Effects of Land Use Changes on CO2 Emission Dynamics in the Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Study Area
2.2. Delimitation of the Experiment
2.3. Assessment of Soil CO2 Emission, Soil Temperature, and Soil Moisture
2.4. Sampling and Soil Physical, Chemical, and Biological Analyses
2.5. Soil Chemical Analyses
2.6. Soil Physical Analyses
2.7. Soil Biological Analyses
2.8. Data Processing and Analysis
2.8.1. Temporal Variation and Descriptive Statistics of Treatments
2.8.2. Pearson’s Linear Correlation Analysis
2.8.3. Multivariate Analysis
3. Results
3.1. Assessment of Temporal Variability of Soil CO2 Emission, Soil Temperature, and Soil Moisture
3.2. Descriptive Statistics of Soil CO2 Emissions Associated with Soil Attributes
3.3. Pearson’s Correlation Between Soil CO2 Emission and Soil Attributes of the Different Study Areas
3.4. Interdependence Relationship Between Attributes and Different Amazon Land Uses
4. Discussion
4.1. Temporal Fluctuations in Soil CO2 Emissions, Temperature, and Moisture
4.1.1. Soil CO2 Emission Versus Soil Temperature
4.1.2. Soil CO2 Emission Versus Soil Moisture
4.2. Soil CO2 Emissions Associated with Soil Attributes
4.3. Correlations Between Soil CO2 Emission and Soil Attributes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Análise: Quais Países São Historicamente Responsáveis pelas Mudanças Climáticas? Available online: https://www.carbonbrief.org/analysis-which-countries-are-historically-responsible-for-climate-change (accessed on 25 November 2021).
- Painel Intergovernamental Sobre Mudanças Climáticas. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Brito, M.R.; Siquiera, F.L.T.; De Sousa, I.J.A.; Sousa, R. Estoque de carbono no solo sob diferentes condições de cerrado. Desafios Rev. Interdiscip. Univ. Fed. Tocantins 2018, 5, 114–124. Available online: https://www.researchgate.net/publication/335468690_ESTOQUE_DE_CARBONO_NO_SOLO_SOB_DIFERENTES_CONDICOES_DE_CERRADO#fullTextFileContent (accessed on 11 December 2021). [CrossRef]
- Gatti, L.V.; Cunha, C.L.; Marani, L.; Cassol, H.L.G.; Messias, C.G.; Arai, E.; Denning, A.S.; Soler, L.S.; Almeida, C.; Setzer, A.; et al. Increased Amazon carbon emissions mainly from decline in law enforcement. Nature 2023, 621, 318–323. [Google Scholar] [CrossRef]
- Atlas Digital das Pastagens Brasileiras. Available online: https://atlasdaspastagens.ufg.br (accessed on 15 December 2021).
- Meier, E.A.; Thorburn, P.J.; Bell, L.W.; Harrison, M.T.; Biggs, J.S. Greenhouse Gas Emissions from Cropping and Grazed Pastures Are Similar: A Simulation Analysis in Australia. Front. Sustain. Food Syst. 2020, 3, 121. [Google Scholar] [CrossRef]
- Figueiredo, E.B.; Panosso, A.R.; Bordonal, R.O.; Teixeira, E.B.; Berchielli, T.T.; La Scala, N., Jr. Soil CO2–C Emissions and Correlations with Soil Properties in Degraded and Managed Pastures in Southern Brazil. Land Degrad. Dev. 2016, 28, 1263–1273. [Google Scholar] [CrossRef]
- Brasil Ministério da Agricultura, Pecuária e Abastecimento. Plano Setorial de Mitigação e de Adaptação às Mudanças Climáticas para a Consolidação de Uma Economia de Baixa Emissão de Carbono na Agricultura: Plano ABC; MAPA/ACS: Brasilia, Brazil, 2012; pp. 1–173. [Google Scholar]
