Breeding for Sclerotinia Blight Resistance on Peanut in the U.S.: A Review
Abstract
:1. Introduction
2. History and Overview of the Pathogen
3. Sources of Resistance
4. Genomics and Genetic Transformation
5. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Production Assessment Division (IPAD). Foreign Agricultural Service Peanut Explorer. 2025. [Google Scholar]
- USDA National Agricultural Statistics Service (NASS). Crop Production Summary, 2023; USDA National Agricultural Statistics Service (NASS): Washington, DC, USA, 2024.
- Arya, S.S.; Salve, A.R.; Chauhan, S. Peanuts as functional food: A review. J. Food Sci. Technol. 2024, 61, 2222. [Google Scholar] [CrossRef] [PubMed]
- Sholar, J.R.; Mozingo, R.W.; Beasley, J.P. Peanut Cultural Practices. In Advances in Peanut Science; Pattee, H.E., Stalker, H.T., Eds.; American Peanut Research and Education Society: Stillwater, OK, USA, 1995; pp. 354–382. [Google Scholar]
- Porter, D.M.; Melouk, H.A. Sclerotinia blight. In Compendium of Peanut Diseases, 2nd ed.; Kokalis-Burelle, N., Porter, D.M., Rodríguez-Kábana, R., Smith, D.H., Subrahmanyam, P., Eds.; American Phytopathological Society Press: St. Paul, MN, USA, 1997; pp. 34–36. [Google Scholar]
- Marchionatta, J.B. Peanut wilt in Argentina. Rev. Fac. Agron. 1922, 3, 385–387. [Google Scholar]
- Porter, D.M.; Smith, D.H.; Rodriguez-Kabana, R. Peanut Plant Diseases. In Peanut Science and Technology; Pattee, H.E., Young, C.T., Eds.; American Peanut Research and Education Society, Inc.: Yoakum, TX, USA, 1982; pp. 326–410. [Google Scholar]
- Farr, D.F.; Rossman, A.Y. USDA Fungal Databases. 2024. Available online: https://fungi.ars.usda.gov (accessed on 13 November 2024).
- Johnston, P.R.; Seifert, K.A.; Stone, J.K.; Rossman, A.Y.; Marvanová, L. Recommendations on generic names competing for use in Leotiomycetes (Ascomycota). IMA Fungus 2014, 5, 91–120. [Google Scholar] [CrossRef]
- Kohn, L.M. A monographic revision of the genus Sclerotinia. Mycotaxon 1979, 9, 365–444. [Google Scholar]
- Anonymous; The National Agricultural Research Bureau of the Ministry of Industry; National Government of the Republic of China. Report for the Year 1935; National Agricultural Bureau: Beijing, China, 1936; pp. 35–36.
- Baturo-Ciesniewska, A.; Groves, C.L.; Albrecht, K.A.; Grau, C.R.; Willis, D.K.; Smith, D.L. Molecular Identification of Sclerotinia trifoliorum and Sclerotinia sclerotiorum Isolates from the United States and Poland. Plant Dis. 2016, 101, 192–199. [Google Scholar] [CrossRef]
- Salgado-Salazar, C.; Beirn, L.A.; Ismaiel, A.; Boehm, M.J.; Carbone, I.; Putman, A.I.; Tredway, L.P.; Clarke, B.B.; Crouch, J.A. Clarireedia: A New Fungal Genus Comprising Four Pathogenic Species Responsible for Dollar Spot Disease of Turfgrass. Fungal Biol. 2018, 122, 761–773. [Google Scholar] [CrossRef] [PubMed]
- Mujica, F.; Vergara, C. Flora fungosa Chilena: Indice Preliminar de los Huespedes de los Hongos Chilenos y sus Referencias Bibliográficas; Ministerio de Agricultura: Madrid, Spain, 2014.
