]
- Sezer, S.; Kiremit, M.S.; Öztürk, E.; Subrata, B.A.G.; Osman, H.M.; Akay, H. Role of melatonin in improving leaf mineral content and growth of sweet corn seedlings under different soil salinity levels. Sci. Hortic. 2021, 288, 110376. [Google Scholar] [CrossRef]
- Duan, W.; Lu, B.; Liu, L.T.; Meng, Y.J.; Ma, X.Y.; Li, J.; Zhang, K.; Sun, H.C.; Zhang, Y.J.; Dong, H.Z.; et al. Effects of Exogenous Melatonin on Root Physiology, Transcriptome and Metabolome of Cotton Seedlings Under Salt Stress. Int. J. Mol. Sci. 2022, 23, 9456. [Google Scholar] [CrossRef]
- Elsayed, A.I.; Rafudeen, M.S.; Gomaa, A.M.; Hasanuzzaman, M. Exogenous melatonin enhances the ROS metabolism, antioxidant defense-related gene expression and photosynthetic capacity of Phaseolus vulgaris L. to confer salt stress tolerance. Physiol. Plant. 2021, 173, 1369–1381. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Zhu, T.; Zhao, C.; Li, L.; Chen, M. The Role of Melatonin in Salt Stress Responses. Int. J. Mol. Sci. 2019, 20, 1735. [Google Scholar] [CrossRef] [PubMed]
- Eisa, E.A.; Honfi, P.; Tilly-Mándy, A.; Mirmazloum, I. Exogenous Melatonin Application Induced Morpho-Physiological and Biochemical Regulations Conferring Salt Tolerance in Ranunculus asiaticus L. Horticulturae 2023, 9, 228. [Google Scholar] [CrossRef]
- Jia, W.; Wei, X.; Ma, J.; Wang, L.; Li, L.; Li, J.; Wang, Y.; Wu, L. Exogenous application of melatonin improves the growth and physiological properties of blueberry seedlings under salt stress. Biotechnol. Biotechnol. Equip. 2023, 37, 1. [Google Scholar]
- Pant, S.; Huang, Y. Elevated production of reactive oxygen species is related to host plant resistance to sugarcane aphid in sorghum. Plant Signal. Behav. 2021, 16, 1849523. [Google Scholar] [CrossRef]
- Liu, P.; Wu, X.; Gong, B.; Lü, G.; Li, J.; Gao, H. Review of the Mechanisms by Which Transcription Factors and Exogenous Substances Regulate ROS Metabolism Under Abiotic Stress. Antioxidants 2022, 11, 2106. [Google Scholar] [CrossRef]
- Sandalio, L.M.; Espinosa, J.; Shabala, S.; León, J.; Romero-Puertas, M.C. Reactive oxygen species- and nitric oxide-dependent regulation of ion and metal homeostasis in plants. J. Exp. Bot. 2023, 74, 5970–5988. [Google Scholar] [CrossRef]
- Kaur, S.; Samiksha, B.; Kaur, J.; Thakur, S.; Sharma, N.; Pandit, K. Reactive Oxygen Species Metabolism and Antioxidant Defense in Plants under Stress. In Environmental Stress Physiology of Plants and Crop Productivity; Bentham Science Publishers: Sharjah, United Arab Emirates, 2021. [Google Scholar] [CrossRef]