- Monteiro, A.; Barreto-Mendes, L.; Fanchone, A.; Morgavi, D.P.; Pedreira, B.C.; Magalhães, C.A.S.; Abdalla, A.L.; Eugène, M. Crop-livestock-forestry systems as a strategy for mitigating greenhouse gas emissions and enhancing the sustainability of forage-based livestock systems in the Amazon biome. Sci. Total Environ. 2024, 906, 167396. [Google Scholar] [CrossRef] [PubMed]
- Lopes, L.B.; Pitta, R.M.; Eckstein, C.; Pedreira, B.C.; Grossi, P.C.; Sindeaux, E.; Peruffo, R.G.; Cornelinssen, T.G. Diversity of coleopterans associated with cattle dung in open pastures and silvopastoral systems in the brazilian amazon. Agrofor. Syst. 2020, 94, 2277–2287. [Google Scholar] [CrossRef]
- Gil, J.; Siebold, M.; Berger, T. Adoption and development of integrated crop–livestock–forestry systems in Mato Grosso, Brazil. Agric. Ecosyst. Environ. 2015, 199, 394–406. [Google Scholar] [CrossRef]
- Costa, M.P.; Schoeneboom, J.C.; Oliveira, S.A.; Vinas, R.S.; de Medeiros, G.A. A socio-eco-efficiency analysis of integrated and non-integrated crop-livestock-forestry systems in the Brazilian Cerrado based on LCA. J. Clean. Prod. 2018, 171, 1460–1471. [Google Scholar] [CrossRef]
- De Souza, K.W.; Pulrolnik, K.; Júnior, R.G.; Marchão, R.L.; Vilela, L.; de Carvalho, A.M.; de Oliveira, A.D. Offsetting Greenhouse Gas (GHG) Emissions Through Crop-Livestock-Forest Integration; Embrapa Cerrados: Brasilia, Brazil, 2020; pp. 1–13. [Google Scholar]
- Dos Reis, J.C.; Kamoi, M.Y.T.; Michetti, M.; Wruck, F.J.; Rodrigues, R.A.R.; Farias Neto, A.L. Economic and environmental impacts of integrated systems adoption in Brazilian agriculture-forest frontier. Agroforest Syst. 2023, 97, 847–863. [Google Scholar] [CrossRef]
- Shi, L.; Feng, W.; Xu, J.; Kuzyakov, Y. Agroforestry systems: Meta-analysis of soil carbon stocks, sequestration processes, and future potentials. Land. Degrad. Dev. 2018, 29, 3886–3897. [Google Scholar] [CrossRef]
- Waheed, R.; Chang, D.; Sarwar, S.; Chen, W. Forest, agriculture, renewable energy, and CO2 emission. J. Clean. Prod. 2018, 172, 4231–4238. [Google Scholar] [CrossRef]
- Zinn, Y.L.; Lal, R.; Resck, D.V.S. Eucalypt plantation effects on organic carbon and aggregation of three different-textured soils in Brazil. Soil Res. 2011, 49, 614–624. [Google Scholar] [CrossRef]
- Moitinho, M.R.; Ferraudo, A.S.; Panosso, A.R.; Bicalho, E.S.; Teixeira, D.B.; Barbosa, M.A.; Tsai, S.M.; Borges, B.M.F.; Cannavan, F.S.; Souza, J.A.M.; et al. Effects of burned and unburned sugarcane harvesting systems on soil CO2 emission and soil physical, chemical, and microbiological atributes. Catena 2021, 196, 104903. [Google Scholar] [CrossRef]
- Chen, X.; Dhungel, J.; Bhattarai, S.P.; Torabi, M.; Pendergast, L.; Midmore, D.J. Impact of oxygation on soil respiration, yield and water use efficiency of three crop species. Plant Ecol. 2011, 4, 236–248. [Google Scholar] [CrossRef]
- Santos, G.A.A.; Moitinho, M.R.; Oliveira, B.S.; Xavier, C.V.; Teixeira, D.B.; Corá, J.E.; La Scala, N., Jr. Effects of long-term no-tillage systems with different succession cropping strategies on the variation of soil CO2 emission. Sci. Total Environ. 2019, 686, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 2009, 60, 158–169. [Google Scholar] [CrossRef]
