Application of Compost as an Organic Amendment for Enhancing Soil Quality and Sweet Basil (Ocimum basilicum L.) Growth: Agronomic and Ecotoxicological Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setup and Soil Description
2.2. Experimental Design and Treatment
- T1: Negative control (sandy loam soil only);
- T2: Sandy loam soil + 10 t/ha organic compost;
- T3: Sandy loam soil + 20 t/ha organic compost;
- T4: Sandy loam soil + 30 t/ha organic compost;
- T5: Sandy loam soil + 40 t/ha organic compost;
- T6: Positive control (Sandy loam soil mix with granular chemical fertilizer NPK (20.10.10) at rate of 250 kg/ha)
2.3. Compost Preparation and Chemical Characterization
2.4. Soil Physical and Chemical Measurement
2.5. Plant Physiological, Agronomic, and Biochemical Attributes
2.6. Accumulation of Heavy Metals in Soil and Plant Tissues
2.7. Multivariate Statistical Analysis (MSA)
3. Results and Discussion
3.1. Impact of Compost Application on Soil’s Physicochemical Attributes
3.2. Impact of Compost Application on Plant’s Morphologic, Physiologic, Agronomic, and Biochemical Attributes
3.3. Impact of Compost Application on Plant’s and Soil’s Heavy Metals Levels
3.4. Statistical Analysis Results
4. Discussion of the Findings, Study Limitations, and Future Recommendations
4.1. Plant Growth, Soil Health, Environmental Impact, and Economic Viability: An Integrated Perspective
4.2. Study Limitations and Future Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.T.; Aleinikovienė, J.; Butkevičienė, L.-M. Innovative Organic Fertilizers and Cover Crops: Perspectives for Sustainable Agriculture in the Era of Climate Change and Organic Agriculture. Agronomy 2024, 14, 2871. [Google Scholar] [CrossRef]
- Sanad, H.; Moussadek, R.; Mouhir, L.; Oueld Lhaj, M.; Dakak, H.; El Azhari, H.; Yachou, H.; Ghanimi, A.; Zouahri, A. Assessment of Soil Spatial Variability in Agricultural Ecosystems Using Multivariate Analysis, Soil Quality Index (SQI), and Geostatistical Approach: A Case Study of the Mnasra Region, Gharb Plain, Morocco. Agronomy 2024, 14, 1112. [Google Scholar] [CrossRef]
- Tariq, A.; Graciano, C.; Sardans, J.; Zeng, F.; Hughes, A.C.; Ahmed, Z.; Ullah, A.; Ali, S.; Gao, Y.; Peñuelas, J. Plant Root Mechanisms and Their Effects on Carbon and Nutrient Accumulation in Desert Ecosystems under Changes in Land Use and Climate. New Phytol. 2024, 242, 916–934. [Google Scholar] [CrossRef] [PubMed]
- Chew, K.W.; Chia, S.R.; Yen, H.-W.; Nomanbhay, S.; Ho, Y.-C.; Show, P.L. Transformation of Biomass Waste into Sustainable Organic Fertilizers. Sustainability 2019, 11, 2266. [Google Scholar] [CrossRef]
- Ebbisa, A.F.; Dechassa, N.; Bekeko, Z.; Liben, F. Modifying Row-Configuration and Vermicompost Application Reduces Intercropped Peanut (Arachis hypogaea L.) Yield Instability and Penalty in Sorghum at Babile, Eastern Ethiopia. Heliyon 2024, 10, e35662. [Google Scholar] [CrossRef]
- Manhou, K.; Moussadek, R.; Yachou, H.; Zouahri, A.; Douaik, A.; Hilal, I.; Ghanimi, A.; Hmouni, D.; Dakak, H. Assessing the Impact of Saline Irrigation Water on Durum Wheat (Cv. Faraj) Grown Sandy Clay Soils. Agronomy 2024, 14, 2865. [Google Scholar] [CrossRef]
- Reichel, R.; Wei, J.; Islam, M.S.; Schmid, C.; Wissel, H.; Schröder, P.; Schloter, M.; Brüggemann, N. Potential of Wheat Straw, Spruce Sawdust, and Lignin as High Organic Carbon Soil Amendments to Improve Agricultural Nitrogen Retention Capacity: An Incubation Study. Front. Plant Sci. 2018, 9, 900. [Google Scholar] [CrossRef]