- Mohamadi Esboei, M.; Ebrahimi, A.; Amerian, M.R.; Alipour, H. Melatonin confers fenugreek tolerance to salinity stress by stimulating the biosynthesis processes of enzymatic, non-enzymatic antioxidants, and diosgenin content. Front. Plant Sci. 2022, 13, 890613. [Google Scholar] [CrossRef]
- Ali, M.; Pan, Y.; Liu, H.; Cheng, Z. Melatonin interaction with abscisic acid in the regulation of abiotic stress in Solanaceae family plants. Front. Plant Sci. 2023, 14, 1271137. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Hosseini, M.S.; Fahadi, H.N.; Gholami, R.; Abdelrahman, M.; Tran, L.P. Exogenous melatonin mitigates salinity-induced damage in olive seedlings by modulating ion homeostasis, antioxidant defense, and phytohormone balance. Physiol. Plant 2021, 173, 1682–1694. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, L.; Wang, X.; Wang, Z.; Zhang, H.; Chen, J.; Liu, X.; Wang, Y.; Li, C. Beneficial Effects of Exogenous Melatonin on Overcoming Salt Stress in Sugar Beets (Beta vulgaris L.). Plants 2021, 10, 886. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Zhang, M.; Xu, H.; Ning, K.; Wang, B.; Chen, M. Melatonin increases growth and salt tolerance of Limonium bicolor by improving photosynthetic and antioxidant capacity. BMC Plant Biol. 2022, 22, 16. [Google Scholar] [CrossRef]
- Wei, J.; Liang, J.; Liu, D.; Liu, Y.; Liu, G.; Wei, S. Melatonin-induced physiology and transcriptome changes in banana seedlings under salt stress conditions. Front. Plant Sci. 2022, 13, 938262. [Google Scholar] [CrossRef] [PubMed]
- Kamran, M.; Parveen, A.; Ahmar, S.; Malik, Z.; Hussain, S.; Chattha, M.S.; Saleem, M.H.; Adi, M.; Heidari, P.; Chen, J.T. An Overview of Hazardous Impacts of Soil Salinity in Crops, Tolerance Mechanisms, and Amelioration through Selenium Supplementation. Int. J. Mol. Sci. 2019, 21, 148. [Google Scholar] [CrossRef] [PubMed]
- Kesawat, M.S.; Satheesh, N.; Kherawat, B.S.; Kumar, A.; Kim, H.U.; Chung, S.M.; Kumar, M. Regulation of Reactive Oxygen Species during Salt Stress in Plants and Their Crosstalk with Other Signaling Molecules-Current Perspectives and Future Directions. Plants 2023, 12, 864. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Mishra, R.; Rai, S.; Bano, A.; Pathak, N.; Fujita, M.; Kumar, M.; Hasanuzzaman, M. Mechanistic Insights of Plant Growth Promoting Bacteria Mediated Drought and Salt Stress Tolerance in Plants for Sustainable Agriculture. Int. J. Mol. Sci. 2022, 23, 3741. [Google Scholar] [CrossRef]
- Jia, H.; Zhao, P.; Wang, B.; Tariq, P.; Fang, J. Overexpression of Polyphenol Oxidase Gene in Strawberry Fruit Delays the Fungus Infection Process. Plant Mol. Biol. Rep. 2016, 34, 592–606. [Google Scholar] [CrossRef]