- Luo, J.; Song, Y.; Liang, J.; Li, I.; Li, T. Elevated CO2 mitigates the negative effect of CeO2 and Cr2O3 nanoparticles on soil bacterial communities by alteration of microbial carbon use. Environ. Pollut. 2020, 263, 1–11. [Google Scholar] [CrossRef]
- Tulio, R.H.; Rachwal, M.F.G.; Zanatta, J.A.; da Silva, K.; Kaschuk, G. Physical, chemical and microbiological soil attributes influence soil greenhouse gases fluxes in Atlantic Forest and pine (Pinus taeda) plantations in Brazil. Soil Use Manag. 2023, 39, 183–197. [Google Scholar] [CrossRef]
- Levine, P.A.; Randerson, J.T.; Chen, Y.; Pritchard, M.S.; Xu, M.; Hoffman, F.M. Soil moisture variability intensifies and prolongs eastern Amazon temperature and carbon cycle response to El Niño-Southern Oscillation. J. Clim. 2019, 32, 1273–1292. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Santos, H.G.; Jaconime, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasilia, Brazil, 2018; p. 356. [Google Scholar]
- Graf, A.; Weihermüller, L.; Huisman, J.A.; Herbst, M.; Bauer, J.; Vereecken, H. Measurement depth effects on the apparent temperature sensitivity of soil respiration in field studies. Biogeosciences 2008, 5, 1175–1188. [Google Scholar] [CrossRef]
- Reichardt, K. Processos de Transferência no Sistema Solo-Planta-Atmosfera, 4th ed.; Fundação Cargill: Campinas, Brazil, 1985; p. 466. [Google Scholar]
- Manual de Análises Químicas de Solos, Plantas e Fertilizantes, 2nd ed.; Silva, F.C., Ed.; Embrapa: Brasilia, Brazil, 2009; p. 356. [Google Scholar]
- Empresa Brasileira de Pesquisa Agropecuária. Manual de Métodos de Análises de Solo, 2nd ed.; Embrapa: Brasilia, Brazil, 1997; p. 212. [Google Scholar]
- Empresa Brasileira de Pesquisa Agropecuária. Manual de Métodos de Análises de Solo, 3rd ed.; Embrapa: Brasilia, Brazil, 2017; p. 577. [Google Scholar]
- Empresa Brasileira de Pesquisa Agropecuária. Manual de Métodos de Análises de Solo, 2nd ed.; Embrapa: Brasilia, Brazil, 2011; p. 225. [Google Scholar]
- Silva, E.E.; Azevedo, P.H.S.; De-poli, H. Determinação da Respiração Basal do Solo (RBS) e Quociente Metabólico do Solo (q CO2); Embrapa: Seropédica, Rio de Janeiro, Brazil, 2007; p. 4. [Google Scholar]
- R Core Team. R: Uma Linguagem e Ambiente para Computação Estatística; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Yuste, J.C.; Baldocchi, D.B.; Gershenson, A.; Goldstein, A.; Misson, L.; Wong, S. Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Glob. Chang. Biol. 2007, 13, 2018–2035. [Google Scholar] [CrossRef]
- Smith, K.A.; Ball, T.; Conen, F.; Dobbie, K.E.; Massheder, J.; Rey, A. Exchange of greenhouse gases between soil and atmosphere: Interactions of soil physical factors and biological processes. Eur. J. Oral Sci. 2018, 69, 10–20. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 2010, 464, 579–582. [Google Scholar] [CrossRef]
- Chevallier, T.; Hmaidi, K.; Kouakoua, E.; Bernoux, M.; Gallali, T.; Toucet, J.; Barthès, B.G. Physical protection of soil carbon in macroaggregates does not reduce the temperature dependence of soil CO2 emissions. J. Soil Sci. Plant Nutr. 2015, 178, 592–600. [Google Scholar] [CrossRef]
- Thomazini, A.; Mendonça, E.S.; Souza, J.L.; Cardoso, I.M.; Garbin, M.L. Impact of organic no-till vegetables systems on soil organic matter in the Atlantic Forest biome. Sci. Hortic. 2015, 182, 145–155. [Google Scholar] [CrossRef]