- Cabanillas, C.; Stobbia, D.; Ledesma, A. Production and Income of Basil in and out of Season with Vermicomposts from Rabbit Manure and Bovine Ruminal Contents Alternatives to Urea. J. Clean. Prod. 2013, 47, 77–84. [Google Scholar] [CrossRef]
- Damien Wassom, F.; Dakolé Daboy, C.; Meshuneké, A.; Elock Mbang, G.; Niemenak, N.; Annie Ewané, C. Effect of a Biological Compost Based on Tithonia diversifolia on the Growth of Ocimum basilicum L. World J. Agric. Sci. Technol. 2023, 1, 28–37. [Google Scholar] [CrossRef]
- Masmoudi, S.; Magdich, S.; Rigane, H.; Medhioub, K.; Rebai, A.; Ammar, E. Effects of Compost and Manure Application Rate on the Soil Physico-Chemical Layers Properties and Plant Productivity. Waste Biomass Valor. 2020, 11, 1883–1894. [Google Scholar] [CrossRef]
- Pandian, K.; Vijayakumar, S.; Mustaffa, M.R.A.F.; Subramanian, P.; Chitraputhirapillai, S. Biochar—A Sustainable Soil Conditioner for Improving Soil Health, Crop Production and Environment under Changing Climate: A Review. Front. Soil Sci. 2024, 4, 1376159. [Google Scholar] [CrossRef]
- Kumar, S.S.; Wani, O.A.; Malik, A.R.; Kumar, S.; Patel, R. Biochar for Food Security and Environmental Sustainability Under Current Climate Change Scenario. In Agricultural Diversification for Sustainable Food Production; Babu, S., Singh, R., Rathore, S.S., Das, A., Singh, V.K., Eds.; Sustainability Sciences in Asia and Africa; Springer Nature: Singapore, 2024; pp. 59–88. ISBN 978-981-9775-16-3. [Google Scholar]
- Jantamenchai, M.; Sukitprapanon, T.-S.; Tulaphitak, D.; Mekboonsonglarp, W.; Vityakon, P. Organic Phosphorus Forms in a Tropical Sandy Soil after Application of Organic Residues of Different Quality. Geoderma 2022, 405, 115462. [Google Scholar] [CrossRef]
- Manimozhi, R.; Krishnamoorthy, G. Innovative Techniques in Agriculture: Transitioning From Traditional Farming to Precision and Hydroponic Agriculture. Environ. Qual. Manag. 2025, 34, e70047. [Google Scholar] [CrossRef]
- Kim, H.N.; Park, J.H. Monitoring of Soil EC for the Prediction of Soil Nutrient Regime under Different Soil Water and Organic Matter Contents. Appl. Biol. Chem. 2024, 67, 1. [Google Scholar] [CrossRef]
- Rekaby, S.A.; AL-Huqail, A.A.; Gebreel, M.; Alotaibi, S.S.; Ghoneim, A.M. Compost and Humic Acid Mitigate the Salinity Stress on Quinoa (Chenopodium quinoa Willd L.) and Improve Some Sandy Soil Properties. J. Soil Sci. Plant Nutr. 2023, 23, 2651–2661. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, J.; Liu, G.; Kong, Y.; Li, Y.; Li, G.; Luo, Y.; Wang, G.; Yuan, J. Enhancing the Transformation of Carbon and Nitrogen Organics to Humus in Composting: Biotic and Abiotic Synergy Mediated by Mineral Material. Bioresour. Technol. 2024, 393, 130126. [Google Scholar] [CrossRef]
- Kästner, M.; Miltner, A. Chapter 5-SOM and Microbes—What Is Left From Microbial Life. In The Future of Soil Carbon; Garcia, C., Nannipieri, P., Hernandez, T., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 125–163. ISBN 978-0-12-811687-6. [Google Scholar]
- Sarhan, M.; Shehata, A. Effect of Compost Along with Spraying of Methyl Jasmonate and Potassium Silicate on The Productivity of French Basil under Sandy Soil Conditions. Egypt. J. Soil Sci. 2023, 63, 225–241. [Google Scholar] [CrossRef]
- Avramidou, P.; Evangelou, A.; Komilis, D. Use of Municipal Solid Waste Compost as a Growth Media for an Energy Plant (Rapeseed). J. Environ. Manag. 2013, 121, 152–159. [Google Scholar] [CrossRef]
