Projected Bioclimatic Changes in Portugal: Assessing Maize Future Suitability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maize Cropping at NUTS II Regions
2.2. Bioclimatic Indicators
- a.
- b.
- The mean length of dry spells with a minimum of 5 days (DS) can be calculated as Equation (2):
- c.
- The maize thermal unit (MTU) represents the cumulative sum of the average temperatures above the base temperature threshold (Tbase), which is the lower temperature limit above which crop development begins. The estimate was also constrained by considering an upper-temperature limit (Tupper), above which the development is assumed to cease [112,113]. MTU values were computed as:
- d.
- The readily available water (RAW) in the soil is estimated as
2.3. Data Trends Analysis
2.4. Coruche Region as a Case Study
3. Results and Discussion
3.1. Maize Production Characterization
3.2. Climatic Projection
3.3. Pedoclimatic Zoning
3.4. Coruche as Case Study
4. Strengths and Limitations of This Study
- (i)
- The use of maximum and minimum temperature data to analyze their impact on critical maize growth stages (e.g., germination and flowering) based on crop-specific temperature thresholds;
- (ii)
- Applying climate data correction methods to improve the accuracy of projections;
- (iii)
- The use of daily precipitation data to assess the ability of the soil to store water, especially during extreme precipitation events, and to consider the availability of the retained water for crop development, allowing for a more detailed exploration of the RAW concept, which can be addressed using a soil water balance model;
- (iv)
- Investigate the impacts of specific agricultural practices under different climate scenarios, thereby contributing to the development of more robust adaptation strategies;
- (v)
- Exploring the interactive effects of multiple abiotic stressors on maize production, using crop growth models;
- (vi)
- Further analyzing the results in terms of spatial resolution, as the NUT II areas are large. In the southern regions, this level is sufficient, but the Norte region shows high variability in the bioclimatic indicators between the coast and the interior, suggesting the need for subdivision.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global Maize Production, Consumption and Trade: Trends and R&D Implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- World Bank. Arable Land (Hectares)—World. 2025. Available online: https://data.worldbank.org/indicator/AG.LND.ARBL.HA?locations=1W (accessed on 12 January 2025).
- Kennett, D.J.; Prufer, K.M.; Culleton, B.J.; George, R.J.; Robinson, M.; Trask, W.R.; Buckley, G.M.; Moes, E.; Kate, E.J.; Harper, T.K.; et al. Early Isotopic Evidence for Maize as a Staple Grain in the Americas. Sci. Adv. 2020, 6, eaba3245. [Google Scholar] [CrossRef]
- Awika, J.M. Major cereal grains production and use around the world. In Advances in Cereal Science: Implications to Food Processing and Health Promotion; Awika, J.M., Piironen, V., Bean, S., Eds.; American Chemical Society: Washington, DC, USA, 2011; Volume 1089, pp. 1–13. [Google Scholar] [CrossRef]
- Lizaso, J.I.; Ruiz-Ramos, M.; Rodríguez, L.; Gabaldon-Leal, C.; Oliveira, J.A.; Lorite, I.J.; Sánchez, D.; García, E.; Rodríguez, A. Impact of High Temperatures in Maize: Phenology and Yield Components. Field Crops Res. 2018, 216, 129–140. [Google Scholar] [CrossRef]
- USDA. Production—Corn. 2025. Available online: https://www.fas.usda.gov/data/production/commodity/0440000 (accessed on 5 January 2025).
- Revilla, P.; Alves, M.L.; Andelković, V.; Balconi, C.; Dinis, I.; Mendes-Moreira, P.; Redaelli, R.; Ruiz De Galarreta, J.I.; Vaz Patto, M.C.; Žilić, S.; et al. Traditional Foods From Maize (Zea mays L.) in Europe. Front. Nutr. 2022, 8, 683399. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Estatística (INE). Estatísticas Agrícolas (2011–2022). Lisboa, Portugal: Instituto Nacional de Estatística. 2024. Available online: https://www.ine.pt/ (accessed on 5 January 2025).
- Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J. Evolution of agricultural production in Portugal during 1850–2018: A geographical and historical perspective. Land 2021, 10, 776. [Google Scholar] [CrossRef]
- Yang, C.; Fraga, H.; Ieperen, W.V.; Santos, J.A. Assessment of Irrigated Maize Yield Response to Climate Change Scenarios in Portugal. Agric. Water Manag. 2017, 184, 178–190. [Google Scholar] [CrossRef]
- Miedaner, T.; Juroszek, P. Global Warming and Increasing Maize Cultivation Demand Comprehensive Efforts in Disease and Insect Resistance Breeding in North-western Europe. Plant Pathol. 2021, 70, 1032–1046. [Google Scholar] [CrossRef]
- Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for Mitigation of Climate Change: A Review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- Markou, M.; Moraiti, C.A.; Stylianou, A.; Papadavid, G. Addressing Climate Change Impacts on Agriculture: Adaptation Measures For Six Crops in Cyprus. Atmosphere 2020, 11, 483. [Google Scholar] [CrossRef]
- Saleem, A.; Anwar, S.; Nawaz, T.; Fahad, S.; Saud, S.; Ur Rahman, T.; Rasheed Khan, M.N.; Nawaz, T. Securing a sustainable future: The climate change threat to agriculture, food security, and sustainable development goals. J. Umm Al-Qura Univ. Appll. Sci. 2024. [Google Scholar] [CrossRef]
- Mereu, V.; Gallo, A.; Trabucco, A.; Carboni, G.; Spano, D. Modeling High-Resolution Climate Change Impacts on Wheat and Maize in Italy. Clim. Risk Manag. 2021, 33, 100339. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Panda, R.K.; Chakraborty, A. Assessment of Climate Change Impact on Maize Yield and Yield Attributes under Different Climate Change Scenarios in Eastern India. Ecol. Indic. 2021, 120, 106881. [Google Scholar] [CrossRef]
- Farooq, A.; Farooq, N.; Akbar, H.; Hassan, Z.U.; Gheewala, S.H. A Critical Review of Climate Change Impact at a Global Scale on Cereal Crop Production. Agronomy 2023, 13, 162. [Google Scholar] [CrossRef]
- Wu, Y.; Leng, P.; Ren, C. Assessing Net Irrigation Needs in Maize–Wheat Rotation Farmlands on the North China Plain: Implications for Future Climate Scenarios. Agronomy 2024, 14, 1144. [Google Scholar] [CrossRef]
- Gabaldón-Leal, C.; Lorite, I.; Mínguez, M.; Lizaso, J.; Dosio, A.; Sanchez, E.; Ruiz-Ramos, M. Strategies for Adapting Maize to Climate Change and Extreme Temperatures in Andalusia, Spain. Clim. Res. 2015, 65, 159–173. [Google Scholar] [CrossRef]
- Supit, I.; Van Diepen, C.A.; De Wit, A.J.W.; Wolf, J.; Kabat, P.; Baruth, B.; Ludwig, F. Assessing Climate Change Effects on European Crop Yields Using the Crop Growth Monitoring System and a Weather Generator. Agric. For. Meteorol. 2012, 164, 96–111. [Google Scholar] [CrossRef]
- Abbas, G.; Ahmed, M.; Fatima, Z.; Hussain, S.; Kheir, A.M.S.; Ercişli, S.; Ahmad, S. Modeling the Potential Impact of Climate Change on Maize-Maize Cropping System in Semi-Arid Environment and Designing of Adaptation Options. Agric. For. Meteorol. 2023, 341, 109674. [Google Scholar] [CrossRef]
- Xu, H.; Twine, T.E.; Girvetz, E. Climate Change and Maize Yield in Iowa. PLoS ONE 2016, 11, e0156083. [Google Scholar] [CrossRef]
- Žydelis, R.; Weihermüller, L.; Herbst, M. Future Climate Change Will Accelerate Maize Phenological Development and Increase Yield in the Nemoral Climate. Sci. Total Environ. 2021, 784, 147175. [Google Scholar] [CrossRef]
- Zhao, J.; Bindi, M.; Eitzinger, J.; Ferrise, R.; Gaile, Z.; Gobin, A.; Holzkämper, A.; Kersebaum, K.-C.; Kozyra, J.; Kriaučiūnienė, Z.; et al. Priority for Climate Adaptation Measures in European Crop Production Systems. Eur. J. Agron. 2022, 138, 126516. [Google Scholar] [CrossRef]
- Pérez-Lucas, G.; Navarro, G.; Navarro, S. Adapting Agriculture and Pesticide Use in Mediterranean Regions under Climate Change Scenarios: A Comprehensive Review. Eur. J. Agron. 2024, 161, 127337. [Google Scholar] [CrossRef]
- Koimbori, J.K.; Wang, S.; Pan, J.; Guo, L.; Li, K. Yield Response of Spring Maize under Future Climate and the Effects of Adaptation Measures in Northeast China. Plants 2022, 11, 1634. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, A.; Santillán, D.; Garrote, L. On the Barriers to Adaption to Less Water under Climate Change: Policy Choices in Mediterranean Countries. Water Resour. Manag. 2018, 32, 4819–4832. [Google Scholar] [CrossRef]
- Monistrol, A.; Vallejo, A.; García-Gutiérrez, S.; Hermoso-Peralo, R.; Montoya, M.; Atencia-Payares, L.K.; Aguilera, E.; Guardia, G. Interaction between Burial Depth and N Source in Drip-Fertigated Maize: Agronomic Performance and Correlation with Spectral Indices. Agric. Water Manag. 2024, 301, 108951. [Google Scholar] [CrossRef]
- Haefele, S.M.; Gregory, A.S.; Poulton, P.R.; Hernandez-Allica, J.; White, R.P.; McGrath, S.P. Can Grain P Concentration Be Used as an Indicator of Fertilizer Requirements in Winter Wheat? Field Crops Res. 2025, 322, 109691. [Google Scholar] [CrossRef]
- Grigorieva, E.; Livenets, A.; Stelmakh, E. Adaptation of Agriculture to Climate Change: A Scoping Review. Climate 2023, 11, 202. [Google Scholar] [CrossRef]
- Cruz Maceín, J.L.; Gonzalez-Fernandez, I.; Barrutieta, A.; Bermejo-Bermejo, V.; Zamorano Rodríguez, J.P. Adaptation Strategies for Dealing with Global Atmospheric Change in Mediterranean Agriculture: A Triple Helix Approach to the Spanish Case Study. Reg. Environ. Change 2023, 23, 142. [Google Scholar] [CrossRef]
- Intergovernmental Panel On Climate Change (IPCC) Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-009-32584-4.
