Effect of Light Spectrum, Sucrose Concentration, and 6-Benzyl-aminopurine on In Vitro Adventitious Bulb Formation in Tulipa tarda
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- van Scheepen, J. (Ed.) Classified List and International Register of Tulip Names; Royal General Bulbgrowers’ Association, KAVB: Hillegom, The Netherlands, 1996. [Google Scholar]
- Botschantzeva, Z.P. Tulips: Taxonomy, Morphology, Cytology, Phytogeography and Physiology; A. A. Balkema: Rotterdam, The Netherlands, 1982. [Google Scholar]
- Yasemin, S.; Beruto, M. A Review on Flower Bulb Micropropagation: Challenges and Opportunities. Horticulturae 2024, 10, 284. [Google Scholar] [CrossRef]
- De Hertogh, A.; Le Nard, M. The Physiology of Flower Bulbs: A Comprehensive Treatise on the Physiology and Utilization of Ornamental Flowering Bulbous and Tuberous Plants; Elsevier Science Publishers: Amsterdam, The Netherlands, 1993; pp. 617–682. [Google Scholar]
- Okubo, H.; Sochacki, D. Botanical and horticultural aspects of major ornamental geophytes. In Ornamental Geophytes: From Basic Science to Sustainable Production; Kamenetsky, R., Okubo, H., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 77–122. [Google Scholar]
- Rees, A.R. Ornamental Bulbs, Corms and Tubers; CAB International: Wallingford, UK, 1992; pp. 93–111. [Google Scholar]
- Rees, A.R. The Growth of Bulbs, Applied Aspects of the Physiology of Ornamental Bulbous Crop Plants, 1st ed.; Academic Press: London, UK, 1972; p. 311. [Google Scholar]
- Kim, K.-W.; De Hertogh, A. Tissue culture of ornamental flowering bulbs (geophytes). Hortic. Rev. 1997, 18, 87–169. [Google Scholar]
- Orlikowska, T.; Podwyszyńska, M.; Marasek-Ciołakowska, A.; Sochacki, D.; Szymański, R. Tulip. In Ornamental Crops; Van Huylenbroeck, J., Ed.; Springer: Cham, Switzerland, 2018; pp. 769–802. [Google Scholar]
- Green, P.B. Organogenesis-a biophysical view. Annu. Rev. Plant Physiol. 1980, 31, 51–82. [Google Scholar] [CrossRef]
- Ziv, M. The Contribution of Biotechnology to Breeding, Propagation and Disease Resistance in Geophytes. In Proceedings of the VII International Symposium on Flowerbulbs, Herzliya, Israel, 1 December 1997. [Google Scholar]
- Schwarz, O.J.; Beaty, R.M. Organogenesis. In Plant Tissue Culture Concepts and Laboratory Exercises; Routledge: Abingdon, UK, 2018; pp. 125–138. [Google Scholar]
- Podwyszyńska, M.; Marasek, A. Effects of thidiazuron and paclobutrazol on regeneration potential of tulip flower stalk explants in vitro and subsequent shoot multiplication. Acta Soc. Bot. Pol. 2003, 72, 181–190. [Google Scholar] [CrossRef]
- Ghaffor, A.; Maqbool, I.; Waseem, K.; Quraishi, A. In vitro response of tulips (Tulipa gesnerina L.) to various growth regulators. Short communication. Int. J. Agr. Biol. 2004, 6, 1168–1169. [Google Scholar]
- Maślanka, M.; Bach, A. Induction of bulb organogenesis in in vitro cultures of tarda tulip (Tulipa tarda Stapf.) from seed-derived explants. Vitr. Cell. Dev. Biol. Plant 2014, 50, 712–721. [Google Scholar] [CrossRef]
- Maślanka, M.; Prokopiuk, B. Bulb organogenesis of Tulipa tarda in vitro cultures in relation to light environment. Acta Agric. Scand. Sect. B 2019, 69, 398–404. [Google Scholar] [CrossRef]