- Peng, G.; Zhang, T.; Lei, X.-Y.; Cui, X.-W.; Lu, Y.-X.; Fan, P.-F.; Long, S.-P.; Huang, J.; Gao, J.-S.; Zhang, Z.-H. Improvement of Soil Fertility and Rice Yield after Long-Term Application of Cow Manure Combined with Inorganic Fertilizers. J. Integr. Agric. 2023, 22, 2221–2232. [Google Scholar]
- Das, S.; Jeong, S.T.; Das, S.; Kim, P.J. Composted Cattle Manure Increases Microbial Activity and Soil Fertility More Than Composted Swine Manure in a Submerged Rice Paddy. Front. Microbiol. 2017, 8, 1702. [Google Scholar] [CrossRef]
- Sanad, H.; Mouhir, L.; Zouahri, A.; Moussadek, R.; El Azhari, H.; Yachou, H.; Ghanimi, A.; Oueld Lhaj, M.; Dakak, H. Assessment of Groundwater Quality Using the Pollution Index of Groundwater (PIG), Nitrate Pollution Index (NPI), Water Quality Index (WQI), Multivariate Statistical Analysis (MSA), and GIS Approaches: A Case Study of the Mnasra Region, Gharb Plain, Morocco. Water 2024, 16, 1263. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Snapp, S.S.; Robertson, G.P. Field-Scale Experiments Reveal Persistent Yield Gaps in Low-Input and Organic Cropping Systems. Proc. Natl. Acad. Sci. USA 2017, 114, 926–931. [Google Scholar] [CrossRef] [PubMed]
- Sulieman, A.M.E.; Abdallah, E.M.; Alanazi, N.A.; Ed-Dra, A.; Jamal, A.; Idriss, H.; Alshammari, A.S.; Shommo, S.A. Spices as Sustainable Food Preservatives: A Comprehensive Review of Their Antimicrobial Potential. Pharmaceuticals 2023, 16, 1451. [Google Scholar] [CrossRef]
- Wahab, A.; Batool, F.; Muhammad, M.; Zaman, W.; Mikhlef, R.M.; Naeem, M. Current Knowledge, Research Progress, and Future Prospects of Phyto-Synthesized Nanoparticles Interactions with Food Crops under Induced Drought Stress. Sustainability 2023, 15, 14792. [Google Scholar] [CrossRef]
- de Oliveira, I.; Chrysargyris, A.; Finimundy, T.C.; Carocho, M.; Santos-Buelga, C.; Calhelha, R.C.; Tzortzakis, N.; Barros, L.; Heleno, S.A. The Influence of Magnesium and Manganese Cations on the Chemical and Bioactive Properties of Purple and Green Basil. Food Funct. 2024, 15, 10644–10662. [Google Scholar] [CrossRef] [PubMed]
- Jakovljević, D. Genetic Diversity, Cultivation, and Utilization of Aromatic Plants. In Industrial Crops Improvement: Biotechnological Approaches for Sustainable Agricultural Development; Kumar, N., Ed.; Springer Nature: Cham, Switzerland, 2025; pp. 171–182. ISBN 978-3-031-75937-6. [Google Scholar]
- Damalas, C.A. Improving Drought Tolerance in Sweet Basil (Ocimum basilicum) with Salicylic Acid. Sci. Hortic. 2019, 246, 360–365. [Google Scholar] [CrossRef]
- Sanad, H.; Oueld lhaj, M.; Zouahri, A.; Saafadi, L.; Dakak, H.; Mouhir, L. Groundwater Pollution by Nitrate and Salinization in Morocco: A Comprehensive Review. J. Water Health 2024, 22, 1756–1773. [Google Scholar] [CrossRef]
- Sanad, H.; Moussadek, R.; Mouhir, L.; Lhaj, M.O.; Zahidi, K.; Dakak, H.; Manhou, K.; Zouahri, A. Ecological and Human Health Hazards Evaluation of Toxic Metal Contamination in Agricultural Lands Using Multi-Index and Geostatistical Techniques across the Mnasra Area of Morocco’s Gharb Plain Region. J. Hazard. Mater. Adv. 2025, 18, 100724. [Google Scholar] [CrossRef]
- Nocentini, M.; Mastrolonardo, G.; Michelozzi, M.; Cencetti, G.; Lenzi, A.; Panettieri, M.; Knicker, H.; Certini, G. Effects of Biochar and Compost Addition in Potting Substrates on Growth and Volatile Compounds Profile of Basil (Ocimum basilicum L.). J. Sci. Food Agric. 2024, 104, 1609–1620. [Google Scholar] [CrossRef]