- Giorgi, F.; Meleux, F. Modelling the Regional Effects of Climate Change on Air Quality. Comptes Rendus Géosci. 2007, 339, 721–733. [Google Scholar] [CrossRef]
- Drobinski, P.; Da Silva, N.; Bastin, S.; Mailler, S.; Muller, C.; Ahrens, B.; Christensen, O.B.; Lionello, P. How Warmer and Drier Will the Mediterranean Region Be at the End of the Twenty-First Century? Reg. Environ. Change 2020, 20, 78. [Google Scholar] [CrossRef]
- Lima, D.C.A.; Bento, V.A.; Lemos, G.; Nogueira, M.; Soares, P.M.M. A Multi-Variable Constrained Ensemble of Regional Climate Projections under Multi-Scenarios for Portugal—Part II: Sectoral Climate Indices. Clim. Serv. 2023, 30, 100377. [Google Scholar] [CrossRef]
- Soares, P.M.M.; Lima, D.C.A. Water Scarcity down to Earth Surface in a Mediterranean Climate: The Extreme Future of Soil Moisture in Portugal. J. Hydrol. 2022, 615, 128731. [Google Scholar] [CrossRef]
- Shahzad, A.; Ullah, S.; Dar, A.A.; Sardar, M.F.; Mehmood, T.; Tufail, M.A.; Shakoor, A.; Haris, M. Nexus on Climate Change: Agriculture and Possible Solution to Cope Future Climate Change Stresses. Environ. Sci. Pollut. Res. 2021, 28, 14211–14232. [Google Scholar] [CrossRef] [PubMed]
- Stella, T.; Webber, H.; Olesen, J.E.; Ruane, A.C.; Fronzek, S.; Bregaglio, S.; Mamidanna, S.; Bindi, M.; Collins, B.; Faye, B.; et al. Methodology to Assess the Changing Risk of Yield Failure Due to Heat and Drought Stress under Climate Change. Environ. Res. Lett. 2021, 16, 104033. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Bheemanahalli, R.; Jagadish, S.V.K. Field Crops and the Fear of Heat Stress—Opportunities, Challenges and Future Directions. Field Crops Res. 2017, 200, 114–121. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, H.; Tian, B.; Sheng, D.; Xu, C.; Zhou, H.; Huang, S.; Wang, P. Flowering Dynamics, Pollen, and Pistil Contribution to Grain Yield in Response to High Temperature during Maize Flowering. Environ. Exp. Bot. 2019, 158, 80–88. [Google Scholar] [CrossRef]
- Ribeiro, A.F.S.; Russo, A.; Gouveia, C.M.; Páscoa, P.; Zscheischler, J. Risk of Crop Failure Due to Compound Dry and Hot Extremes Estimated with Nested Copulas. Biogeosciences 2020, 17, 4815–4830. [Google Scholar] [CrossRef]
- Wang, C.; Guo, E.; Wang, Y.; Jirigala, B.; Kang, Y.; Zhang, Y. Spatiotemporal Variations in Drought and Waterlogging and Their Effects on Maize Yields at Different Growth Stages in Jilin Province, China. Nat. Hazards 2023, 118, 155–180. [Google Scholar] [CrossRef]
- Castaño-Sánchez, J.P.; Karsten, H.D.; Rotz, C.A. Double Cropping and Manure Management Mitigate the Environmental Impact of a Dairy Farm under Present and Future Climate. Agric. Syst. 2022, 196, 103326. [Google Scholar] [CrossRef]
- Minoli, S.; Jägermeyr, J.; Asseng, S.; Urfels, A.; Müller, C. Global Crop Yields Can Be Lifted by Timely Adaptation of Growing Periods to Climate Change. Nat. Commun. 2022, 13, 7079. [Google Scholar] [CrossRef]
- Gammans, M.; Mérel, P.; Ortiz-Bobea, A. Double Cropping as an Adaptation to Climate Change in the United States. Am. J. Agric. Econ. 2024, 107, ajae.12491. [Google Scholar] [CrossRef]
- Meza, F.J.; Silva, D.; Vigil, H. Climate Change Impacts on Irrigated Maize in Mediterranean Climates: Evaluation of Double Cropping as an Emerging Adaptation Alternative. Agric. Syst. 2008, 98, 21–30. [Google Scholar] [CrossRef]
- Karandish, F.; Kalanaki, M.; Saberali, S.F. Projected Impacts of Global Warming on Cropping Calendar and Water Requirement of Maize in a Humid Climate. Arch. Agron. Soil. Sci. 2017, 63, 1–13. [Google Scholar] [CrossRef]
- Rolim, J.; Teixeira, J.L.; Catalão, J.; Shahidian, S. The Impacts of Climate Change on Irrigated Agriculture in Southern Portugal: Impacts of Climate Change on Irrigated Agriculture. Irrig. Drain. 2017, 66, 3–18. [Google Scholar] [CrossRef]
- Masia, S.; Sušnik, J.; Marras, S.; Mereu, S.; Spano, D.; Trabucco, A. Assessment of Irrigated Agriculture Vulnerability under Climate Change in Southern Italy. Water 2018, 10, 209. [Google Scholar] [CrossRef]
- Soares, D.; Rolim, J.; Fradinho, M.J.; Paço, T.A.D. Climate Change Impacts on Irrigation Requirements of Preserved Forage for Horses under Mediterranean Conditions. Agronomy 2020, 10, 1758. [Google Scholar] [CrossRef]
- Branquinho, S.; Rolim, J.; Teixeira, J.L. Climate Change Adaptation Measures in the Irrigation of a Super-Intensive Olive Orchard in the South of Portugal. Agronomy 2021, 11, 1658. [Google Scholar] [CrossRef]
- Masia, S.; Trabucco, A.; Spano, D.; Snyder, R.L.; Sušnik, J.; Marras, S. A Modelling Platform for Climate Change Impact on Local and Regional Crop Water Requirements. Agric. Water Manag. 2021, 255, 107005. [Google Scholar] [CrossRef]
- Kheiri, M.; Kambouzia, J.; Rahimi-Moghaddam, S.; Moghaddam, S.M.; Vasa, L.; Azadi, H. Effects of Agro-Climatic Indices on Wheat Yield in Arid, Semi-Arid, and Sub-Humid Regions of Iran. Reg. Environ. Change 2024, 24, 10. [Google Scholar] [CrossRef]