- Hao, L.; Jingjing, C.; Hejie, C.; Zhongyuan, W.; Xiurong, G.; Chunhua, W. Exogenous Melatonin Confers Salt Stress Tolerance to Watermelon by Improving Photosynthesis and Redox Homeostasis. Front. Plant Sci. 2017, 8, 295. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Alamri, S.; Al-Khaishany, M.Y.; Khan, M.N.; Al-Amri, A.; Ali, H.M.; Alaraidh, I.A.; Alsahli, A.A. Exogenous Melatonin Counteracts NaCl-Induced Damage by Regulating the Antioxidant System, Proline and Carbohydrates Metabolism in Tomato Seedlings. Int. J. Mol. Sci. 2019, 20, 353. [Google Scholar] [CrossRef]
- ElSayed, A.I.; Boulila, M.; Rafudeen, M.S.; Mohamed, A.H.; Sengupta, S.; Rady, M.; Omar, A.A. Melatonin Regulatory Mechanisms and Phylogenetic Analyses of Melatonin Biosynthesis Related Genes Extracted from Peanut Under Salinity Stress. Plants 2020, 9, 854. [Google Scholar] [CrossRef]
- Park, H.S.; Kazerooni, E.A.; Kang, S.M.; Al-Sadi, A.M.; Lee, I.J. Melatonin Enhances the Tolerance and Recovery Mechanisms in Brassica juncea (L.) Czern. Under Saline Conditions. Front. Plant Sci. 2021, 12, 482. [Google Scholar] [CrossRef]
- Liu, T.; Xing, G.; Chen, Z.; Zhai, X.; Wei, X.; Wang, C.; Zheng, S. Effect of exogenous melatonin on salt stress in cucumber: Alleviating effect and molecular basis. Biotechnol. Biotechnol. Equip. 2022, 36, 818–827. [Google Scholar] [CrossRef]
- He, F.; Zhao, X.; Qi, G.; Sun, S.; Shi, Z.; Niu, Y.; Wu, Z.; Zhou, W. Exogenous Melatonin Alleviates NaCl Injury by Influencing Stomatal Morphology, Photosynthetic Performance, and Antioxidant Balance in Maize. Int. J. Mol. Sci. 2024, 25, 10077. [Google Scholar] [CrossRef]
- Jiang, D.; Lu, B.; Liu, L.; Duan, W.; Meng, Y.; Li, J.; Zhang, K.; Sun, H.; Zhang, Y.; Dong, H.; et al. Exogenous melatonin improves the salt tolerance of cotton by removing active oxygen and protecting photosynthetic organs. BMC Plant Biol. 2021, 21, 331. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, S.; Ansari, S.A.; Ansari, M.I.; Fujita, M.; Hasanuzzaman, M. Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants 2021, 10, 277. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Feng, Z.; Bai, Q.; He, J.; Wang, Y. Melatonin-Mediated Regulation of Growth and Antioxidant Capacity in Salt-Tolerant Naked Oat Under Salt Stress. Int. J. Mol. Sci. 2019, 20, 1176. [Google Scholar] [CrossRef]
- Masoumi, Z.; Haghighi, M.; Mozafarian, M. Effects of foliar spraying with melatonin and chitosan Nano-encapsulated melatonin on tomato (Lycopersicon esculentum L. cv. Falcato) plants under salinity stress. BMC Plant Biol. 2024, 24, 961. [Google Scholar] [CrossRef]
- Ren, J.; Ye, J.; Yin, L.; Li, G.; Deng, X.; Wang, S. Exogenous Melatonin Improves Salt Tolerance by Mitigating Osmotic, Ion, and Oxidative Stresses in Maize Seedlings. Agronomy 2020, 10, 663. [Google Scholar] [CrossRef]