- Rastogi, M.; Verma, S.; Kumar, S.; Bharti, S.; Kumar, G.; Azam, K.; Singh, V. Soil Health and Sustainability in the Age of Organic Amendments: A Review. Int. J. Environ. Clim. Change 2023, 13, 2088–2102. [Google Scholar] [CrossRef]
- Díaz-Pérez, F.J.; Díaz, R.; Valdés, G.; Valdebenito-Rolack, E.; Hansen, F. Effects of Microalgae and Compost on the Yield of Cauliflower Grown in Low Nutrient Soil. Chil. J. Agric. Res. 2023, 83, 181–194. [Google Scholar] [CrossRef]
- Pagliarini, E.; Gaggìa, F.; Quartieri, M.; Toselli, M.; Di Gioia, D. Yield and Nutraceutical Value of Lettuce and Basil Improved by a Microbial Inoculum in Greenhouse Experiments. Plants 2023, 12, 1700. [Google Scholar] [CrossRef] [PubMed]
- Ashoka, P.; Saikanth, D.; Verma, P. Organic Agriculture: A Sustainable Solution for a Healthy Future. In Advanced Farming Technology; Scripown Publications: Delhi, India, 2023; p. 122. [Google Scholar]
- Mohanty, L.K.; Singh, N.; Raj, P.; Prakash, A.; Tiwari, A.K.; Singh, V.; Sachan, P. Nurturing Crops, Enhancing Soil Health, and Sustaining Agricultural Prosperity Worldwide through Agronomy. J. Exp. Agric. Int. 2024, 46, 46–67. [Google Scholar] [CrossRef]
- Nakachew, K.; Gelaye, Y.; Ali, S.; Gebeyehu, T.; Eskezia, A. Exploring the Application of Zeolite Technology in Ethiopia: A Path to Sustainable Agriculture Development. J. Plant Nutr. Soil Sci. 2025, 188, 17–30. [Google Scholar] [CrossRef]
- Juncal, M.J.L.; Masino, P.; Bertone, E.; Stewart, R.A. Towards Nutrient Neutrality: A Review of Agricultural Runoff Mitigation Strategies and the Development of a Decision-Making Framework. Sci. Total Environ. 2023, 874, 162408. [Google Scholar] [CrossRef]
- Novak, J.M.; Watts, D.W.; Sigua, G.C.; Ducey, T.F. Corn Grain and Stover Nutrient Uptake Responses from Sandy Soil Treated with Designer Biochars and Compost. Agronomy 2021, 11, 942. [Google Scholar] [CrossRef]
- Mwendwa, S. Revisiting Soil Texture Analysis: Practices towards a More Accurate Bouyoucos Method. Heliyon 2022, 8, e09395. [Google Scholar] [CrossRef]
- Oueld Lhaj, M.; Moussadek, R.; Mouhir, L.; Mdarhri Alaoui, M.; Sanad, H.; Iben Halima, O.; Zouahri, A. Assessing the Evolution of Stability and Maturity in Co-Composting Sheep Manure with Green Waste Using Physico-Chemical and Biological Properties and Statistical Analyses: A Case Study of Botanique Garden in Rabat, Morocco. Agronomy 2024, 14, 1573. [Google Scholar] [CrossRef]
- Kheir, A.M.S.; Govind, A.; Zoghdan, M.G.; Khalifa, T.H.; Aboelsoud, H.M.; Shabana, M.M.A. The Fusion Impact of Compost, Biochar, and Polymer on Sandy Soil Properties and Bean Productivity. Agronomy 2023, 13, 2544. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lee, J.J.; Lee, G. Comparative Efficacies of Iron Oxide-Modified Biochar and Pyrite-Modified Biochar for Simultaneous Passivation of Cadmium and Arsenic in Aqueous Solutions and Lettuce (Lactuca sativa. L) Cultivation. Appl. Biol. Chem. 2025, 68, 13. [Google Scholar] [CrossRef]
- Sewpersad, T.; Xulu, S.; Gebreslasie, M. The Assessment of Soil Organic Matter in the KwaZulu-Natal Province of South Africa and Its Relationship to Spectroscopy Data. Geocarto Int. 2024, 39, 2361702. [Google Scholar] [CrossRef]
- Abu El Haija, K.; Chiang, Y.W.; Santos, R.M. On-Site Determination of Soil Organic Carbon Content: A Photocatalytic Approach. Clean Technol. 2024, 6, 784–801. [Google Scholar] [CrossRef]