- Shiferaw, Y.G.; Ebstu, E.T.; Lohani, T.K. Representative Concentration Pathways (RCPs) Used as a Tool to Evaluate Climate Change Impact on Maize Crop Production in the Woybo Catchment of Ethiopia. J. Water Clim. Change 2024, 15, 2714–2730. [Google Scholar] [CrossRef]
- Fader, M.; Shi, S.; Von Bloh, W.; Bondeau, A.; Cramer, W. Mediterranean Irrigation under Climate Change: More Efficient Irrigation Needed to Compensate for Increases in Irrigation Water Requirements. Hydrol. Earth Syst. Sci. 2016, 20, 953–973. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Dold, C. Water-Use Efficiency: Advances and Challenges in a Changing Climate. Front. Plant Sci. 2019, 10, 103. [Google Scholar] [CrossRef]
- Islam, A.T.; Islam, A.S.; Islam, G.T.; Bala, S.K.; Salehin, M.; Choudhury, A.K.; Dey, N.C.; Hossain, A. Adaptation Strategies to Increase Water Productivity of Wheat under Changing Climate. Agric. Water Manag. 2022, 264, 107499. [Google Scholar] [CrossRef]
- Ferreira, A.; Rolim, J.; Paredes, P.; Cameira, M.D.R. Methodologies for Water Accounting at the Collective Irrigation System Scale Aiming at Optimizing Water Productivity. Agronomy 2023, 13, 1938. [Google Scholar] [CrossRef]
- Paulo, A.A.; Rosa, R.D.; Pereira, L.S. Climate Trends and Behaviour of Drought Indices Based on Precipitation and Evapotranspiration in Portugal. Nat. Hazards Earth Syst. Sci. 2012, 12, 1481–1491. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Lopez-Moreno, J.-I.; Beguería, S.; Lorenzo-Lacruz, J.; Sanchez-Lorenzo, A.; García-Ruiz, J.M.; Azorin-Molina, C.; Morán-Tejeda, E.; Revuelto, J.; Trigo, R.; et al. Evidence of Increasing Drought Severity Caused by Temperature Rise in Southern Europe. Environ. Res. Lett. 2014, 9, 044001. [Google Scholar] [CrossRef]
- Páscoa, P.; Russo, A.; Gouveia, C.M.; Soares, P.M.M.; Cardoso, R.M.; Careto, J.A.M.; Ribeiro, A.F.S. A High-Resolution View of the Recent Drought Trends over the Iberian Peninsula. Weather Clim. Extrem. 2021, 32, 100320. [Google Scholar] [CrossRef]
- Soares, P.M.M.; Careto, J.A.M.; Russo, A.; Lima, D.C.A. The Future of Iberian Droughts: A Deeper Analysis Based on Multi-Scenario and a Multi-Model Ensemble Approach. Nat. Hazards 2023, 117, 2001–2028. [Google Scholar] [CrossRef]
- Soares, D.; Paço, T.A.; Rolim, J. Assessing Climate Change Impacts on Irrigation Water Requirements under Mediterranean Conditions—A Review of the Methodological Approaches Focusing on Maize Crop. Agronomy 2022, 13, 117. [Google Scholar] [CrossRef]
- Cardoso, R.M.; Soares, P.M.M.; Lima, D.C.A.; Miranda, P.M.A. Mean and Extreme Temperatures in a Warming Climate: EURO CORDEX and WRF Regional Climate High-Resolution Projections for Portugal. Clim. Dyn. 2019, 52, 129–157. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Vogt, J.V. Pan-European Seasonal Trends and Recent Changes of Drought Frequency and Severity. Glob. Planet. Change 2017, 148, 113–130. [Google Scholar] [CrossRef]
- Webber, H.; Ewert, F.; Olesen, J.E.; Müller, C.; Fronzek, S.; Ruane, A.C.; Bourgault, M.; Martre, P.; Ababaei, B.; Bindi, M.; et al. Diverging Importance of Drought Stress for Maize and Winter Wheat in Europe. Nat. Commun. 2018, 9, 4249. [Google Scholar] [CrossRef]
- Lizaso, J.I.; Ruiz-Ramos, M.; Rodríguez, L.; Gabaldon-Leal, C.; Oliveira, J.A.; Lorite, I.J.; Rodríguez, A.; Maddonni, G.A.; Otegui, M.E. Modeling the Response of Maize Phenology, Kernel Set, and Yield Components to Heat Stress and Heat Shock with CSM-IXIM. Field Crops Res. 2017, 214, 239–254. [Google Scholar] [CrossRef]
- Kamali, B.; Lorite, I.J.; Webber, H.A.; Rezaei, E.E.; Gabaldon-Leal, C.; Nendel, C.; Siebert, S.; Ramirez-Cuesta, J.M.; Ewert, F.; Ojeda, J.J. Uncertainty in Climate Change Impact Studies for Irrigated Maize Cropping Systems in Southern Spain. Sci. Rep. 2022, 12, 4049. [Google Scholar] [CrossRef] [PubMed]
- Gabaldón-Leal, C.; Webber, H.; Otegui, M.E.; Slafer, G.A.; Ordóñez, R.A.; Gaiser, T.; Lorite, I.J.; Ruiz-Ramos, M.; Ewert, F. Modelling the Impact of Heat Stress on Maize Yield Formation. Field Crops Res. 2016, 198, 226–237. [Google Scholar] [CrossRef]
- Hadi Pour, S.; Abd Wahab, A.; Shahid, S.; Wang, X. Spatial Pattern of the Unidirectional Trends in Thermal Bioclimatic Indicators in Iran. Sustainability 2019, 11, 2287. [Google Scholar] [CrossRef]
- Freitas, T.R.; Santos, J.A.; Paredes, P.; Fraga, H. Future Aridity and Drought Risk for Traditional and Super-Intensive Olive Orchards in Portugal. Clim. Change 2024, 177, 155. [Google Scholar] [CrossRef]
- Noce, S.; Caporaso, L.; Santini, M. A New Global Dataset of Bioclimatic Indicators. Sci. Data 2020, 7, 398. [Google Scholar] [CrossRef]
- Sobh, M.T.; Hamed, M.M.; Nashwan, M.S.; Shahid, S. Future Projection of Precipitation Bioclimatic Indicators over Southeast Asia Using CMIP6. Sustainability 2022, 14, 13596. [Google Scholar] [CrossRef]