- Sheikhalipour, M.; Mohammadi, S.A.; Esmaielpour, B.; Zareei, E.; Kulak, M.; Ali, S.; Nouraein, M.; Bahrami, M.K.; Gohari, G.; Fotopoulos, V. Exogenous melatonin increases salt tolerance in bitter melon by regulating ionic balance, antioxidant system and secondary metabolism-related genes. BMC Plant Biol. 2022, 22, 380. [Google Scholar] [CrossRef]
- Efimova, M.V.; Danilova, E.D.; Zlobin, I.E.; Kolomeichuk, L.V.; Murgan, O.K.; Boyko, E.V.; Kuznetsov, V.V. Priming Potato Plants with Melatonin Protects Stolon Formation Under Delayed Salt Stress by Maintaining the Photochemical Function of Photosystem II, Ionic Homeostasis and Activating the Antioxidant System. Int. J. Mol. Sci. 2023, 24, 6134. [Google Scholar] [CrossRef]
- Shen, L.; Xia, X.; Zhang, L.; Yang, S.; Yang, X. Genome-Wide Identification of Catalase Gene Family and the Function of SmCAT4 in Eggplant Response to Salt Stress. Int. J. Mol. Sci. 2023, 24, 16979. [Google Scholar] [CrossRef]
- Xiao, K.; Liu, X.; Zhang, A. Genome-wide identification of polyphenol oxidase (PPO) family members in eggplant (Solanum melongena L.) and their expression in response to low temperature. Hortic. Environ. Biotechnol. 2022, 63, 747–758. [Google Scholar] [CrossRef]
Primer Name | Forward Primer Sequences (5′ to 3′) | Reverse Primer Sequences (5′ to 3′) |
---|---|---|
SmCAT1 | TTACTATTCGGAGGATAAG | GATGATTGTTGTGATGAG |
SmCAT2 | TTCTCCTACTCTGATACC | ATAGTGATTGTTGTGATGA |
SmCAT3 | CAGGAGAGCATTACAGAT | TCGGATAGAGCATCAATC |
SmCAT4 | CACTTAGCACCTTCCAGCAGATGT | TCTCTATTAAATGATAATCCTC |
SmPPO1 | TTATTGTGATGGTGCTTATGAC | AACGATGGAACGGAAGAA |
SmPPO2 | CTTCTTCTTCTACTACTACTCTA | TTGGCTACGACTTCTATG |
SmPPO3 | TCTCAACTATTCCTCCAT | TTAGCAACACCATACATC |
SmPPO4 | TGAATGTGGACAGTAATG | GTGGCAGATTAGTATAGC |
SmPPO5 | ATGTATGGTGCTGCTAAT | TTCGGTAATCTTGGCTATA |
SmPPO6 | CTTCTTCTGCTACTCTACC | TTGGCTACGACTTCTATG |
SmPPO7 | CTGTTGATAGGAGGAATGT | GATGCCGCTAATGGTATA |
SmPPO8 | TTCTCAGTCACCATCCAA | GACATTACGCCTATCAAGTT |
SmPPO9 | AATGGATTGGCAGATGATGA | TTGGATGGAGAGCAGTTG |
SmPPO10 | CTGTTGATAGGAGGAATGT | GATGCCGCTAATGGTATA |
SmPPO11 | TGGCGATAATAATACTCA | ATTCTCAATGGATATACCT |
SmPPO12 | GCTTCGTCAAGGACTCAA | ACTGGCTATCATCGTATTGTAT |
SmActin | CACTTAGCACCTTCCAGCAGATGT | GTACAACAGCAGACCTGAGTTCACT |
Growth Indexes After 1 Day of Melatonin Treatment | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment | Plant Height | Stem Width | Stem Girth | Leaf Length | Blade Width | Root Length | Aboveground Part Fresh Weight | Aboveground Dry Weight | Underground Fresh Weigh | Underground Dry Weight |
cm | cm | mm | cm | cm | cm | g | g | g | g | |