- Nelson, J.T.; Adjuik, T.A.; Moore, E.B.; VanLoocke, A.D.; Ramirez Reyes, A.; McDaniel, M.D. A Simple, Affordable, Do-It-Yourself Method for Measuring Soil Maximum Water Holding Capacity. Commun. Soil Sci. Plant Anal. 2024, 55, 1190–1204. [Google Scholar] [CrossRef]
- Huang, Y.; Xiong, T.; Zhao, M.; Deng, Y.; Yang, G.; Ban, Y.; Lei, T.; Yu, X.; Huang, Y. Influence of Soil Properties and Near-Surface Roots on Soil Infiltration Process in Short-Rotation Eucalyptus Plantations in Southern Subtropical China. CATENA 2024, 234, 107606. [Google Scholar] [CrossRef]
- Tebeje, A.K.; Abebe, W.B.; Hussein, M.A.; Mhiret, D.A.; Zimale, F.A.; Desta, G.; Assefa, T.T.; Tilahun, S.A.; Ahmed, M.A. Dynamics of Soil Quality in a Conserved Landscape in the Highland Sub Humid Ecosystem, Northwestern Ethiopia. Front. Sustain. Food Syst. 2024, 8, 1270265. [Google Scholar] [CrossRef]
- Rasa, K.; Tähtikarhu, M.; Miettinen, A.; Kähärä, T.; Uusitalo, R.; Mikkola, J.; Hyväluoma, J. A Large One-Time Addition of Organic Soil Amendments Increased Soil Macroporosity but Did Not Affect Intra-Aggregate Porosity of a Clay Soil. Soil Tillage Res. 2024, 242, 106139. [Google Scholar] [CrossRef]
- Aydi, S.; Sassi Aydi, S.; Rahmani, R.; Bouaziz, F.; Souchard, J.P.; Merah, O.; Abdelly, C. Date-Palm Compost as Soilless Substrate Improves Plant Growth, Photosynthesis, Yield and Phytochemical Quality of Greenhouse Melon (Cucumis melo L.). Agronomy 2023, 13, 212. [Google Scholar] [CrossRef]
- Zhang, X.; Warren, C.J.; Spiers, G.; Voroney, P. Comparison of the Integral Suspension Pressure (ISP) and the Hydrometer Methods for Soil Particle Size Analysis. Geoderma 2024, 442, 116792. [Google Scholar] [CrossRef]
- Ud Din, M.M.; Khan, M.I.; Azam, M.; Ali, M.H.; Qadri, R.; Naveed, M.; Nasir, A. Effect of Biochar and Compost Addition on Mitigating Salinity Stress and Improving Fruit Quality of Tomato. Agronomy 2023, 13, 2197. [Google Scholar] [CrossRef]
- González-Espíndola, L.Á.; Pedroza-Sandoval, A.; Trejo-Calzada, R.; Jacobo-Salcedo, M.D.R.; García De Los Santos, G.; Quezada-Rivera, J.J. Relative Water Content, Chlorophyll Index, and Photosynthetic Pigments on Lotus corniculatus L. in Response to Water Deficit. Plants 2024, 13, 961. [Google Scholar] [CrossRef]
- Perbellini, A.; Pelloso, F.; Grigolato, S.; Zanchin, A.; Guerrini, L. Evaluation of Fractions Obtained Through Steam Distillation and Hydroalcoholic Maceration of Wood Chips from Pinus mugo for Flavouring Italian Spirit grappa. Beverages 2025, 11, 14. [Google Scholar] [CrossRef]
- Souri, M.K.; Hatamian, M.; Tesfamariam, T. Plant Growth Stage Influences Heavy Metal Accumulation in Leafy Vegetables of Garden Cress and Sweet Basil. Chem. Biol. Technol. Agric. 2019, 6, 25. [Google Scholar] [CrossRef]
- Rajendiran, D.; Harikrishnan, N.; Veeramuthu, K. Heavy Metal Concentrations and Pollution Indicators in the Ennore Ecosystem, East Coast of Tamilnadu, India Using Atomic Absorption Spectrometry Study with Statistical Approach. Sci. Rep. 2025, 15, 9161. [Google Scholar] [CrossRef] [PubMed]
- Atta, M.I.; Zehra, S.S.; Dai, D.-Q.; Ali, H.; Naveed, K.; Ali, I.; Sarwar, M.; Ali, B.; Iqbal, R.; Bawazeer, S.; et al. Amassing of Heavy Metals in Soils, Vegetables and Crop Plants Irrigated with Wastewater: Health Risk Assessment of Heavy Metals in Dera Ghazi Khan, Punjab, Pakistan. Front. Plant Sci. 2023, 13, 1080635. [Google Scholar] [CrossRef]
- Pan, S.; Liu, Z.; Han, Y.; Zhang, D.; Zhao, X.; Li, J.; Wang, K. Using the Pearson’s Correlation Coefficient as the Sole Metric to Measure the Accuracy of Quantitative Trait Prediction: Is It Sufficient? Front. Plant Sci. 2024, 15, 1480463. [Google Scholar] [CrossRef]