- Porter, D.M. Sclerotinia blight of groundnut—A disease of major importance in the USA. In International Workshop on Groundnuts; International Crops Research Institute for the Semi-Arid Tropics: Patancheru, India, 1980; pp. 177–185. [Google Scholar]
- Frezzi, M.J. Groundnut diseases in the province of Cordoba, Argentina. Rev. Investig. Agric. 1960, 14, 113–155. [Google Scholar]
- Marinelli, A.; March, G.J.; Rago, A.; Giuggia, J. Assessment of crop loss in peanut caused by Sclerotinia sclerotiorum, S. minor, and Sclerotium rolfsii in Argentina. Int. J. Pest Manag. 1998, 44, 251–254. [Google Scholar] [CrossRef]
- Van Der Westhuizen, G.C.A.; Labuschangne, N.; De Beer, P.H. Sclerotinia minor on groundnut in South Africa: A first record. Phytophylactica 1983, 15, 75–77. [Google Scholar]
- Cilliers, P.S. Preliminary observations on resistance of groundnuts to Sclerotinia stem blight. Afr. Plant Prot. 1999, 5, 73–75. [Google Scholar]
- Cruickshank, A.W.; Cooper, M.; Ryley, M.J. Peanut resistance to Sclerotinia minor and S. sclerotiorum. Aust. J. Agric. Res. 2002, 53, 1105–1110. [Google Scholar] [CrossRef]
- Bornman, S.; Thomas, C.; Ntladi, S.; Wilken, P.M. Sclerotinia sclerotiorum is the causal agent of Sclerotinia stem rot on peanut (groundnut) in South Africa. Australas. Plant Dis. Notes 2024, 19, 13. [Google Scholar] [CrossRef]
- Yang, D.; Luo, T.; Wei, J.; Cao, C.; Li, G.; Yang, L. High-Quality Genome Resource of the Phytopathogenic Fungus Sclerotinia minor LC41, the Causal Agent of Sclerotinia Blight on Lettuce in China. Plant Dis. 2022, 106, 1042–1044. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, J.; Wu, M.; Chen, W.; Li, G.; Yang, L. Characterization of the Mycelial Compatibility Groups and Mating Type Alleles in Populations of Sclerotinia minor in Central China. Plant Dis. 2016, 100, 2313–2318. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.Y.; Kang, Y.P.; Lei, Y.; Huang, J.Q.; Wan, L.Y.; Liao, B.S. First Report of Sclerotinia sclerotiorum Causing Sclerotinia Blight on Peanut (Arachis hypogaea) in Northeastern China. Plant Dis. 2014, 98, 156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xian, W.; Qu, M.; Xu, M.; Guo, Z.; Yu, J.; He, K.; Yang, M.; Chi, Y. First Report of Sclerotinia Blight on Peanut Caused by Sclerotinia sclerotiorum in Qinghai Province, China. Plant Dis. 2022, 106, 1301. [Google Scholar] [CrossRef] [PubMed]
- Porter, D.M.; Beute, M.K. Sclerotinia blight of peanuts. Phytopathology 1974, 64, 263. [Google Scholar] [CrossRef]
- Purdy, L.H. A broader concept of the species Sclerotinia sclerotiorum based on variability. Phytopathology 1955, 45, 421–427. [Google Scholar]
- Wadsworth, D.F. Research on the Nature and Control of Peanut Diseases in Oklahoma; Oklahoma State University: Stillwater, OK, USA, 1973. [Google Scholar]
- Wadsworth, D.F. Sclerotinia blight of peanuts in Oklahoma and occurrence of the sexual stage of the pathogen. Peanut Sci. 1979, 6, 77–79. [Google Scholar] [CrossRef]
- Faske, T.R.; Emerson, M.; Hurd, K. First report of Sclerotinia blight of peanut caused by Sclerotinia minor in Arkansas. Plant Dis. 2014, 98, 1013. [Google Scholar] [CrossRef]
- Faske, T.R.; Drennan, G.; Hurd, K. First Report of Sclerotinia Blight Caused by Sclerotinia sclerotiorum on Peanut in Arkansas. Plant Health Prog. 2017, 18, 7–8. [Google Scholar] [CrossRef]
- Woodward, J.E.; Brenneman, T.B.; Kemerait, R.C., Jr.; Culbreath, A.K.; Clark, J.R. Sclerotinia blight in Georgia and evidence for resistance to Sclerotinia sclerotiorum in runner peanuts. Plant Health Prog. 2006, 7, 19. [Google Scholar] [CrossRef]
- Sanogo, S.; Puppala, N. Characterization of a Darkly Pigmented Mycelial Isolate of Sclerotinia sclerotiorum on Valencia Peanut in New Mexico. Plant Dis. 2007, 91, 1077–1082. [Google Scholar] [CrossRef]
- Goldman, J.J.; Smith, O.D.; Simpson, C.E.; Melouk, H.A. Progress in breeding Sclerotinia blight-resistant runner-type peanut. Peanut Sci. 1995, 22, 109–113. [Google Scholar] [CrossRef]