- Hicks, G.S. Patterns of organ development in plant tissue culture and the problem of organ determination. Bot. Rev. 1980, 46, 1–23. [Google Scholar] [CrossRef]
- Bakhshaie, M.; Khosravi, S.; Azadi, P.; Bagheri, H.; van Tuyl, J.M. Biotechnological advances in Lilium. Plant. Cell Rep. 2016, 35, 1799–1826. [Google Scholar] [CrossRef]
- Koster, J. In Vitro Propagation of Tulip. Ph.D. Thesis, University of Leiden, Leiden, The Netherlands, 1993; pp. 1–128. [Google Scholar]
- van Rossum, M.W. Role of Physiological Factors in Tulip Bulb Scale Micropropagation. Ph.D. Thesis, Landbouwuniversiteit Wageningen, Wageningen, The Netherlands, 1997. [Google Scholar]
- Minas, G.J. In vitro propagation of Akama tulip via adventitious organogenesis from bulb slices. In Proceedings of the International Conference on Quality Management in Supply Chains of Ornamentals, Bangkok, Thailand, 3–6 December 2007; pp. 313–316. [Google Scholar]
- Bach, A.; Sochacki, D. Propagation of Ornamental Geophytes: Physiology and Management Systems. In Ornamental Geophytes: From Basic Science to Sustainable Production; Kamenetsky, R., Okubo, H., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 261–286. [Google Scholar]
- Podwyszyńska, M. The mechanisms of in vitro storage organ formation in ornamental geophytes. Floric. Ornam. Biotechnol. 2012, 6, 9–23. [Google Scholar]
- Ascough, G.D.; van Staden, J.; Erwin, J.E. In vitro Storage Organ Formation of Ornamental Geophytes. In Horticultural Reviews; Wiley: Hoboken, NJ, USA, 2008; pp. 417–445. [Google Scholar] [CrossRef]
- Kumar, S.; Awasthi, V.; Kanwar, J.K. Influence of growth regulators and nitrogenous compounds on in vitro bulblet formation and growth in oriental lily. Hortic. Sci. 2007, 34, 77–83. [Google Scholar] [CrossRef]
- Malik, M.; Bach, A. Morphogenetic pathways from Narcissus L. ‘Carlton’ in vitro cultures of PC stage flower bud explants according to cytokinin and auxin rations. Acta Sci. Pol. Hortorum Cultus 2016, 15, 101–111. [Google Scholar]
- Prokopiuk, B.; Cioć, M.; Maślanka, M.; Pawłowska, B. Effects of light spectra and benzyl adenine on in vitro adventitious bulb and shoot formation of Lilium regale E.H. Wilson. Propag. Ornam. Plants 2018, 18, 12–18. [Google Scholar]
- Lagram, K.; El Merzougui, S.; Boudadi, I.; Ben El Caid, M.; El Boullani, R.; El Mousadik, A.; Serghini, M.A. In vitro shoot formation and enrooted mini-corm production by direct organogenesis in saffron (Crocus sativus L.). Vegetos 2023, 37, 1–6. [Google Scholar] [CrossRef]
- Taeb, A.G.; Alderson, P.G. Effect of low temperature and sucrose on bulb development and on the carbohydrate status of bulbing shoots of tulip in vitro. J. Hort. Sci. 1990, 65, 193–197. [Google Scholar] [CrossRef]
- Famelaer, I.; Ennik, E.; Eikelboom, W.; Van Tuyl, J.M.; Creemers-Molenaar, J. The initiation of callus and regeneration from callus culture of Tulipa gesneriana. Plant Cell Tiss. Org. Cult. 1996, 47, 51–58. [Google Scholar] [CrossRef]
- de Klerk, G.J.M. Micropropagation of bulbous crops: Technology and present state. Floric. Ornam. Biotechnol. 2012, 6, 1–8. [Google Scholar]