- Borges, C.S.; Ribeiro, B.T.; Wendling, B.; Cabral, D.A. Soil aggregation, organic carbon and CO2 emission in different land uses in Brazilian Savanna, Triangulo Mineiro region. Amb. Água 2015, 10, 660–675. [Google Scholar] [CrossRef]
- Da Silva, D.M.N.; Venturim, C.H.P.; Valory, M.E.O.; de Oliveira, F.L.; de Sá Mendonça, E. Impact of soil cover systems on soil quality and organic production of yacon. Sci. Hortic. 2018, 235, 407–412. [Google Scholar] [CrossRef]
- Abdalla, K.; Mutema, M.; Chivenge, P.; Everson, C.; Vicent, C. Grassland degradation significantly enhances soil CO2 emission. Catena 2018, 167, 284–292. [Google Scholar] [CrossRef]
- Alves, B.J.R.; Madari, B.E.; Boddey, R.M. Integrated crop–livestock–forestry systems: Prospects for a sustainable agricultural intensification. Nutr. Cycl. Agroecosyst. 2017, 108, 1–4. [Google Scholar] [CrossRef]
- Glatzle, S.; Stuerz, S.; Giese, M.; Pereira, M.; de Almeida, R.G.; Bungenstab, D.J.; Macedo, M.C.M.; Asch, F. Seasonal Dynamics of Soil Moisture in an Integrated-Crop-Livestock-Forestry System in Central-West Brazil. Agriculture 2021, 11, 245. [Google Scholar] [CrossRef]
- Villanueva-López, G.; Martínez-Zurimendi, P.; Ramírez-Avilés, L.; Aryal, D.R.; Casanova-Lugo, F. Live fences reduce the diurnal and seasonal fluctuations of soil CO2 emissions in livestock systems. Agron. Sustain. Dev. 2016, 36, 1–9. [Google Scholar] [CrossRef]
- Oliveira, C.F. Variabilidade Espacial da Emissão de CO2 e Estoque de Carbono do Solo em Áreas de Eucalipto e Sistema Silvipastoril. Master’s Thesis, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista Júlio de Mesquita Filho, Ilha Solteira, Brazil, 2018. [Google Scholar]
- De Oliveira, D.C.; Maia, S.M.F.; Freitas, R.C.A.; Cerri, C.E.P. Changes in soil carbon and soil carbon sequestration potential under different types of pasture management in Brazil. Reg. Environ. Change 2022, 22, 87. [Google Scholar] [CrossRef]
- Panosso, A.R.; Marques, J., Jr.; Pereira, G.T.; La Scala, N., Jr. Spatial and temporal variability of soil CO2 emission in a sugarcane area under green and burn managements. Soil Till. Res. 2009, 105, 275–282. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, X.; Wang, J.; Hrusca, T.; Shi, W.; Cao, J.; Zhang, B.; Xu, G.; Chen, Y.; Luo, Y. Grazing exclusion reduced soil respiration but increased its temperature sensitivity in a Meadow Grassland on the Tibetan Plateau. Methods Ecol. Evol. 2016, 6, 675–687. [Google Scholar] [CrossRef]
- Li, Y.; Dong, S.; Liu, S.; Zhou, H.; Gao, Q.; Cao, G.; Wang, X.; Su, X.; Zhang, Y.; Tang, L.; et al. Seasonal changes of CO2, CH4 and N2O fluxes in different types of alpine grassland in the Qinghai-Tibetan Plateau of China. Soil Biol. Biochem. 2015, 80, 306–314. [Google Scholar] [CrossRef]
- Brasil Ministério da Agricultura, Pecuária e Abastecimento—MAPA. Plano Setorial para Adaptação à Mudança do Clima e Baixa Emissão de Carbono na Agropecuária 2020–2030. Available online: https://www.gov.br/agricultura/pt-br/assuntos/sustentabilidade/plano-abc/arquivopublicacoes-plano-abc/final-isbn-plano-setorial-para-adaptacao-a-mudanca-doclima-e-baixa-emissao-de-carbono-na-agropecuaria-compactado.pdf (accessed on 15 December 2021).