- Woodward, J.E.; Nui, C.; Wright, R.J.; Batla, M.A.; Baughman, T.A. First Report of Sclerotinia sclerotiorum Infecting Peanut in Texas. Plant Dis. 2008, 92, 1468. [Google Scholar] [CrossRef] [PubMed]
- Dufault, N.S.; Brenneman, T.B. Diseases of Peanut. In Diseases of Field Crops; Hollier, C.A., Padgett, G.B., Draper, M.A., Eds.; The American Phytopathological Society: St. Paul, MN, USA, 2023; pp. 161–174. [Google Scholar] [CrossRef]
- Imolehin, E.D.; Grogan, R.G.; Duniway, J.M. Effect of temperature and moisture tension on growth, sclerotial production, germination, and infection by Sclerotinia minor. Phytopathology 1980, 70, 1153–1157. [Google Scholar] [CrossRef]
- Smith, D.L.; Hollowell, J.E.; Isleib, T.G.; Shew, B.B. Analysis of factors that influence the epidemiology of Sclerotinia minor on peanut. Plant Dis. 2006, 90, 1425–1432. [Google Scholar] [CrossRef] [PubMed]
- Melouk, H.A.; Akem, C.N.; Bowen, C. A detached shoot technique to evaluate the reaction of peanut genotypes to Sclerotinia minor. Peanut Sci. 1992, 19, 58–62. [Google Scholar] [CrossRef]
- Melouk, H.A.; Backman, P.A. Management of soilborne fungal pathogens. In Peanut Health Management; Melouk, H.A., Shokes, F.M., Eds.; American Phytopathological Society Press: St. Paul, MN, USA, 1995; pp. 75–85. [Google Scholar]
- Wadsworth, D.F.; Melouk, H.A. Potential for transmission and spread of Sclerotinia minor by infected peanut seed and debris. Plant Dis. 1985, 69, 379–381. [Google Scholar] [CrossRef]
- Melouk, H.A.; Singleton, L.L.; Owens, F.N.; Akem, C.N. Viability of sclerotia of Sclerotinia minor after passage through the digestive tract of a crossbred heifer. Plant Dis. 1989, 73, 68–69. [Google Scholar] [CrossRef]
- Dow, R.L.; Porter, D.M.; Powell, N.L. Effect of environmental factors on Sclerotinia minor and Sclerotinia blight of peanut. Phytopathology 1988, 78, 672–676. [Google Scholar] [CrossRef]
- Phipps, P.M. An assessment of environmental conditions preceding outbreaks of Sclerotinia blight of peanut in Virginia. Peanut Sci. 1995, 22, 90–93. [Google Scholar] [CrossRef]
- Thiessen, L.D.; Woodward, J.E. Diseases of peanut caused by soilborne pathogens in the Southwestern United States. ISRN Agron. 2012, 2012, 517905. [Google Scholar] [CrossRef]
- Melzer, M.S.; Smith, E.A.; Boland, G.J. Index of plant hosts of Sclerotinia minor. Can. J. Plant Pathol. 1997, 19, 272–280. [Google Scholar] [CrossRef]
- Hollowell, J.E.; Shew, B.B.; Cubeta, M.A.; Wilcut, J.W. Weed species as hosts of Sclerotinia minor in peanut fields. Plant Dis. 2003, 87, 197–199. [Google Scholar] [CrossRef]
- Phipps, P.M. An evaluation of cultural and chemical practices for management of Sclerotinia blight of peanut in Virginia. Biol. Cult. Tests Control Plant Dis. 1987, 2, 52. [Google Scholar]
- Maas, A.; Dashiell, K.E.; Melouk, H.A. Planting density influences disease incidence and severity of Sclerotinia blight in peanut. Crop Sci. 2006, 46, 1341–1346. [Google Scholar] [CrossRef]
- Porter, D.M.; Powell, N.L. Sclerotinia blight development in peanut vines injured by tractor tires. Peanut Sci. 1978, 5, 87–90. [Google Scholar] [CrossRef]
- Jordan, D.L.; Spears, J.F.; Brandenburg, R.L.; Brown, A.B.; Shew, B.B.; Roberson, G.T.; Bullen, G. (Eds.) 2007 Peanut Information; N.C. Coop. Ext.: Raleigh, NC, USA, 2003; AG-33. [Google Scholar]
- Smith, F.D.; Phipps, P.M.; Stipes, R.J. Agar plate, soil plate, and field evaluation of fluazinam and other fungicides for control of Sclerotinia minor on peanut. Plant Dis. 1991, 75, 1138–1143. [Google Scholar] [CrossRef]
- Smith, D.L.; Garrison, M.C.; Hollowell, J.E.; Isleib, T.G.; Shew, B.B. Evaluation of application timing and efficacy of the fungicides fluazinam and boscalid for control of Sclerotinia blight of peanut. Crop Prot. 2008, 27, 823–833. [Google Scholar] [CrossRef]