- Li, R.; Tao, R.; Ling, N.; Chu, G. Chemical, Organic and Bio-Fertilizer Management Practices Effect on Soil Physicochemical Property and Antagonistic Bacteria Abundance of a Cotton Field: Implications for Soil Biological Quality. Soil Tillage Res. 2017, 167, 30–38. [Google Scholar] [CrossRef]
- Francioli, D.; Schulz, E.; Lentendu, G.; Wubet, T.; Buscot, F.; Reitz, T. Mineral vs. Organic Amendments: Microbial Community Structure, Activity and Abundance of Agriculturally Relevant Microbes Are Driven by Long-Term Fertilization Strategies. Front. Microbiol. 2016, 7, 1446. [Google Scholar] [CrossRef]
- Sanad, H.; Moussadek, R.; Dakak, H.; Zouahri, A.; Oueld Lhaj, M.; Mouhir, L. Ecological and Health Risk Assessment of Heavy Metals in Groundwater within an Agricultural Ecosystem Using GIS and Multivariate Statistical Analysis (MSA): A Case Study of the Mnasra Region, Gharb Plain, Morocco. Water 2024, 16, 2417. [Google Scholar] [CrossRef]
- Sundberg, C.; Yu, D.; Franke-Whittle, I.; Kauppi, S.; Smårs, S.; Insam, H.; Romantschuk, M.; Jönsson, H. Effects of pH and Microbial Composition on Odour in Food Waste Composting. Waste Manag. 2013, 33, 204–211. [Google Scholar] [CrossRef]
- El-Akhdar, I.; Shabana, M.M.A.; El-Khateeb, N.M.M.; Elhawat, N.; Alshaal, T. Sustainable Wheat Cultivation in Sandy Soils: Impact of Organic and Biofertilizer Use on Soil Health and Crop Yield. Plants 2024, 13, 3156. [Google Scholar] [CrossRef]
- Liang, B.; Yang, X.; He, X.; Murphy, D.V.; Zhou, J. Long-Term Combined Application of Manure and NPK Fertilizers Influenced Nitrogen Retention and Stabilization of Organic C in Loess Soil. Plant Soil 2012, 353, 249–260. [Google Scholar] [CrossRef]
- Cannavo, P.; Herbreteau, A.; Juret, D.; Martin, M.; Guénon, R. Short-term Effects of Food Waste Composts on Physicochemical Soil Quality and Horticultural Crop Production. J. Plant Nutr. Soil Sci. 2024, 188, 31–44. [Google Scholar] [CrossRef]
- Kwiatkowska-Malina, J. Qualitative and Quantitative Soil Organic Matter Estimation for Sustainable Soil Management. J. Soils Sediments 2018, 18, 2801–2812. [Google Scholar] [CrossRef]
- Gautam, A.; Guzman, J.; Kovacs, P.; Kumar, S. Manure and Inorganic Fertilization Impacts on Soil Nutrients, Aggregate Stability, and Organic Carbon and Nitrogen in Different Aggregate Fractions. Arch. Agron. Soil Sci. 2022, 68, 1261–1273. [Google Scholar] [CrossRef]
- Yazdanpanah, N.; Mahmoodabadi, M.; Cerdà, A. The Impact of Organic Amendments on Soil Hydrology, Structure and Microbial Respiration in Semiarid Lands. Geoderma 2016, 266, 58–65. [Google Scholar] [CrossRef]
- Gerke, J. The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage. Soil Syst. 2022, 6, 33. [Google Scholar] [CrossRef]
- Al-Suhaibani, N.; Selim, M.; Alderfasi, A.; El-Hendawy, S. Comparative Performance of Integrated Nutrient Management between Composted Agricultural Wastes, Chemical Fertilizers, and Biofertilizers in Improving Soil Quantitative and Qualitative Properties and Crop Yields under Arid Conditions. Agronomy 2020, 10, 1503. [Google Scholar] [CrossRef]
- Agegnehu, G.; vanBeek, C.; Bird, M.I. Influence of Integrated Soil Fertility Management in Wheat and Tef Productivity and Soil Chemical Properties in the Highland Tropical Environment. J. Soil Sci. Plant Nutr. 2014, 14, 532–545. [Google Scholar] [CrossRef]