- Oliveira, D.M.S.; Santos, R.S.; Chizzotti, F.H.M.; Bretas, I.L.; Franco, A.L.C.; Lima, R.P.; Freitas, D.A.F.; Cherubin, M.R.; Cerri, C.E.P. Crop, livestock, and forestry integration to reconcile soil health, food production, and climate change mitigation in the Brazilian Cerrado: A review. Geoderma Reg. 2024, 37, e00796. [Google Scholar] [CrossRef]
- Mantovanelli, B.C.; Coutinho Alho, L.; Campos, M.C.C.; Cunha, J.M.; Amorim Oliveira, L. Pedoindicators attributes in the variation of CO2 efflux in Indian black earth and non-anthropic soils. Carbon Manag. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Moitinho, M.R.; Teixeira, D.; Bicalho, E.; Panosso, A.R.; Ferraudo, A.S.; Pereira, G.T.; Tsai, S.M.; Borges, B.M.F.; La Scala, N., Jr. Soil CO2 emission and soil attributes associated with the microbiota of a sugarcane area in southern Brazil. Sci. Rep 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Silva, D.M.P.; Campos, M.C.C.; Franciscon, U.; Alho, L.C.; Santos, L.A.C.; Neto, P.P.; Bergamin, A.C.; Souza, Z.M. Spatial variability of soil properties in archeological dark earth sites under cacao cultivation. Rev. Bras. Ciênc. Solo 2016, 40, 1–12. [Google Scholar] [CrossRef]
- Barros, J.D.S.; Chaves, L.H.G.; Chaves, I.B.; Pereira, W.E. Effects of Different Soil Management Systems in the Chemical Properties in the Coastal Plains of State Paraiba. Iran. J. Energy Environ. 2011, 2, 339–347. [Google Scholar] [CrossRef]
- Xavier, C.V.; Moitinho, M.R.; De Bortoli Teixeira, D.; Santos, G.A.A.; de Andrade Barbosa, M.; Milori, D.M.B.P.; La Scala, N., Jr. Crop rotation and succession in a no-tillage system: Implications for CO2 emission and soil attributes. J. Environ. Manag. 2019, 245, 8–15. [Google Scholar] [CrossRef]
- Torres, C.M.M.E.; Jacovine, L.A.G.; Oliveira Neto, S.N.; Brianezi, D.; Alves, E.B. Agroforestry Systems in Brazil: An approach to carbon storage. J. For. Res. 2014, 34, 235–244. [Google Scholar] [CrossRef]
- Mascarenhas, A.R.P.; Sccoti, M.S.V.; Melo, R.R.; Corrêa, F.L.O.; Souza, E.F.M.; Andrade, R.A.; Beramin, A.C.; Muller, M.W. Atributos físicos e estoques de carbono do solo sob diferentes usos da terra em Rondônia, Amazônia Sul-Ocidental. J. For. Res. 2017, 37, 19–27. [Google Scholar] [CrossRef]
- Rocha, S.J.S.S.; Schettini, B.L.S.; Alves, E.B.N.; Villanova, P.H.; Torres, C.M.M.E.; Jacovine, L.A.G.; Oliveira Neto, S.N.; Brianezi, D. Balanço de carbono em três sistemas silvipastoril no sudeste do Brasil. Rev. Espacios 2017, 38, 1–8. [Google Scholar]
- Torralba, M.; Fagerholm, N.; Burgess, P.J.; Moreno, G.; Plieninger, T. Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agric. Ecosyst. Environ. 2016, 230, 150–161. [Google Scholar] [CrossRef]