- Woodward, J.; Russell, S. Managing sclerotinia blight in peanut: Evaluation of a weather-based forecasting model to time fungicide applications in Texas. Am. J. Exp. Agric. 2015, 9, 1–9. [Google Scholar] [CrossRef]
- Woodward, J.E.; Russell, S.A.; Baring, M.R.; Cason, J.M.; Baughman, T.A. Effects of fungicides, time of application, and application method on control of Sclerotinia blight in peanut. Int. J. Agron. 2015, 2015, 323465. [Google Scholar] [CrossRef]
- Grichar, W.J.; Woodward, J.E. Fungicides and application timing for control of early leafspot, southern blight, and Sclerotinia blight of peanut. Int. J. Agron. 2016, 2016, 1848723. [Google Scholar] [CrossRef]
- Akem, C.N.; Melouk, H.A.; Smith, O.D. Field evaluation of peanut genotypes for resistance to Sclerotinia blight. Crop Prot. 1992, 11, 345–348. [Google Scholar] [CrossRef]
- Chenault, K.D.; Melouk, H.A.; Payton, M.E. Effect of Sclerotinia minor infection loci on peanut production parameters. Peanut Sci. 2006, 33, 36–40. [Google Scholar] [CrossRef]
- Yuan, H.; Bennett, R.S.; Wang, N.; Chamberlin, K.D. Development of a peanut canopy measurement system using a groundbased LiDAR sensor. Front. Plant Sci. 2019, 10, 203. [Google Scholar] [CrossRef] [PubMed]
- Shew, B.B.; Beute, M.K. Effects of crop management on the epidemiology of southern stem rot of peanut. Phytopathology 1984, 74, 530–535. [Google Scholar] [CrossRef]
- Chappell, G.F., II; Shew, B.B.; Ferguson, J.M.; Beute, M.K. Mechanisms of resistance to Sclerotinia minor in selected peanut genotypes. Crop Sci. 1995, 35, 692–696. [Google Scholar] [CrossRef]
- Bailey, J.E.; Brune, P.D. Effect of crop pruning on Sclerotinia blight of peanut. Plant Dis. 1997, 81, 990–995. [Google Scholar] [CrossRef]
- Butzler, T.M.; Bailey, J.; Beute, M.K. Integrated management of Sclerotinia blight in peanut: Utilizing canopy morphology, mechanical pruning, and fungicide timing. Plant Dis. 1998, 82, 1312–1318. [Google Scholar] [CrossRef]
- Partridge, D.E.; Sutton, T.B.; Jordan, D.L.; Curtis, V.L.; Bailey, J.E. Management of Sclerotinia Blight of Peanut with the Biological Control Agent Coniothyrium minitans. Plant Dis. 2006, 90, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Campbell, W.A. A new species of Coniothyrium parasitic on sclerotia. Mycologia 1947, 39, 190–195. [Google Scholar] [CrossRef]
- Melouk, H.A.; Adams, P.B. Colonization of sclerotia of Sclerotinia minor by a potential biocontrol agent, Penicillium citrinum. Peanut Sci. 1987, 14, 66–67. [Google Scholar] [CrossRef]
- Wildman, L.G.; Smith, O.D.; Simpson, C.E.; Taber, R.A. Inheritance of resistance to Sclerotinia minor in selected Spanish peanut crosses. Peanut Sci. 1992, 19, 31–34. [Google Scholar] [CrossRef]
- Liang, Y.; Cason, J.M.; Baring, M.R.; Setpiningsih, E.M. Identification of QTLs associated with Sclerotinia blight resistance in peanut (Arachis hypogaea L.). Genet. Resour. Crop Evol. 2020, 68, 229–637. [Google Scholar] [CrossRef]
- Rosso, M.H.; de Blas, F.J.; Massa, A.N.; Oddino, C.; Giordano, D.F.; Seijo, J.G.; Arias, R.S.; Soave, J.H.; Soave, S.J.; Buteler, M.I.; et al. Two QTLs govern the resistance to Sclerotinia minor in an interspecific peanut RIL population. Crop Sci. 2023, 63, 613–621. [Google Scholar] [CrossRef]
- Kochert, G.; Stalker, H.T.; Gimenes, M.; Galgaro, L.; Moore, K. RFLP and cytogenetic evidence for the progenitor species of allotetraploid cultivated peanut, Arachis hypogaea (Leguminosae). Am. J. Bot. 1996, 83, 1282–1291. [Google Scholar] [CrossRef]
- Seijo, J.G.; Lavia, G.I.; Fernández, A.; Krapovickas, A.; Ducasse, D.; Moscone, E.A. Physical mapping of the 5S and 18S–25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). Am. J. Bot. 2004, 91, 1294–1303. [Google Scholar] [CrossRef]