- Oueld Lhaj, M.; Moussadek, R.; Zouahri, A.; Sanad, H.; Saafadi, L.; Mdarhri Alaoui, M.; Mouhir, L. Sustainable Agriculture Through Agricultural Waste Management: A Comprehensive Review of Composting’s Impact on Soil Health in Moroccan Agricultural Ecosystems. Agriculture 2024, 14, 2356. [Google Scholar] [CrossRef]
- Ozlu, E.; Kumar, S. Response of Soil Organic Carbon, pH, Electrical Conductivity, and Water Stable Aggregates to Long-Term Annual Manure and Inorganic Fertilizer. Soil Sci. Soc. Am. J. 2018, 82, 1243–1251. [Google Scholar] [CrossRef]
- Kavdır, Y.; İşler, N. Effect of Compost Addition on Porosity and Hydraulic Properties of Different Textured Soils. J. Adv. Res. Nat. Appl. Sci. 2024, 10, 833–844. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Nurse, R.E.; Phillips, L.A.; Drury, C.F.; Yang, X.M.; Page, E.R. Characterizing Mass–Volume–Density–Porosity Relationships in a Sandy Loam Soil Amended with Compost. Can. J. Soil Sci. 2020, 100, 289–301. [Google Scholar] [CrossRef]
- Das, S.K.; Ghosh, G.K.; Avasthe, R. Biochar Application for Environmental Management and Toxic Pollutant Remediation. Biomass Convers. Biorefinery 2023, 13, 555–566. [Google Scholar] [CrossRef]
- Dincă, L.C.; Grenni, P.; Onet, C.; Onet, A. Fertilization and Soil Microbial Community: A Review. Appl. Sci. 2022, 12, 1198. [Google Scholar] [CrossRef]
- Liu, W.; Yang, Z.; Ye, Q.; Peng, Z.; Zhu, S.; Chen, H.; Liu, D.; Li, Y.; Deng, L.; Shu, X.; et al. Positive Effects of Organic Amendments on Soil Microbes and Their Functionality in Agro-Ecosystems. Plants 2023, 12, 3790. [Google Scholar] [CrossRef]
- Song, D.; Dai, X.; Guo, T.; Cui, J.; Zhou, W.; Huang, S.; Shen, J.; Liang, G.; He, P.; Wang, X.; et al. Organic Amendment Regulates Soil Microbial Biomass and Activity in Wheat-Maize and Wheat-Soybean Rotation Systems. Agric. Ecosyst. Environ. 2022, 333, 107974. [Google Scholar] [CrossRef]
- Manhou, K.; Mouna, T.; Moussadek, R.; Zouahri, A.; Ghanimi, A.; Sanad, H.; Lhaj, M.O.; Hmouni, D.; Dakak, H. Genetic Diversity and Performance of Durum Wheat (Triticum turgidum L. ssp. Durum Desf.) Germplasm Based on Agro-Morphological and Quality Traits: Experimentation and Statistical Analysis. Preprints 2025. [Google Scholar] [CrossRef]
- Abd-Elhalim, B.; Gideon, M.; Kuzmin, A.; Boyi, M. Impact of Dumpsite Compost on Heavy Metal Accumulation in Some Cultivated Plants. BMC Res. Notes 2025, 18, 20. [Google Scholar] [CrossRef]
- Adagunodo, T.A.; Sunmonu, L.A.; Emetere, M.E. Heavy Metals’ Data in Soils for Agricultural Activities. Data Brief 2018, 18, 1847–1855. [Google Scholar] [CrossRef]
- Ahmad, K.; Ashfaq, A.; Khan, Z.I.; Ashraf, M.; Akram, N.A.; Yasmin, S.; Batool, A.I.; Sher, M.; Shad, H.A.; Khan, A.; et al. Health Risk Assessment of Heavy Metals and Metalloids via Dietary Intake of a Potential Vegetable (Coriandrum sativum L.) Grown in Contaminated Water Irrigated Agricultural Sites of Sargodha, Pakistan. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 597–610. [Google Scholar] [CrossRef]
- Khan, Z.I.; Haider, R.; Ahmad, K.; Nadeem, M.; Ashfaq, A.; Alrefaei, A.F.; Almutairi, M.H.; Mehmood, N.; Batool, A.I.; Memona, H.; et al. Evaluation of Cu, Zn, Fe, and Mn Concentrations in Water, Soil, and Fruit Samples in Sargodha District, Pakistan. Sustainability 2023, 15, 15696. [Google Scholar] [CrossRef]
- Ogunlana, R.; Korode, A.I.; Ajibade, Z.F. Assessing the Level of Heavy Metals Concentration in Soil around Transformer at Akoko Community of OndoState, Nigeria. J. Appl. Sci. Environ. Manag. 2020, 24, 2183–2189. [Google Scholar] [CrossRef]