- Hamed, M.M.; Nashwan, M.S.; Shahid, S.; Ismail, T.B.; Dewan, A.; Asaduzzaman, M. Thermal Bioclimatic Indicators over Southeast Asia: Present Status and Future Projection Using CMIP6. Environ. Sci. Pollut. Res. 2022, 29, 91212–91231. [Google Scholar] [CrossRef]
- Gaitán, E.; Pino-Otín, M.R. Using Bioclimatic Indicators to Assess Climate Change Impacts on the Spanish Wine Sector. Atmos. Res. 2023, 286, 106660. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.; Thomson, A.M.; Wolfe, D. Climate Impacts on Agriculture: Implications for Crop Production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, X.; Liu, Z.; Bai, F.; Sun, S.; Nie, J.; Gao, J.; Ming, B.; Xie, R.; Li, S. Spatio-Temporal Characteristics of Agro-Climatic Indices and Extreme Weather Events during the Growing Season for Summer Maize (Zea mays L.) in Huanghuaihai Region, China. Int. J. Biometeorol. 2020, 64, 827–839. [Google Scholar] [CrossRef] [PubMed]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. Crop Water Productivity. Calculation Procedures and Calibration Guidance, AquaCrop version 4.0; FAO: Rome, Italy, 2012. [Google Scholar]
- Pereira, L.S.; Allen, R.; Paredes, P.; Smith, M.; Raes, D.; Salman, M. FAO Irrigation & Drainage paper 56rev, Rome. 2025; in press. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C.; Fonseca, A.; Santos, J.A.; Bois, B.; Jones, G.V. Historic Changes and Future Projections in Köppen–Geiger Climate Classifications in Major Wine Regions Worldwide. Climate 2024, 12, 94. [Google Scholar] [CrossRef]
- Wouters, H.; Berckmans, J.; Maes, R.; Vanuytrecht, E.; De Ridder, K. Downscaled Bioclimatic Indicators for Selected Regions from 1950 to 2100 Derived from Climate Projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2021. Available online: https://cds.climate.copernicus.eu/datasets/sis-biodiversity-cmip5-regional?tab=overview (accessed on 13 December 2024).
- Cabré, M.F.; Quénol, H.; Nuñez, M. Regional Climate Change Scenarios Applied to Viticultural Zoning in Mendoza, Argentina. Int. J. Biometeorol. 2016, 60, 1325–1340. [Google Scholar] [CrossRef]
- Adão, F.; Campos, J.C.; Santos, J.A.; Malheiro, A.C.; Fraga, H. Relocation of Bioclimatic Suitability of Portuguese Grapevine Varieties under Climate Change Scenarios. Front. Plant Sci. 2023, 14, 974020. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Salvia, R.; Quaranta, G.; Cudlín, P.; Salvati, L.; Gimenez-Morera, A. Climate Aridity and the Geographical Shift of Olive Trees in a Mediterranean Northern Region. Climate 2021, 9, 64. [Google Scholar] [CrossRef]
- Chou, C.; Marcos-Matamoros, R.; López-Nevado, J.; López-Feria, S.; González-Reviriego, N. Comparison of Five Strategies for Seasonal Prediction of Bioclimatic Indicators in the Olive Sector. Clim. Serv. 2023, 30, 100345. [Google Scholar] [CrossRef]
- Özdel, M.M.; Ustaoğlu, B.; Cürebal, İ. Modeling of the Potential Distribution Areas Suitable for Olive (Olea europaea L.) in Türkiye from a Climate Change Perspective. Agriculture 2024, 14, 1629. [Google Scholar] [CrossRef]
- Yue, Y.; Zhang, P.; Shang, Y. The Potential Global Distribution and Dynamics of Wheat under Multiple Climate Change Scenarios. Sci. Total Environ. 2019, 688, 1308–1318. [Google Scholar] [CrossRef]
- Olfert, O.; Weiss, R.M.; Catton, H.; Cárcamo, H.; Meers, S. Bioclimatic Assessment of Abiotic Factors Affecting Relative Abundance and Distribution of Wheat Stem Sawfly (Hymenoptera: Cephidae) in Western Canada. Can. Entomol. 2019, 151, 16–33. [Google Scholar] [CrossRef]
- Akpoti, K.; Groen, T.; Dossou-Yovo, E.; Kabo-bah, A.T.; Zwart, S.J. Climate Change-Induced Reduction in Agricultural Land Suitability of West-Africa’s Inland Valley Landscapes. Agric. Syst. 2022, 200, 103429. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Shariot-Ullah, M.; Islam, R.; Amin, M.G.M.; Islam, H.M.T.; Ahmed, S.; Yildiz, S.; Muktadir, A.; Shahid, S. Projections of Future Bioclimatic Indicators Using Bias-Corrected CMIP6 Models: A Case Study in a Tropical Monsoon Region. Environ. Sci. Pollut. Res. 2024, 31, 64596–64627. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Wang, H.; Ma, X.; Peng, H.; Shan, J. Modeling the Current Land Suitability and Future Dynamics of Global Soybean Cultivation under Climate Change Scenarios. Field Crops Res. 2021, 263, 108069. [Google Scholar] [CrossRef]
- Villa-Falfán, C.; Valdés-Rodríguez, O.A.; Vázquez-Aguirre, J.L.; Salas-Martínez, F. Climate Indices and Their Impact on Maize Yield in Veracruz, Mexico. Atmosphere 2023, 14, 778. [Google Scholar] [CrossRef]
- Correia, C.D.N.C.; Amraoui, M.; Santos, J.C.A. Impacts of Climate Change on Agriculture in Angola: Analysis of Agroclimatic and Bioclimatic Indicators. 2024. Available online: https://www.preprints.org/manuscript/202403.0723/v1 (accessed on 5 January 2025).