- Paek, K.Y.; Murthy, H.N. High frequency of bulblet regeneration from bulb scale sections of Fritillaria thunbergii. Plant Cell Tiss. Org. Cult. 2002, 68, 247–252. [Google Scholar] [CrossRef]
- Dutta Gupta, S.; Jatothu, B. Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol. Rep. 2013, 7, 211–220. [Google Scholar] [CrossRef]
- Mehbub, H.; Akter, A.; Akter, M.A.; Mandal, M.S.H.; Hoque, M.A.; Tuleja, M.; Mehraj, H. Tissue Culture in Ornamentals: Cultivation Factors, Propagation Techniques, and Its Application. Plants 2022, 11, 3208. [Google Scholar] [CrossRef]
- Lian, M.; Chakrabarty, D.; Paek, K. Growth and uptake of sucrose and mineral ions by bulblets of Lilium oriental hybrid ‘Casablanca’ during bioreactor culture. J. Hortic. Sci. Biotechnol. 2002, 77, 253–257. [Google Scholar] [CrossRef]
- Bach, A.; Malik, M.; Ptak, A.; Kędra, M. Light effects on ornamental microplant shoots and bulbs quality. Acta Hort. 2000, 530, 173–180. [Google Scholar] [CrossRef]
- Bach, A.; Świderski, A. The effect of light quality on organogenesis of Hyacinthus orientalis L. in vitro. Acta Biol. Cracoviensia Ser. Bot. 2000, 42, 115–120. [Google Scholar]
- Bach, A.; Pawłowska, B. Effect of light qualities on cultured in vitro ornamental bulbous plants. In Floriculture, Ornamental and Plant Biotechnology; Advances and Topical Issues; Global Science Books: Hong Kong, 2006; pp. 271–276. [Google Scholar]
- Jasenovska, L.; Brestic, M.; Barboricova, M.; Ferencova, J.; Filacek, A.; Zivcak, M. Analysis of the effects of various light spectra on microgreen species. Folia Hort. 2024, 36, 197–209. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Evenor, D.; Levi-Nissim, A.; Afgin, L.; Lilien-Kipnis, H.; Watad, A.A. Regeneration of plantlets and bulblets from explants and callus of Allium aflatunense cultivars and selection from indigenous Israeli Allium ampeloprasum. Acta Hortic. 1997, 430, 325–330. [Google Scholar] [CrossRef]
- Mohammadi-Dehcheshmeh, M.; Khalighi, A.; Naderi, R.; Sardarii, M.; Ebrahimie, E. Petal a reliable explant for direct bulblet regeneration of endangered wild populations of Fritillaria imperialis L. Acta Physiol. Plant. 2008, 30, 395–399. [Google Scholar] [CrossRef]
- Bakhshaie, M.; Babalar, M.; Mirmasoumi, M.; Khalighi, A. Somatic embryogenesis and plant regeneration of Lilium ledebourii (Baker) Boiss., an endangered species. Plant Cell, Tiss. Org. Cult. 2010, 102, 229–235. [Google Scholar] [CrossRef]
- Pałka, P.; Cioć, M.; Hura, K.; Szewczyk-Taranek, B.; Pawłowska, B. Adventitious organogenesis and phytochemical compositionof Madonna lily (Lilium candidum L.) in vitro modeled by different light quality. Plant Cell Tiss. Org. Cult. 2023, 152, 99–114. [Google Scholar] [CrossRef]
- Maślanka, M.; Mazur, J.; Kapczyńska, A. In Vitro Organogenesis of Critically Endangered Lachenalia viridiflora. Agronomy 2022, 12, 475. [Google Scholar] [CrossRef]
- Kritskaya, T.A.; Kashin, A.S.; Kasatkin, M.Y. Micropropagation and somaclonal variation of Tulipa suaveolens (Liliaceaae) in vitro. Russ. J. Dev. Biol. 2019, 50, 209–215. [Google Scholar] [CrossRef]