- Barbosa, M.A.; de Sousa Ferraz, R.L.; Coutinho, E.L.M.; Neto, A.M.C.; da Silva, M.S.; Fernandes, C.; Rigobelo, E.C. Multivariate analysis and modeling of soil quality indicators in long-term management systems. Sci. Total Environ. 2018, 657, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Ghorbani, M.; Amirahmadi, E.; Konvalina, P.; Moudrý, J.; Kopecký, M.; Hoang, T.N. Carbon pool dynamic and soil microbial respiration affected by land use alteration: A case study in humid subtropical area. Land 2023, 12, 459. [Google Scholar] [CrossRef]
- Graf, A.; Herbst, M.; Weihermuller, L.; Huisman, J.A.; Prolingheuer, N.; Bornemann, L.; Vereecken, H. Analyzing the spatiotemporal variability of heterotrophic soil respiration at a field scale using orthogonal functions. Geoderma 2012, 181, 91–101. [Google Scholar] [CrossRef]
- Silva, D.A.P.; Campos, M.C.C.; Mantovanelli, B.C.; Santos, A.C.S.; Soares, M.D.R.; Cunha, J.M. Variabilidade espacial da emissão de CO2, temperatura e umidade do solo em área de pastagem na região Amazônica, Brasil. Rev. Ciênc. Agrovet. 2019, 18, 119–126. [Google Scholar] [CrossRef]
- Maier, M.; Schack-Kirchner, H.; Hildebrand, E.E.; Schindler, D. Soil CO2 efflux vs. soil respiration: Implications for flux models. Agric. For. Meteorol. 2011, 151, 1723–1730. [Google Scholar] [CrossRef]
- Vargas-Terminel, M.L.; Flores-Rentería, D.; Sánchez-Mejía, Z.M.; Rojas-Robles, N.E.; Sandoval-Aguilar, M.; Chávez-Vergara, B.; Robles-Morua, A.; Garatuza-Payan, J.; Yépez, E.A. Soil Respiration Is Influenced by Seasonality, Forest Succession and Contrasting Biophysical Controls in a Tropical Dry Forest in Northwestern Mexico. Soil Syst. 2022, 6, 75. [Google Scholar] [CrossRef]
- Saiz, G.; Green, C.; Butterbach-Bahl, K.; Kiese, R.; Avitabile, V.; Farrell, E.P. Seasonal and spatial variability of soil respiration in four Sitka spruce stands. Plant Soil 2006, 287, 161–176. [Google Scholar] [CrossRef]
- Zhu, D.; Ciais, P.; Krinner, G.; Maignan, F.; Jornet Puig, A.; Hugelius, G. Controls of soil organic matter on soil thermal dynamics in the northern high latitudes. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef]
- Conceição, M.; Manzatto, C.V.; Araújo, W.S.; Martin Neto, L.; Saab, S.C.; Cunha, T.J.F.; Freixo, A.A. Estudo Comparativo de Métodos de Determinação do Teor de Matéria Orgânica em Organossolos; Embrapa: Rio de Janeiro, Brazil, 1999; p. 4. [Google Scholar]
- Painel Intergovernamental Sobre Mudanças Climáticas. An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. 2019. Available online: https://www.ipcc.ch/srccl/ (accessed on 3 March 2021).
- Lal, R. Carbon sequestration. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2008, 363, 815–830. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.R.; Cora, J.E.; Jorge, R.F.; Marcelo, A.V. Crop type influences soil aggregation and organic matter under no-tillage. Soil Till. Res. 2009, 104, 22–29. [Google Scholar] [CrossRef]