- Charalampopoulos, I. Agrometeorological Conditions and Agroclimatic Trends for the Maize and Wheat Crops in the Balkan Region. Atmosphere 2021, 12, 671. [Google Scholar] [CrossRef]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Jones, G.V.; Alves, F.; Pinto, J.G.; Santos, J.A. Very High Resolution Bioclimatic Zoning of Portuguese Wine Regions: Present and Future Scenarios. Reg. Environ. Change 2014, 14, 295–306. [Google Scholar] [CrossRef]
- Blanco-Ward, D.; Ribeiro, A.; Barreales, D.; Castro, J.; Verdial, J.; Feliciano, M.; Viceto, C.; Rocha, A.; Carlos, C.; Silveira, C.; et al. Climate Change Potential Effects on Grapevine Bioclimatic Indices: A Case Study for the Portuguese Demarcated Douro Region (Portugal). BIO Web Conf. 2019, 12, 01013. [Google Scholar] [CrossRef]
- Freitas, T.R.; Santos, J.A.; Silva, A.P.; Fraga, H. Modelo regional da previsão da produção da amêndoa na região agrária de Trás-os-Montes. Rev. Ciências Agrárias 2023, 46, 117–124. [Google Scholar] [CrossRef]
- Silveira, C.; Almeida, A.; Ribeiro, A.C. How Can a Changing Climate Influence the Productivity of Traditional Olive Orchards? Regression Analysis Applied to a Local Case Study in Portugal. Climate 2023, 11, 123. [Google Scholar] [CrossRef]
- Freitas, T.R.; Santos, J.A.; Silva, A.P.; Martins, J.; Fraga, H. Climate Change Projections for Bioclimatic Distribution of Castanea Sativa in Portugal. Agronomy 2022, 12, 1137. [Google Scholar] [CrossRef]
- Santos, J.A.; Costa, R.; Fraga, H. Climate Change Impacts on Thermal Growing Conditions of Main Fruit Species in Portugal. Clim. Change 2017, 140, 273–286. [Google Scholar] [CrossRef]
- Andrade, C.; Fonseca, A.; Santos, J.A. Are Land Use Options in Viticulture and Oliviculture in Agreement with Bioclimatic Shifts in Portugal? Land 2021, 10, 869. [Google Scholar] [CrossRef]
- Fraga, H.; Guimarães, N.; Santos, J. Future Changes in Rice Bioclimatic Growing Conditions in Portugal. Agronomy 2019, 9, 674. [Google Scholar] [CrossRef]
- Nguyen, T.P.L.; Seddaiu, G.; Roggero, P.P. Declarative or Procedural Knowledge? Knowledge for Enhancing Farmers’ Mitigation and Adaptation Behaviour to Climate Change. J. Rural Stud. 2019, 67, 46–56. [Google Scholar] [CrossRef]
- Leip, A.; Wollgast, J.; Kugelberg, S.; Leite, J.C.; Maas, R.J.; Mason, K.E.; Sutton, M.A. Appetite for Change: Food System Options for Nitrogen, Environment & Health. In European Nitrogen Assessment Special Report on Nitrogen & Food; UK Centre for Ecology & Hydrology: Edinburgh, UK, 2023; Volume 2, ISBN 978-1-906698-83-6. [Google Scholar]
- Pereira, L.S.; Paredes, P.; Hunsaker, D.J.; López-Urrea, R.; Mohammadi Shad, Z. Standard Single and Basal Crop Coefficients for Field Crops. Updates and Advances to the FAO56 Crop Water Requirements Method. Agric. Water Manag. 2021, 243, 106466. [Google Scholar] [CrossRef]
- Ramos, T.B.; Horta, A.; Gonçalves, M.C.; Pires, F.P.; Duffy, D.; Martins, J.C. The INFOSOLO Database as a First Step towards the Development of a Soil Information System in Portugal. CATENA 2017, 158, 390–412. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meterol 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Wouters, H.; Berckmans, J.; Maes, R.; Vanuytrecht, E.; De Ridder, K. Global Bioclimatic Indicators from 1950 to 2100 Derived from Climate Projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2021. Available online: https://cds.climate.copernicus.eu/datasets/sis-biodiversity-cmip5-global?tab=overview (accessed on 5 January 2025).
- Berdugo, M.; Delgado-Baquerizo, M.; Soliveres, S.; Hernández-Clemente, R.; Zhao, Y.; Gaitán, J.J.; Gross, N.; Saiz, H.; Maire, V.; Lehmann, A.; et al. Global Ecosystem Thresholds Driven by Aridity. Science 2020, 367, 787–790. [Google Scholar] [CrossRef]
- Mcmaster, G. Growing Degree-Days: One Equation, Two Interpretations. Agric. For. Meteorol. 1997, 87, 291–300. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Fereres, E.; Raes, D. Crop Yield Response to Water. In FAO Irrigation and Drainage Paper 66; FAO: Rome, Italy, 2012; p. 500. [Google Scholar]
- Kendall, M.G. A New Measure of Rank Correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Barros, J.F.C.; Calado, J.G. A Cultura do Milho; Universidade de Évora: Évora, Portugal, 2014; Volume 1, pp. 1–52. Available online: http://hdl.handle.net/10174/10804 (accessed on 5 January 2025).