- Bertioli, D.J.; Cannon, S.B.; Froenicke, L.; Huang, G.; Farmer, A.D.; Cannon, E.K.S.; Liu, X.; Gao, D.; Clevenger, J.; Dash, S.; et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat. Genet. 2016, 47, 438. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lu, Q.; Liu, H.; Zhang, J.; Hong, Y.; Lan, H.; Li, H.; Wang, J.; Liu, H.; Li, S.; et al. Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol. Plant 2019, 12, 920–934. [Google Scholar] [CrossRef] [PubMed]
- Isleib, T.G.; Holbrook, C.C.; Gorbet, D.W. Use of plant introductions in peanut cultivar development. Peanut Sci. 2001, 28, 96–113. [Google Scholar] [CrossRef]
- Norden, A.J. Breeding of the cultivated peanut. In Peanuts—Culture and Uses; American Peanut Research and Education Society: Stillwater, OK, USA, 1973; pp. 175–208. [Google Scholar]
- Norden, A.J. Crop improvement and genetic resources in groundnuts. In Advances in Legume Science; Royal Botanic Garden, Kew: Surrey, UK, 1980; pp. 515–523. [Google Scholar]
- Holbrook, C.C.; Anderson, W.F.; Pittman, R.N. Selection of a core collection from the U.S. germplasm collection of peanut. Crop Sci. 1993, 33, 859–861. [Google Scholar] [CrossRef]
- Holbrook, C.C.; Dong, W. Development and evaluation of a mini core collection for the U.S. peanut germplasm collection. Crop Sci. 2005, 45, 1540–1544. [Google Scholar] [CrossRef]
- Barkley, N.A.; Dean, R.E.; Pittman, R.N.; Wang, M.L.; Holbrook, C.C.; Pederson, G.A. Genetic diversity of cultivated and wild-type peanuts evaluated with M13-tailed SSR markers and sequencing. Genet. Res. 2007, 89, 93–106. [Google Scholar] [CrossRef]
- Kottapalli, K.R.; Burow, M.D.; Burow, G.; Burke, J.; Puppala, N. Molecular characterization of the US peanut mini core collection using microsatellite markers. Crop Sci. 2007, 47, 1718–1727. [Google Scholar] [CrossRef]
- Wang, M.L.; Sukumaran, S.; Barkley, N.A.; Chen, Z.; Chen, C.Y.; Guo, B.; Pittman, R.N.; Stalker, H.T.; Holbrook, C.C.; Pederson, G.A.; et al. Population structure and marker–trait association analysis of the US peanut (Arachis hypogaea L.) mini-core collection. Theor. Appl. Genet. 2011, 123, 1307–1317. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Gallo, M.; Tillman, B.L.; Rowland, D.; Wang, J. Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut (Arachis hypogaea L.). Mol. Genet. Genom. 2016, 291, 363–381. [Google Scholar] [CrossRef]
- Otyama, P.I.; Kulkarni, R.; Chamberlin, K.; Ozias-Akins, P.; Chu, Y.; Lincoln, L.M.; MacDonald, G.E.; Anglin, N.L.; Dash, S.; Bertioli, D.J.; et al. Genotypic characterization of the U.S. peanut core collection. G3 Genes Genomes Genet. 2020, 10, 4013–4026. [Google Scholar] [CrossRef] [PubMed]
- Dean, L.L.; Hendrix, K.W.; Holbrook, C.C.; Sanders, T.H. Content of some nutrients in the core of the core of the peanut germplasm collection. Peanut Sci. 2009, 36, 104–120. [Google Scholar] [CrossRef]
- Wang, M.L.; Chen, C.Y.; Tonnis, B.; Barkley, N.A.; Pinnow, D.L.; Pittman, R.N.; Davis, J.; Holbrook, C.C.; Stalker, H.T.; Pederson, G.A. Oil, fatty acid, flavonoid, and resveratrol content variability and FAD2A functional SNP genotypes in the U.S. peanut mini-core collection. J. Agric. Food Chem. 2013, 61, 2875–2882. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.L.; Chen, C.Y.; Pinnow, D.L.; Barkley, N.A.; Pittman, R.N.; Lamb, M.; Pederson, G.A. Seed dormancy variability in the US peanut mini-core collection. Res. J. Seed Sci. 2012, 5, 84–95. [Google Scholar] [CrossRef]
- Wang, M.L.; Grusak, M.A.; Chen, C.Y.; Tonnis, B.; Barkley, N.A.; Evans, S.; Pinnow, D.; Davis, J.; Phillips, R.D.; Holbrook, C.C.; et al. Seed protein percentage and mineral concentration variability and their correlation with other seed quality traits in the US peanut mini-core collection. Peanut Sci. 2016, 43, 119–125. [Google Scholar] [CrossRef]
- Holbrook, C.C.; Anderson, W.F. Evaluation of a core collection to identify resistance to late leafspot in peanut. Crop Sci. 1995, 35, 1700–1702. [Google Scholar] [CrossRef]