- George, E.F.; Hall, M.A.; De Klerk, G.-J. Plant Propagation by Tissue Culture: The Background, 3rd ed.; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Bach, A.; Kapczyńska, A.; Dziurka, K.; Dziurka, M. Phenolic compounds and carbohydrates in relation to bulb formation in Lachenalia ‘Ronina’ and ‘Rupert’ in vitro cultures under different lighting environments. Scientia Hort. 2015, 188, 23–29. [Google Scholar] [CrossRef]
- Pałka, P.; Muszyńska, B.; Szewczyk, A.; Pawłowska, B. Elicitation and enhancement of phenolics synthesis with zinc oxide nanoparticles and LED light in Lilium candidum L. cultures in vitro. Agronomy 2023, 13, 1437. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Draaj, I.A. The effect of explant source and cytokinin concentration on the direct bulb formation of tulip (Tulipa gesnerina L.) by plant tissue culture technique. Plant Cell Biotechnol. Mol. Biol. 2020, 21, 111–119. [Google Scholar]
- Kizil, S.; Sesiz, U.; Khawar, K.M. Improved in vitro propagation of Hyacinthus orientalis L. using fruits containing immature zygotic embryos and tender leaf sheath as explants. Acta Sci. Pol. Hortorum Cultus 2016, 15, 15–30. [Google Scholar]
- Bach, A.; Kapczyńska, A.; Dziurka, K.; Dziurka, M. The importance of applied light quality on the process of shoot organogenesis and production of phenolics and carbohydrates in Lachenalia sp. cultures in vitro. S. Afr. J. Bot. 2018, 114, 14–19. [Google Scholar] [CrossRef]
- Kizil, S.; Khawar, K.M. The effects of plant growth regulators and incubation temperatures on germination and bulb formation of Fritillaria persica L. Propag. Ornam. Plants 2014, 14, 133–138. [Google Scholar]
Light Spectrum | Culture Medium | Explants Forming Bulbs (%) | |||
---|---|---|---|---|---|
Sucrose (%) | BAP (µM) | 4 wk. | 8 wk. | 12 wk. | |
Darkness (control) | 3 | 0 | 25.0 ± 2.7 bc | 50.0 ± 3.6 ab | 70.0 ± 2.6 ab |
0.5 | 14.0 ± 3.4 c–e | 59.0 ± 4.3 a | 72.0 ± 2.9 ab | ||
6 | 0 | 56.0 ± 2.2 a | 63.0 ± 2.1 a | 74.0 ± 2.7 a | |
0.5 | 19.0 ± 2.3 cd | 59.0 ± 3.1 a | 80.0 ± 2.6 a | ||
White | 3 | 0 | 0.0 ± 0.0 e | 0.0 ± 0.0 f | 4.0 ± 2.2 fg |
0.5 | 20.0 ± 6.5 cd | 21.0 ± 6.2 d–f | 24.0 ± 7.0 d–f | ||
6 | 0 | 40.0 ± 4.2 ab | 46.0 ± 5.4 a–c | 63.0 ± 6.0 ab | |
0.5 | 20.0 ± 2.6 cd | 26.0 ± 3.7 c–e | 30.0 ± 4.9 c–e | ||
Red | 3 | 0 | 10.0 ± 3.3 c–e | 13.0 ± 3.9 d–f | 15.0 ± 3.7 d–g |
0.5 | 0.0 ± 0.0 e | 0.0 ± 0.0 f | 0.0 ± 0.0 g | ||
6 | 0 | 16.0 ± 6.5 c–e | 20.0 ± 6.3 d–f | 26.0 ± 6.2 d–f | |
0.5 | 20.0 ± 6.5 cd | 30.0 ± 9.4 b–d | 34.0 ± 9.9 cd | ||
Blue | 3 | 0 | 14.0 ± 2.7 c–e | 22.0 ± 2.9 de | 24.0 ± 3.4 d–f |
0.5 | 4.0 ± 2.2 de | 6.0 ± 2.7 ef | 9.0 ± 3.1 e–g | ||
6 | 0 | 41.0 ± 4.8 ab | 47.0 ± 4.9 a–c | 51.0 ± 5.0 bc | |
0.5 | 4.0 ± 2.2 de | 5.0 ± 2.2 ef | 7.0 ± 2.6 fg | ||
Spectrum of light | *** | *** | *** | ||
Culture medium | *** | *** | *** | ||
Spectrum of light × culture medium | *** | *** | *** |
Light Spectrum | Culture Medium | Number of Bulbs | |||
---|---|---|---|---|---|
Sucrose (%) | BAP (µM) | 4 wk. | 8 wk. | 12 wk. | |
Darkness (control) | 3 | 0 | 1.9 ± 0.2 c–e | 2.1 ± 0.1 d–f | 2.9 ± 0.1 d–f |
0.5 | 1.6 ± 0.3 c–e | 3.0 ± 0.1 c–f | 4.0 ± 0.1 b–e | ||
6 | 0 | 2.2 ± 0.1 c–e | 2.3 ± 0.1 d–f | 3.3 ± 0.1 c–f | |
0.5 | 1.2 ± 0.1 c–e | 2.4 ± 0.1 c–f | 3.4 ± 0.1 c–f | ||