- Silva-Olaya, A.M.; Cerri, C.E.P.; La Scala, N., Jr.; Dias, C.T.S.; Cerri, C.C. Carbon dioxide emissions under different soil tillage systems in mechanically harvested sugarcane. Environ. Res. Lett. 2013, 8, 1–8. [Google Scholar] [CrossRef]
- Silva, L.J.; Oliveira, D.M.S.; Santos, R.S.; Oliveira, P.A.; Freitas, D.A.F.; Cherubin, M.R.; Cerri, C.E.P. Soil carbon dynamics in integrated agricultural systems in Minas Gerais state, Brazil: A meta-analysis. Geoderma Reg. 2024, 36, e00761. [Google Scholar] [CrossRef]
- Longo, R.M.; Espíndola, C.R.; Ribeiro, A.L. Modificações na estabilidade de agregados no solo decorrentes da introdução de pastagens em áreas de Cerrado e Floresta Amazônica. Rev. Bras. Eng. Agric. Ambient. 2000, 3, 276–280. [Google Scholar] [CrossRef]
- Hungria, M.; Franchini, J.C.; Brandão, O., Jr.; Kaschuk, G.; Souza, R.A. Soil microbial activity and crop sustainability in a long-term experiment with three tillage systems and two crop rotation systems. Appl. Soil Ecol. 2009, 42, 288–296. [Google Scholar] [CrossRef]
- Shepherd, M.; Nichlos, S.; Selbie, D. An assessment of the role of soil organic matter in pasture resilience. Grassl. Res. Pract. Ser. 2021, 17, 179–190. [Google Scholar] [CrossRef]
Attribute | Native Forest | Degraded Pasture | Managed Pasture | Livestock–Forest Integration | ||||
---|---|---|---|---|---|---|---|---|
Mean | SE | Mean | SE | Mean | SE | Mean | SE | |
FCO2 (µmol m−2 s−1) | 3.80 | 0.22 | 4.44 | 0.13 | 3.88 | 0.13 | 3.14 | 0.06 |
Ms (%) | 22.96 | 0.44 | 19.57 | 0.17 | 21.03 | 0.26 | 27.37 | 0.26 |
Ts (°C) | 24.41 | 0.05 | 26.48 | 0.06 | 26.26 | 0.05 | 26.05 | 0.05 |
pH (H2O) | 4.42 | 0.05 | 4.46 | 0.05 | 5.33 | 0.07 | 4.86 | 0.03 |
H + Al (g kg−1) | 2.03 | 0.11 | 3.04 | 0.19 | 2.84 | 0.14 | 3.12 | 0.08 |
Sand (g kg−1) | 701.80 | 10.9 | 508.6 | 8.75 | 526.8 | 12.14 | 561.80 | 7.21 |
Silt (g kg−1) | 48.95 | 4.29 | 43.15 | 4.19 | 51.55 | 6.87 | 44.95 | 5.03 |
Clay (g kg−1) | 249.25 | 10.7 | 448.25 | 6.51 | 421.65 | 9.55 | 393.25 | 5.50 |
SOC (g kg−1) | 4.93 | 0.33 | 7.31 | 0.28 | 8.20 | 0.57 | 6.01 | 0.36 |
Cstock (mg ha−1) | 12.42 | 0.83 | 18.71 | 0.72 | 21.49 | 1.49 | 16.12 | 0.97 |
CEC (cmolc dm−3) | 2.41 | 0.13 | 4.07 | 0.22 | 4.60 | 0.17 | 3.94 | 0.11 |
Macro (m3 m−3) | 0.10 | 0.04 | 0.05 | 0.02 | 0.06 | 0.02 | 0.06 | 0.03 |
Micro (m3 m−3) | 0.29 | 0.03 | 0.28 | 0.07 | 0.35 | 0.03 | 0.31 | 0.04 |
TP (m3 m−3) | 0.39 | 0.05 | 0.33 | 0.07 | 0.41 | 0.03 | 0.36 | 0.04 |
BD (g cm−3) | 1.27 | 0.02 | 1.32 | 0.01 | 1.30 | 0.01 | 1.35 | 0.01 |
FA (g kg−1) | 1.42 | 0.06 | 1.68 | 0.07 | 1.38 | 0.09 | 1.77 | 0.07 |
HA (g kg−1) | 1.13 | 0.09 | 0.69 | 0.12 | 0.50 | 0.07 | 0.38 | 0.06 |
Humin (g kg−1) | 6.97 | 0.38 | 8.31 | 0.32 | 9.64 | 0.36 | 8.22 | 0.28 |
MBC (µg g−1) | 152.13 | 8.84 | 54.54 | 3.22 | 185.13 | 6.11 | 108.11 | 3.01 |
BSR (mg C- CO2 kg−1 soil hour−1) | 0.48 | 0.02 | 0.51 | 0.03 | 0.41 | 0.02 | 0.46 | 0.02 |
Area | Main Variable | Soil Attribute | ||||||||||