- Norberto, M.; Sillero, N.; Coimbra, J.; Cunha, M. Filling the Maize Yield Gap Based on Precision Agriculture—A MaxEnt Approach. Comput. Electron. Agric. 2023, 211, 107970. [Google Scholar] [CrossRef]
- Giménez, P.O.; García-Galiano, S.G. Assessing Regional Climate Models (RCMs) Ensemble-Driven Reference Evapotranspiration over Spain. Water 2018, 10, 1181. [Google Scholar] [CrossRef]
- Pereira, S.C.; Carvalho, D.; Rocha, A. Temperature and Precipitation Extremes over the Iberian Peninsula under Climate Change Scenarios: A Review. Climate 2021, 9, 139. [Google Scholar] [CrossRef]
- Pires, V.; Cota, T.M.; Silva, A. Observações alteradas no clima atual e cenários climáticos em Portugal Continental-influência no setor agrícola. Cultivar 2018, 12, 57–67. [Google Scholar]
- Hussain, A.; Bangash, R. Impact of Climate Change on Crops’ Productivity across Selected Agro-Ecological Zones in Pakistan. Pak. Dev. Rev. 2017, 56, 163–187. [Google Scholar]
- Maitah, M.; Malec, K.; Maitah, K. Influence of Precipitation and Temperature on Maize Production in the Czech Republic from 2002 to 2019. Sci. Rep. 2021, 11, 10467. [Google Scholar] [CrossRef]
- Shahzad, M.; Hussain, M.; Farooq, M.; Farooq, S.; Jabran, K.; Nawaz, A. Economic Assessment of Conventional and Conservation Tillage Practices in Different Wheat-Based Cropping Systems of Punjab, Pakistan. Environ. Sci. Pollut. Res. 2017, 24, 24634–24643. [Google Scholar] [CrossRef]
- Espinosa, L.A.; Portela, M.M.; Gharbia, S. Assessing Changes in Exceptional Rainfall in Portugal Using ERA5-Land Reanalysis Data (1981/1982–2022/2023). Water 2024, 16, 628. [Google Scholar] [CrossRef]
- Lavers, D.A.; Simmons, A.; Vamborg, F.; Rodwell, M.J. An Evaluation of ERA5 Precipitation for Climate Monitoring. Q. J. R. Meteorol. Soc. 2022, 148, 3152–3165. [Google Scholar] [CrossRef]
- Malayeri, A.K.; Saghafian, B.; Raziei, T. Performance Evaluation of ERA5 Precipitation Estimates across Iran. Arab. J. Geosci. 2021, 14, 2676. [Google Scholar] [CrossRef]
- Yang, C.; Fraga, H.; Van Ieperen, W.; Trindade, H.; Santos, J.A. Effects of Climate Change and Adaptation Options on Winter Wheat Yield under Rainfed Mediterranean Conditions in Southern Portugal. Clim. Change 2019, 154, 159–178. [Google Scholar] [CrossRef]
- Claro, A.M.; Fonseca, A.; Fraga, H.; Santos, J.A. Susceptibility of Iberia to Extreme Precipitation and Aridity: A New High-Resolution Analysis over an Extended Historical Period. Water 2023, 15, 3840. [Google Scholar] [CrossRef]
- Irwandi, H.; Rosid, M.S.; Mart, T. Effects of Climate Change on Temperature and Precipitation in the Lake Toba Region, Indonesia, Based on ERA5-Land Data with Quantile Mapping Bias Correction. Sci. Rep. 2023, 13, 2542. [Google Scholar] [CrossRef]
- Fonseca, A.; Cruz, J.; Fraga, H.; Andrade, C.; Valente, J.; Alves, F.; Neto, A.C.; Flores, R.; Santos, J.A. Vineyard Microclimatic Zoning as a Tool to Promote Sustainable Viticulture under Climate Change. Sustainability 2024, 16, 3477. [Google Scholar] [CrossRef]
- Rocha, J.; Carvalho-Santos, C.; Diogo, P.; Beça, P.; Keizer, J.J.; Nunes, J.P. Impacts of Climate Change on Reservoir Water Availability, Quality and Irrigation Needs in a Water Scarce Mediterranean Region (Southern Portugal). Sci. Total Environ. 2020, 736, 139477. [Google Scholar] [CrossRef]
- Corwin, D.L. Climate Change Impacts on Soil Salinity in Agricultural Areas. Eur. J. Soil Sci. 2021, 72, 842–862. [Google Scholar] [CrossRef]
- Carvalho, D.; Pereira, S.C.; Silva, R.; Rocha, A. Aridity and Desertification in the Mediterranean under EURO-CORDEX Future Climate Change Scenarios. Clim. Change 2022, 174, 28. [Google Scholar] [CrossRef]
- Moral, F.J.; Aguirado, C.; Alberdi, V.; Paniagua, L.L.; García-Martín, A.; Rebollo, F.J. Future Scenarios for Aridity under Conditions of Global Climate Change in Extremadura, Southwestern Spain. Land 2023, 12, 536. [Google Scholar] [CrossRef]
- Kogo, B.K.; Kumar, L.; Koech, R. Climate Change and Variability in Kenya: A Review of Impacts on Agriculture and Food Security. Environ. Dev. Sustain. 2021, 23, 23–43. [Google Scholar] [CrossRef]