- Anderson, W.F.; Holbrook, C.C.; Culbreath, A.K. Screening the peanut core collection for resistance to tomato spotted wilt virus. Peanut Sci. 1996, 23, 57–61. [Google Scholar] [CrossRef]
- Holbrook, C.C.; Timper, P.; Xue, H.Q. Evaluation of the core collection approach for identifying resistance to Meloidogyne arenaria in peanut. Crop Sci. 2000, 40, 1172. [Google Scholar] [CrossRef]
- Damicone, J.P.; Holbrook, C.C.; Smith, D.L.; Melouk, H.A.; Chamberlin, K.D. Reaction of the core collection of peanut germplasm to Sclerotinia blight and pepper spot. Peanut Sci. 2010, 37, 1–11. [Google Scholar] [CrossRef]
- Bennett, R.S.; Chamberlin, K.D.; Damicone, J.P. Sclerotinia blight resistance in the U.S. peanut mini-core collection. Crop Sci. 2018, 58, 1306–1317. [Google Scholar] [CrossRef]
- Dura, S.; Lujan, P.A.; Puppala, N.; Sanogo, S.; Steiner, R. Screening US peanut mini-core accessions for resistance against Sclerotinia blight caused by Sclerotinia sclerotiorum. Can. J. Plant Sci. 2020, 101, 53–60. [Google Scholar] [CrossRef]
- Massa, A.N.; Bressano, M.; Soave, J.H.; Buteler, M.I.; Seijo, G.; Sobolev, V.S.; Orner, V.A.; Oddino, C.; Soave, S.J.; Faustinelli, P.C.; et al. Genotyping tools and resources to assess peanut germplasm: Smut-resistant landraces as a case study. PeerJ 2021, 9, e10581. [Google Scholar] [CrossRef] [PubMed]
- Chamberlin, K.D.; Baldessari, J.; Bennett, R.S.; Clevenger, J.P.; Holbrook, C.C.; Tallury, S.P.; Chu, Y.; Ozias-Akins, P.; Conde, M.B.; Payton, M.E. Identification of germplasm resistant to peanut smut. Peanut Sci. 2022, 49, 1–16. [Google Scholar] [CrossRef]
- Wang, S.; Bastern, C.J.; Zeng, Z.B. Windows QTL Cartographer 2.5; Department of Statistics, North Carolina State University: Raleigh, NC, USA, 2011. [Google Scholar]
- Pandey, M.K.; Monyo, E.; Ozias-Akins, P.; Liang, X.; Guimarães, P.; Nigam, S.N.; Upadhyaya, H.D.; Janila, P.; Zhang, X.; Guo, B.; et al. Advances in Arachis genomics for peanut improvement. Biotechnol. Adv. 2012, 30, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Otyama, P.I.; Wilkey, A.; Kulkarni, R.; Assefa, T.; Chu, Y.; Clevenger, J.; O’Connor, D.J.; Wright, G.C.; Dezern, S.W.; MacDonald, G.E.; et al. Evaluation of linkage disequilibrium, population structure, and genetic diversity in the US peanut mini core collection. BMC Genom. 2019, 20, 481. [Google Scholar] [CrossRef] [PubMed]
- Nabi, R.B.; Cho, K.S.; Tayade, R.; Oh, K.W.; Lee, M.H.; Kim, J.I.; Kim, S.; Pae, S.B.; Oh, E. Genetic diversity analysis of Korean peanut germplasm using 48 K SNPs ‘Axiom_Arachis’ Array and its application for cultivar differentiation. Sci. Rep. 2021, 1, 16630. [Google Scholar] [CrossRef] [PubMed]
- Chamberlin, K.D.; Bennett, R.S.; Damicone, J.P. Registration of ‘Lariat’ peanut. J. Plant Regist. 2018, 12, 36–42. [Google Scholar] [CrossRef]
- Isleib, T.G.; Milla-Lewis, S.R.; Pattee, H.E.; Copeland, S.C.; Zuleta, M.C.; Shew, B.B.; Hollowell, J.E.; Sanders, T.H.; Dean, L.O.; Hendrix, K.W.; et al. Registration of ‘Bailey’ peanut. J. Plant Regist. 2011, 5, 27–39. [Google Scholar] [CrossRef]
- Isleib, T.G.; Milla-Lewis, S.R.; Pattee, H.E.; Copeland, S.C.; Zuleta, M.C.; Shew, B.B.; Hollowell, J.E.; Sanders, T.H.; Dean, L.O.; Hendrix, K.W.; et al. Registration of ‘Sugg’ peanut. J. Plant Regist. 2015, 9, 44–52. [Google Scholar] [CrossRef]
- Chamberlin, K.D.; Bennett, R.S.; Damicone, J.P. Registration of ‘VENUS’ Peanut. J. Plant Regist. 2017, 11, 33–37. [Google Scholar] [CrossRef]
- Chamberlin, K.D.; Bennett, R.S.; Damicone, J.P. Registration of ‘OLé’ peanut. J. Plant Regist. 2015, 9, 154–158. [Google Scholar] [CrossRef]
- Melouk, H.A.; Chamberlin, K.; Godsey, C.B.; Damicone, J.; Burow, M.D.; Baring, M.R.; Simpson, C.E.; Dashiell, K.E.; Payton, M. Registration of ‘Red River Runner’ peanut. J. Plant Regist. 2013, 7, 22–25. [Google Scholar] [CrossRef]
- Simpson, C.E.; Starr, J.L.; Baring, M.R.; Burow, M.D.; Cason, J.M.; Wilson, J.N. Registration of ‘Webb’ peanut. J. Plant Regist. 2013, 7, 265–268. [Google Scholar] [CrossRef]