pH(H2O) | H + Al | Cstock | SOC | CEC | HA | FA | Hm | Macro | Micro | |||
(g kg−1) | (Mg ha−1) | (g kg−1) | (cmolc dm−3) | (g kg−1) | (g kg−1) | (g kg−1) | (%) | (%) | ||||
NF | FCO2 | r | 0.12 | 0.03 | 0.02 | −0.40 | 0.03 | −0.16 | 0.22 | 0.06 | 0.31 | −0.31 |
DP | r | 0.30 | 0.29 | −0.25 | −0.36 | 0.10 | 0.44 | 0.14 | 0.12 | 0.10 | 0.11 | |
MP | r | −0.28 | 0.40 | −0.17 | −0.62 | 0.06 | −0.26 | −0.01 | −0.02 | −0.02 | 0.03 | |
LF | r | 0.01 | −0.29 | 0.00 | −0.79 | −0.31 | −0.31 | −0.26 | −0.54 | −0.19 | −0.21 | |
Area | Main variable | TP | BD | MBC | BSR | Sand | Silt | Clay | Ms | Ts | ||
(%) | (g.cm−3) | (µg g−1) | (mg C- CO2 kg−1 soil hour−1) | (%) | (%) | (%) | (%) | (°C) | ||||
NF | FCO2 | r | 0.06 | −0.40 | 0.16 | −0.15 | −0.22 | 0.10 | 0.18 | 0.21 | 0.54 | |
DP | r | 0.13 | −0.26 | −0.17 | 0.03 | −0.01 | 0.19 | −0.09 | −0.29 | 0.59 | ||
MP | r | 0.03 | 0.07 | −0.41 | 0.15 | 0.16 | 0.13 | 0.11 | 0.27 | 0.53 | ||
LF | r | −0.23 | −0.22 | 0.10 | 0.26 | −0.08 | −0.01 | 0.12 | −0.28 | 0.52 |
Principal Component | Dim1 | Dim2 |
---|---|---|
Variance explained (%) | 42.8 * | 15 * |
FCO2 | 0.01 | 0.55 |
Ts | −0.27 | 0.87 |
BSR | 0.16 | 0.51 |
pH | −0.35 | −0.63 |
MBC | 0.13 | −0.79 |
Micro | −0.30 | −0.71 |
Us | 0.06 | −0.47 |
Sand | 0.83 | −0.23 |
Clay | −0.65 | 0.35 |
Cstock | −0.63 | −0.31 |
CEC | −0.84 | −0.15 |
Macro | 0.76 | −0.25 |
H + Al | −0.68 | 0.10 |
BD | −0.42 | 0.04 |
FA | −0.34 | 0.10 |
HA | 0.41 | 0.02 |
Humin | −0.60 | −0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, A.M.d.; Franceschi, M.; Panosso, A.R.; Carvalho, M.A.C.d.; Moitinho, M.R.; Martins Filho, M.V.; Oliveira, D.M.d.S.; Freitas, D.A.F.d.; Yamashita, O.M.; La Scala, N., Jr. Effects of Land Use Changes on CO2 Emission Dynamics in the Amazon. Agronomy 2025, 15, 488. https://doi.org/10.3390/agronomy15020488
Rocha AMd, Franceschi M, Panosso AR, Carvalho MACd, Moitinho MR, Martins Filho MV, Oliveira DMdS, Freitas DAFd, Yamashita OM, La Scala N Jr. Effects of Land Use Changes on CO2 Emission Dynamics in the Amazon. Agronomy. 2025; 15(2):488. https://doi.org/10.3390/agronomy15020488
Chicago/Turabian StyleRocha, Adriano Maltezo da, Mauricio Franceschi, Alan Rodrigo Panosso, Marco Antonio Camillo de Carvalho, Mara Regina Moitinho, Marcílio Vieira Martins Filho, Dener Marcio da Silva Oliveira, Diego Antonio França de Freitas, Oscar Mitsuo Yamashita, and Newton La Scala, Jr. 2025. "Effects of Land Use Changes on CO2 Emission Dynamics in the Amazon" Agronomy 15, no. 2: 488. https://doi.org/10.3390/agronomy15020488
APA StyleRocha, A. M. d., Franceschi, M., Panosso, A. R., Carvalho, M. A. C. d., Moitinho, M. R., Martins Filho, M. V., Oliveira, D. M. d. S., Freitas, D. A. F. d., Yamashita, O. M., & La Scala, N., Jr. (2025). Effects of Land Use Changes on CO2 Emission Dynamics in the Amazon. Agronomy, 15(2), 488. https://doi.org/10.3390/agronomy15020488