White | 3 | 0 | 0.0 ± 0.0 e | 0.0 ± 0.0 f | 1.1 ± 0.6 ef |
0.5 | 4.0 ± 1.1 bc | 5.3 ± 1.2 b–d | 5.6 ± 1.3 b–d | ||
6 | 0 | 10.6 ± 0.8 a | 11.0 ± 1.1 a | 12.1 ± 1.3 a | |
0.5 | 6.6 ± 1.0 b | 7.3 ± 1.0 b | 7.6 ± 1.0 b | ||
Red | 3 | 0 | 4.0 ± 1.1 bc | 5.8 ± 1.3 bc | 6.7 ± 1.5 bc |
0.5 | 0.0 ± 0.0 e | 0.0 ± 0.0 f | 0.0 ± 0.0 f | ||
6 | 0 | 1.3 ± 0.6 c–e | 2.3 ± 0.6 d–f | 3.3 ± 0.7 c–f | |
0.5 | 3.6 ± 1.1 b–d | 3.9 ± 1.2 b–e | 4.1 ± 1.0 b–e | ||
Blue | 3 | 0 | 1.5 ± 0.3 c–e | 3.1 ± 0.6 c–f | 3.2 ± 0.6 c–f |
0.5 | 0.3 ± 0.1 e | 0.5 ± 0.2 ef | 1.4 ± 0.6 ef | ||
6 | 0 | 3.7 ± 0.6 b–d | 4.5 ± 0.5 b–d | 4.6 ± 0.4 b–e | |
0.5 | 0.7 ± 0.4 de | 0.8 ± 0.4 ef | 0.9 ± 0.4 ef | ||
Spectrum of light | *** | *** | *** | ||
Culture medium | *** | *** | *** | ||
Spectrum of light × culture medium | *** | *** | *** |
Light Spectrum | Culture Medium | Bulbs Forming Roots (%) | Number of Roots | Bulbs Forming Leaves (%) | Number of Leaves | |
---|---|---|---|---|---|---|
Sucrose (%) | BAP (µM) | |||||
Darkness (control) | 3 | 0 | 50.3 ± 2.7 ab | 1.3 ± 0.1 ab | 15.1 ± 3.7 c | 1.1 ± 0.3 ab |
0.5 | 54.6 ± 3.2 ab | 1.8 ± 0.0 ab | 36.2 ± 5.1 ab | 1.2 ± 0.1 ab | ||
6 | 0 | 66.2 ± 3.3 a | 2.4 ± 0.1 a | 37.4 ± 4.4 ab | 1.3 ± 0.1 a | |
0.5 | 49.2 ± 3.3 a–c | 1.5 ± 0.0 ab | 42.4 ± 3.1 a | 1.1 ± 0.1 ab | ||
White | 3 | 0 | 0.0 ± 0.0 f | 0.0 ± 0.0 b | 0.0 ± 0.0 c | 0.0 ± 0.0 c |
0.5 | 36.0 ± 7.9 b–e | 2.3 ± 0.5 a | 0.0 ± 0.0 c | 0.0 ± 0.0 c | ||
6 | 0 | 0.0 ± 0.0 f | 0.0 ± 0.0 b | 0.0 ± 0.0 c | 0.0 ± 0.0 c | |
0.5 | 21.5 ± 4.8 d–f | 2.9 ± 0.6 a | 18.8 ± 8.3 bc | 0.8 ± 0.3 a–c | ||
Red | 3 | 0 | 0.0 ± 0.0 f | 0.0 ± 0.0 b | 0.0 ± 0.0 c | 0.0 ± 0.0 c |
0.5 | 0.0 ± 0.0 f | 0.0 ± 0.0 b | 0.0 ± 0.0 c | 0.0 ± 0.0 c | ||
6 | 0 | 0.0 ± 0.0 f | 0.0 ± 0.0 b | 0.0 ± 0.0 c | 0.0 ± 0.0 c | |
0.5 | 23.9 ± 9.3 c–f | 2.8 ± 0.6 a | 0.0 ± 0.0 c | 0.0 ± 0.0 c | ||
Blue | 3 | 0 | 0.0 ± 0.0 f | 0.0 ± 0.0 b | 0.0 ± 0.0 c | 0.0 ± 0.0 c |
0.5 | 40.0 ± 14.5 b–d | 2.9 ± 1.0 a | 15.0 ± 8.0 c | 0.4 ± 0.2 bc | ||
6 | 0 | 0.0 ± 0.0 f | 0.0 ± 0.0 b | 19.9 ± 8.9 bc | 0.9 ± 0.4 ab | |
0.5 | 10.0 ± 6.7 ef | 1.0 ± 0.7 ab | 0.0 ± 0.0 c | 0.0 ± 0.0 c | ||
Spectrum of light | *** | ** | *** | *** | ||
Culture medium | *** | *** | *** | ns | ||
Spectrum of light × culture medium | *** | *** | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maślanka, M. Effect of Light Spectrum, Sucrose Concentration, and 6-Benzyl-aminopurine on In Vitro Adventitious Bulb Formation in Tulipa tarda. Agronomy 2025, 15, 642. https://doi.org/10.3390/agronomy15030642
Maślanka M. Effect of Light Spectrum, Sucrose Concentration, and 6-Benzyl-aminopurine on In Vitro Adventitious Bulb Formation in Tulipa tarda. Agronomy. 2025; 15(3):642. https://doi.org/10.3390/agronomy15030642
Chicago/Turabian StyleMaślanka, Małgorzata. 2025. "Effect of Light Spectrum, Sucrose Concentration, and 6-Benzyl-aminopurine on In Vitro Adventitious Bulb Formation in Tulipa tarda" Agronomy 15, no. 3: 642. https://doi.org/10.3390/agronomy15030642
APA StyleMaślanka, M. (2025). Effect of Light Spectrum, Sucrose Concentration, and 6-Benzyl-aminopurine on In Vitro Adventitious Bulb Formation in Tulipa tarda. Agronomy, 15(3), 642. https://doi.org/10.3390/agronomy15030642