- Baring, M.R.; Cason, J.M.; Burow, M.D.; Simpson, C.E.; Chagoya, J.; Bennett, B.D. Registration of ‘AG18’ peanut. J. Plant Regist. 2021, 15, 435–440. [Google Scholar] [CrossRef]
- Burow, M.D.; Baring, M.R.; Chagoya, J.; Trostle, C.; Puppala, N.; Simpson, C.E.; Ayers, J.L.; Cason, J.M.; Schubert, A.M.; Muitia, A.; et al. Registration of ‘TAMVal OL14’ peanut. J. Plant Regist. 2019, 13, 134–138. [Google Scholar] [CrossRef]
- Tallury, S.P.; Isleib, T.G.; Copeland, S.C.; Rosas-Anderson, P.; Balota, M.; Singh, D.; Stalker, H.T. Registration of two multiple disease-resistant peanut germplasm lines derived from Arachis cardenasii Krapov. & W.C. Gregory, GKP 10017. J. Plant Regist. 2014, 8, 86–89. [Google Scholar] [CrossRef]
- Chamberlin, K.D.; Damicone, J.P.; Baring, M.R.; Burow, M.D.; Godsey, C.B.; Bennett, R.S.; Melouk, H.A.; Simpson, C.E. Registration of high-oleic peanut germplasm line ARSOK-S1 (TX996784) with enhanced resistance to Sclerotinia blight and pod rot. J. Plant Regist. 2015, 9, 103–107. [Google Scholar] [CrossRef]
- Chenault, K.D.; Maas, A.L.; Damicone, J.P.; Payton, M.E.; Melouk, H.A. Discovery and characterization of a molecular marker for Sclerotinia minor (Jagger) resistance in peanut. Euphytica 2008, 166, 357–365. [Google Scholar] [CrossRef]
- Ferguson, M.E.; Burow, M.D.; Schulze, S.R.; Bramel, P.J.; Paterson, A.H.; Kresovich, S.; Mitchell, S. Microsatellite identification and characterization in peanut (Arachis hypogaea L.). Theor. Appl. Genet. 2004, 108, 1064–1070. [Google Scholar] [CrossRef] [PubMed]
- Chenault, K.D.; Melouk, H.A.; Payton, M.E. Evaluation of the U.S. peanut mini core collection using a molecular marker for resistance to Sclerotinia minor Jagger. Euphytica 2010, 172, 109–115. [Google Scholar] [CrossRef]
- Chamberlin, K.D. Characterization of ICRISAT peanut mini-core accessions with regards to a molecular marker associated with resistance to Sclerotinia blight. Peanut Sci. 2014, 41, 42–49. [Google Scholar] [CrossRef]
- Chamberlin, K.D.; Puppala, N. Genotyping of the Valencia peanut core collection with a molecular marker associated with Sclerotinia blight resistance. Peanut Sci. 2018, 45, 12–18. [Google Scholar] [CrossRef]
- Chamberlin, K.D.; Baldessari, J.J.; Mamani, E.M.C.; Moreno, M.V. Screening of the Argentinean INTA peanut core collection with a molecular marker associated with resistance to Sclerotinia minor, Jaggar. Peanut Sci. 2020, 47, 9–16. [Google Scholar] [CrossRef]
- Chenault, K.D.; Burns, J.A.; Melouk, H.A.; Payton, M.E. Hydrolase activity in transgenic peanut. Peanut Sci. 2002, 29, 89–95. [Google Scholar] [CrossRef]
- Chenault, K.D.; Payton, M.E.; Melouk, H.A. Greenhouse testing of transgenic peanut for resistance to Sclerotinia minor. Peanut Sci. 2003, 30, 116–120. [Google Scholar] [CrossRef]
- Chenault, K.D.; Melouk, H.A.; Payton, M.E. Field reaction to Sclerotinia blight among transgenic peanut lines containing antifungal genes. Crop Sci. 2005, 45, 511–515. [Google Scholar] [CrossRef]
- Chenault, K.D.; Melouk, H.A.; Payton, M.E. Effect of anti-fungal transgene(s) on agronomic traits of transgenic peanut lines grown under field conditions. Peanut Sci. 2006, 33, 12–19. [Google Scholar] [CrossRef]
- Livingstone, D.M.; Hampton, J.L.; Phipps, P.M.; Grabau, E.A. Enhancing resistance to Sclerotinia minor in peanut by expressing a barley oxalate oxidase gene. Plant Physiol. 2005, 137, 1354–1362. [Google Scholar] [CrossRef] [PubMed]
- Partridge-Telenko, D.E.; Hu, J.; Livingstone, D.M.; Shew, B.B.; Phipps, P.M.; Grabau, E.A. Sclerotinia blight resistance in Virginia-type peanut transformed with a barley oxalate oxidase gene. Phytopathology 2015, 7, 786–793. [Google Scholar] [CrossRef] [PubMed]
- U.S. Animal and Plant Health Inspection Service (APHIS). Available online: www.aphis.usda.gov (accessed on 30 December 2024).