CK | 13.27 ± 0.85 a | 37.33 ± 1.56 a | 5.08 ± 0.55 a | 15.6 ± 0.44 a | 10.93 ± 0.55 a | 27.6 ± 2.39 a | 15.53 ± 0.98 a | 1.86 ± 0.63 a | 3.94 ± 0.53 a | 0.46 ± 0.12 a |
M1 | 9.1 ± 0.4 d | 20.63 ± 2.01 d | 3.16 ± 0.13 d | 9.70 ± 0.40 c | 7.43 ± 0.67 d | 14.50 ± 2.11 d | 5.02 ± 0.34 e | 0.48 ± 0.06 b | 1.50 ± 0.41 d | 0.12 ± 0.03 c |
M2 | 10.53 ± 1.14 c | 21.73 ± 1.72 cd | 3.42 ± 0.29 cd | 10.13 ± 0.67 bc | 7.63 ± 0.21 d | 15.67 ± 1.66 cd | 5.20 ± 0.18 de | 0.53 ± 0.05 b | 1.83 ± 0.29 cd | 0.15 ± 0.03 bc |
M3 | 11.63 ± 0.81 bc | 23.30 ± 2.45 bcd | 3.48 ± 0.23 cd | 10.53 ± 1.26 bc | 8.23 ± 0.15 cd | 18.17 ± 1.38 c | 5.63 ± 0.30 cde | 0.60 ± 0.02 b | 2.13 ± 0.13 c | 0.16 ± 0.03 bc |
M4 | 11.80 ± 0.60 bc | 23.93 ± 1.27 bc | 3.98 ± 0.23 bc | 10.87 ± 0.47 bc | 9.20 ± 0.46 b | 23.03 ± 1.36 b | 6.17 ± 0.36 de | 0.65 ± 0.10 b | 2.21 ± 0.21 c | 0.19 ± 0.02 bc |
M5 | 12.23 ± 0.64 ab | 24.70 ± 1.28 b | 4.11 ± 0.37 b | 11.23 ± 1.06 b | 9.93 ± 0.81 b | 24.63 ± 1.10 ab | 7.5 ± 0.50 b | 0.82 ± 0.06 b | 2.83 ± 0.35 b | 0.22 ± 0.04 b |
M6 | 11.73 ± 0.42 bc | 23.90 ± 0.26 bc | 3.96 ± 0.25 bc | 10.80 ± 0.96 bc | 9.17 ± 0.67 bc | 22.47 ± 2.66 b | 6.0 ± 0.08 cd | 0.64 ± 0.04 b | 2.17 ± 0.15 c | 0.18 ± 0.02 bc |
Growth Indexes After 3 Days of Melatonin Treatment | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment | Plant Height | Stem Width | Stem Girth | Leaf Length | Blade Width | Root Length | Aboveground Part Fresh Weight | Aboveground Dry Weight | Underground Fresh Weigh | Underground Dry Weight |
cm | cm | mm | cm | cm | cm | g | g | g | g | |
CK | 14.20 ± 0.26 a | 37.43 ± 0.78 a | 5.21 ± 0.18 a | 16.07 ± 0.99 a | 11.30 ± 0.70 a | 34.5 ± 2.86 a | 16.17 ± 0.52 a | 1.69 ± 0.11 a | 5.67 ± 0.61 a | 0.48 ± 0.05 a |
M1 | 9.83 ± 1.35 d | 22.23 ± 3.02 d | 3.16 ± 0.08 d | 10.10 ± 1.20 d | 7.77 ± 0.45 d | 18.83 ± 3.42 d | 5.2 ± 0.65 f | 0.46 ± 0.10 e | 2.17 ± 0.33 e | 0.16 ± 0.01 e |
M2 | 11.20 ± 0.53 cd | 24.50 ± 1.15 cd | 3.92 ± 0.44 c | 10.90 ± 0.78 cd | 8.07 ± 0.59 cd | 21.13 ± 2.89 cd | 6.00 ± 0.21 e | 0.55 ± 0.08 de | 2.67 ± 0.61 de | 0.20 ± 0.04 de |
M3 | 12.00 ± 0.72 bc | 25.37 ± 1.68 bcd | 4.18 ± 0.51 bc | 11.90 ± 2.09 bcd | 8.80 ± 0.70 bcd | 22.67 ± 1.43 cd | 6.83 ± 0.45 d | 0.71 ± 0.03 cd | 3.33 ± 0.31 cd | 0.25 ± 0.03 cd |
M4 | 13.07 ± 1.63 ab | 27.00 ± 0.70 bc | 4.32 ± 0.19 bc | 12.20 ± 1.18 bc | 9.27 ± 0.75 b | 25.17 ± 2.12 bc | 8.05 ± 0.44 c | 0.88 ± 0.10 c | 3.85 ± 0.17 bc | 0.27 ± 0.02 c |
M5 | 13.77 ± 1.10 ab | 28.47 ± 3.10 b | 4.67 ± 0.19 b | 13.07 ± 0.71 b | 9.70 ± 0.80 b | 28.77 ± 2.47 b | 9.83 ± 0.30 b | 1.18 ± 0.16 b | 4.57 ± 0.55 b | 0.41 ± 0.02 b |
M6 | 12.27 ± 1.10 bc | 26.87 ± 1.16 bc | 4.26 ± 0.26 bc | 12.17 ± 0.83 bcd | 9.23 ± 0.70 bc | 24.83 ± 1.95 bc | 7.97 ± 0.40 c | 0.87 ± 0.15 c | 3.83 ± 0.46 bc | 0.27 ± 0.04 c |