- Xu, F.; Wang, B.; He, C.; Liu, D.L.; Feng, P.; Yao, N.; Zhang, R.; Xu, S.; Xue, J.; Feng, H.; et al. Optimizing Sowing Date and Planting Density Can Mitigate the Impacts of Future Climate on Maize Yield: A Case Study in the Guanzhong Plain of China. Agronomy 2021, 11, 1452. [Google Scholar] [CrossRef]
- He, Y.; Xiong, W.; Hu, P.; Huang, D.; Feurtado, J.A.; Zhang, T.; Hao, C.; DePauw, R.; Zheng, B.; Hoogenboom, G.; et al. Climate Change Enhances Stability of Wheat-Flowering-Date. Sci. Total Environ. 2024, 917, 170305. [Google Scholar] [CrossRef] [PubMed]
- Samela, C.; Imbrenda, V.; Coluzzi, R.; Pace, L.; Simoniello, T.; Lanfredi, M. Multi-Decadal Assessment of Soil Loss in a Mediterranean Region Characterized by Contrasting Local Climates. Land 2022, 11, 1010. [Google Scholar] [CrossRef]
- Busico, G.; Grilli, E.; Carvalho, S.C.P.; Mastrocicco, M.; Castaldi, S. Assessing Soil Erosion Susceptibility for Past and Future Scenarios in Semiarid Mediterranean Agroecosystems. Sustainability 2023, 15, 12992. [Google Scholar] [CrossRef]
- Pari, L.; Cozzolino, L.; Bergonzoli, S. Rainwater: Harvesting and Storage through a Flexible Storage System to Enhance Agricultural Resilience. Agriculture 2023, 13, 2289. [Google Scholar] [CrossRef]
- Kheir, A.M.S.; Elnashar, A.; Mosad, A.; Govind, A. An Improved Deep Learning Procedure for Statistical Downscaling of Climate Data. Heliyon 2023, 9, e18200. [Google Scholar] [CrossRef]
Global Circulation Model | Institute |
---|---|
ACCESS1-0 | Bureau of Meteorology & CSIRO, Australia |
CSIRO-Mk3.6.0 | CSIRO, Australia |
HadGEM2-CC | Met Office, UK |
GFDL-ESM2M | NOAA, USA |
Indicator | Acronym | Description |
---|---|---|
Mean precipitation | MP | Average over the daily mean precipitation. |
Average temperature | AT | The monthly mean of the daily mean temperature at 2 m above the surface. |
Aridity Index | AI | Monthly potential evapotranspiration is divided by the monthly mean precipitation averaged over the year. |
Dry spells | DS | Mean length of dry spells with a minimum of 5 days within a year. |
Region | Statistics (Tau) | p-Value | |
---|---|---|---|
Area (ha) | Norte | −0.93 | 0.00 |
Centro | −0.53 | 0.03 | |
AML | −0.53 | 0.03 | |
Alentejo | −0.42 | 0.09 a | |
Algarve | −0.53 | 0.03 | |
Production (t) | Norte | −0.45 | 0.06 a |
Centro | −0.02 | 1.00 a | |
AML | −0.60 | 0.01 | |
Alentejo | −0.42 | 0.09 a | |
Algarve | −0.20 | 0.44 a | |
Productivity (t ha−1) | Norte | 0.35 | 0.16 a |
Centro | 0.75 | 0.00 | |
AML | −0.09 | 0.76 a | |
Alentejo | 0.31 | 0.21 a | |
Algarve | 0.42 | 0.09 a |
MTU (°C) | FAO Variety | Maize Production |
---|---|---|
<1500 | <FAO 400 (short varieties) | Mainly silage |
1500–2000 | All above | Grain |
>2000 | All above * | Grain |
Average | RCP4.5 | RCP8.5 | |||||
---|---|---|---|---|---|---|---|
1971–2000 | 2011–2040 | 2041–2070 | 2071–2100 | 2011–2040 | 2041–2070 | 2071–2100 | |
AT (°C) | 19.5 | 20.5 | 21.7 | 22.2 | 20.5 | 22.4 | 24.0 |
MP (mm) | 214.4 | 173.2 | 146.0 | 129.1 | 174.8 | 138.8 | 124.0 |
IA | 0.5 | 0.5 | 0.6 | 0.6 | 0.5 | 0.6 | 0.6 |
DS (days) | 19.0 | 21.0 | 23.0 | 23.0 | 22.0 | 23.0 | 26.0 |
MTU (°C) | 2037.6 | 2249.0 | 2500.0 | 2603.5 | 2258.6 | 2647.6 | 2996.5 |
RAW (mm) | 39.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, D.; Paredes, P.; Paço, T.A.; Rolim, J. Projected Bioclimatic Changes in Portugal: Assessing Maize Future Suitability. Agronomy 2025, 15, 592. https://doi.org/10.3390/agronomy15030592
Soares D, Paredes P, Paço TA, Rolim J. Projected Bioclimatic Changes in Portugal: Assessing Maize Future Suitability. Agronomy. 2025; 15(3):592. https://doi.org/10.3390/agronomy15030592
Chicago/Turabian StyleSoares, Daniela, Paula Paredes, Teresa A. Paço, and João Rolim. 2025. "Projected Bioclimatic Changes in Portugal: Assessing Maize Future Suitability" Agronomy 15, no. 3: 592. https://doi.org/10.3390/agronomy15030592
APA StyleSoares, D., Paredes, P., Paço, T. A., & Rolim, J. (2025). Projected Bioclimatic Changes in Portugal: Assessing Maize Future Suitability. Agronomy, 15(3), 592. https://doi.org/10.3390/agronomy15030592