- U.S. Environmental Protection Agency (EPA). Available online: www.epa.gov (accessed on 30 December 2024).
- U.S. Federal Drug Administration. Available online: www.fda.gov (accessed on 30 December 2024).
- Lassoued, R.; Phillips, P.W.B.; Smyth, S.J.; Hessein, H. Estimating the cost of regulating genome edited crops: Expert judgement and overconfidence. GM Crops Food 2019, 10, 44–62. [Google Scholar] [CrossRef]
- Yuan, M.; Zhu, J.; Gong, L.; He, L.; Lee, C.; Han, S.; Chen, C.; He, G. Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. BMC Biotechnol. 2019, 19, 24. [Google Scholar] [CrossRef] [PubMed]
- Neelakandan, A.K.; Subedi, B.; Tranore, S.M.; Binagwa, P.; Wright, D.A.; He, G. Base editing in peanut using CRISPR/nCas9. Front. Genome Ed. 2022, 4, 901444. [Google Scholar] [CrossRef]
- Neelakandan, A.; Wright, D.A.; Traore, S.M.; Ma, X.; Subedi, B.; Veeramasu, S.; Spalding, M.H.; He, G. Application of CRISPR/Cas9 system for efficient gene editing in peanut. Plants 2022, 11, 1361. [Google Scholar] [CrossRef]
- Shu, H.; Luo, Z.; Peng, Z.; Wang, J. The application of CRISPR/Cas9 in hairy roots to explore the functions of AhNFR1 and AhNFR5 genes during peanut nodulation. BMC Plant Biol. 2020, 20, 417. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Schedel, M.; Gelfand, E.W. Gene editing in allergic diseases: Identification of novel pathways and impact of deleting allergen genes. J. Allergy Clin. Immunol. 2024, 154, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Leal, D.; Lemmon, Z.H.; Man, J.; Bartlett, N.E.; Lippman, Z.B. Engineering quantitative trait variation for crop improvement by genome editing. Cell 2017, 171, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Yimam, Y.T.; Zhou, J.; Akher, S.A.; Zheng, X.; Qi, Y.; Zhang, Y. Improving a quantitative trait in rice by multigene editing with CRISPR-Cas9. Methods Mol. Biol. 2021, 2238, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Yang, F.; Jingiuan, Z.; Liu, H.; Rahman, S.; Islam, S.; Ma, W.; She, M. Application of CRISPR/Cas9 in crop quality improvement. Int. J. Mol. Sci. 2021, 22, 4206. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chamberlin, K.D.; Bennett, R.S.; Rodrigues Duffeck, M. Breeding for Sclerotinia Blight Resistance on Peanut in the U.S.: A Review. Agronomy 2025, 15, 549. https://doi.org/10.3390/agronomy15030549
Chamberlin KD, Bennett RS, Rodrigues Duffeck M. Breeding for Sclerotinia Blight Resistance on Peanut in the U.S.: A Review. Agronomy. 2025; 15(3):549. https://doi.org/10.3390/agronomy15030549
Chicago/Turabian StyleChamberlin, Kelly D., Rebecca S. Bennett, and Maira Rodrigues Duffeck. 2025. "Breeding for Sclerotinia Blight Resistance on Peanut in the U.S.: A Review" Agronomy 15, no. 3: 549. https://doi.org/10.3390/agronomy15030549
APA StyleChamberlin, K. D., Bennett, R. S., & Rodrigues Duffeck, M. (2025). Breeding for Sclerotinia Blight Resistance on Peanut in the U.S.: A Review. Agronomy, 15(3), 549. https://doi.org/10.3390/agronomy15030549