Growth Indexes After 5 Days of Melatonin Treatment | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment | Plant Height | Stem Width | Stem Girth | Leaf Length | Blade Width | Root Length | Aboveground Part Fresh Weight | Aboveground Dry Weight | Underground Fresh Weigh | Underground Dry Weight |
cm | cm | mm | cm | cm | cm | g | g | g | g | |
CK | 17.30 ± 1.24 a | 36.63 ± 1.11 a | 5.43 ± 0.47 a | 16.17 ± 0.35 a | 11.80 ± 0.46 a | 38.03 ± 1.55 a | 19.33 ± 0.76 a | 2.18 ± 0.21 a | 6.16 ± 0.26 a | 0.60 ± 0.03 a |
M1 | 11.70 ± 0.37 e | 25.03 ± 0.24 f | 4.02 ± 0.43 d | 10.60 ± 0.70 d | 8.60 ± 0.30 c | 20.87 ± 2.42 e | 8.63 ± 1.67 e | 0.90 ± 0.07 e | 3.32 ± 0.48 d | 0.29 ± 0.06 e |
M2 | 12.67 ± 0.49 d | 27.20 ± 0.54 e | 4.28 ± 0.19 cd | 11.13 ± 0.21 d | 8.77 ± 0.15 c | 24.67 ± 2.54 de | 9.83 ± 1.53 de | 1.02 ± 0.14 de | 3.96 ± 1.01 cd | 0.30 ± 0.04 de |
M3 | 13.27 ± 0.33 cd | 27.67 ± 0.66 de | 4.52 ± 0.20 bcd | 11.77 ± 1.38 cd | 9.17 ± 1.00 c | 26.10 ± 2.80 cd | 10.83 ± 0.76 cde | 1.22 ± 0.13 cd | 4.24 ± 0.32 c | 0.34 ± 0.03 de |
M4 | 13.53 ± 0.17 bc | 28.53 ± 0.53 cd | 4.60 ± 0.20 bc | 12.57 ± 0.65 bc | 9.40 ± 0.79 bc | 28.23 ± 1.79 cd | 11.67 ± 1.26 cd | 1.31 ± 0.15 c | 4.37 ± 0.18 c | 0.36 ± 0.02 cd |
M5 | 14.33 ± 0.39 b | 31.10 ± 1.59 b | 4.91 ± 0.27 b | 13.33 ± 0.47 b | 10.27 ± 0.71 b | 33.40 ± 2.52 b | 14.50 ± 1.32 b | 1.66 ± 0.19 b | 5.24 ± 0.11 b | 0.49 ± 0.04 b |
M6 | 13.63 ± 0.12 bc | 29.27 ± 0.70 c | 4.67 ± 0.09 bc | 12.60 ± 0.56 bc | 9.60 ± 0.26 bc | 28.87 ± 1.45 c | 12.33 ± 1.76 bc | 1.34 ± 0.04 c | 4.39 ± 0.14 c | 0.40 ± 0.03 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Jia, L.; Wang, H.; Jiang, H.; Ding, Q.; Yang, D.; Yan, C.; Lu, X. The Physiological Mechanism of Exogenous Melatonin Regulating Salt Tolerance in Eggplant Seedlings. Agronomy 2025, 15, 270. https://doi.org/10.3390/agronomy15020270
Zhang Y, Jia L, Wang H, Jiang H, Ding Q, Yang D, Yan C, Lu X. The Physiological Mechanism of Exogenous Melatonin Regulating Salt Tolerance in Eggplant Seedlings. Agronomy. 2025; 15(2):270. https://doi.org/10.3390/agronomy15020270
Chicago/Turabian StyleZhang, Yu, Li Jia, Han Wang, Haikun Jiang, Qiangqiang Ding, Dekun Yang, Congsheng Yan, and Xiaomin Lu. 2025. "The Physiological Mechanism of Exogenous Melatonin Regulating Salt Tolerance in Eggplant Seedlings" Agronomy 15, no. 2: 270. https://doi.org/10.3390/agronomy15020270
APA StyleZhang, Y., Jia, L., Wang, H., Jiang, H., Ding, Q., Yang, D., Yan, C., & Lu, X. (2025). The Physiological Mechanism of Exogenous Melatonin Regulating Salt Tolerance in Eggplant Seedlings. Agronomy, 15(2), 270. https://doi.org/10.3390/agronomy15020270