- Genua, F.; Lancellotti, I.; Leonelli, C. Geopolymer-Based Stabilization of Heavy Metals, the Role of Chemical Agents in Encapsulation and Adsorption: Review. Polymers 2025, 17, 670. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Zhang, B.; Chachar, Z.; Li, J.; Xiao, G.; Wang, Q.; Hayat, F.; Deng, L.; Narejo, M.-N.; Bozdar, B.; et al. Micronutrients and Their Effects on Horticultural Crop Quality, Productivity and Sustainability. Sci. Hortic. 2024, 323, 112512. [Google Scholar] [CrossRef]
- Wieczorek, J.; Baran, A.; Bubak, A. Mobility, Bioaccumulation in Plants, and Risk Assessment of Metals in Soils. Sci. Total Environ. 2023, 882, 163574. [Google Scholar] [CrossRef]
- Mylavarapu, R.S.; Zinati, G.M. Improvement of Soil Properties Using Compost for Optimum Parsley Production in Sandy Soils. Sci. Hortic. 2009, 120, 426–430. [Google Scholar] [CrossRef]
- Abdelfattah, M.A.; Rady, M.M.; Belal, H.E.E.; Belal, E.E.; Al-Qthanin, R.; Al-Yasi, H.M.; Ali, E.F. Revitalizing Fertility of Nutrient-Deficient Virgin Sandy Soil Using Leguminous Biocompost Boosts Phaseolus vulgaris Performance. Plants 2021, 10, 1637. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Hameed, A.; Aslam, S.; Ullah, R.; Kashif, A. Phytoremediation of Metal-Contaminated Soils and Water in Pakistan: A Review. Water Air Soil Pollut. 2022, 234, 11. [Google Scholar] [CrossRef]
- Voca, H.; Piscitelli, L.; Mezzapesa, G.N.; Mondelli, D.; Miano, T.; D’Orazio, V. Biochar Effect on Crop Performance and Pb and Zn Uptake of Tomato (Solanum lycopersicum, L.) Plants Grown on Heavy Metals Contaminated Kosovo Soils. J. Environ. Sci. Health Part B 2020, 55, 844–853. [Google Scholar] [CrossRef]
- Aithani, D.; Kushawaha, J. Heavy Metals Contamination in Environment. In Remediation of Heavy Metals; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2024; pp. 15–30. ISBN 978-1-119-85358-9. [Google Scholar]
- Ladha, J.K.; Jat, M.L.; Stirling, C.M.; Chakraborty, D.; Pradhan, P.; Krupnik, T.J.; Sapkota, T.B.; Pathak, H.; Rana, D.S.; Tesfaye, K.; et al. Chapter Two—Achieving the Sustainable Development Goals in Agriculture: The Crucial Role of Nitrogen in Cereal-Based Systems. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2020; Volume 163, pp. 39–116. [Google Scholar]
- Ansar, A.; Du, J.; Javed, Q.; Adnan, M.; Javaid, I. Biodegradable Waste in Compost Production: A Review of Its Economic Potential. Nitrogen 2025, 6, 24. [Google Scholar] [CrossRef]
- De Corato, U. Agricultural Waste Recycling in Horticultural Intensive Farming Systems by On-Farm Composting and Compost-Based Tea Application Improves Soil Quality and Plant Health: A Review under the Perspective of a Circular Economy. Sci. Total Environ. 2020, 738, 139840. [Google Scholar] [CrossRef] [PubMed]
Compost | ||||||||
---|---|---|---|---|---|---|---|---|
Parameters | pH | CE | OM | N | P | K | WHC | C/N |
Unit | - | mS/cm | %DM | %DM | %DM | %DM | % | - |
Compost | 6.8 | 2.92 | 29 | 1.98 | 3.22 | 0.61 | 122 | 16.15 |
Compost | ||||||||
Parameters | Zn | Cu | Fe | Mn | Cd | Pb | Ni | As |
Unit | mg/kg DM | mg/kg DM | mg/kg DM | mg/kg DM | mg/kg DM | mg/kg DM | mg/kg DM | mg/kg DM |
Compost | 83 | ND | 321 | 230 | ND | ND | ND | ND |
Soil Chemical Properties | ||||||||
---|---|---|---|---|---|---|---|---|
Samples | PH | EC (µS/cm) | SOM (%) | SOC (%) | ||||
Initial | Final | Initial | Final | Initial | Final | Initial | Final | |
T1 | 7.35 ± 0.8 b | 7.31 ± 0.52 a | 201 ± 1.23 f | 200 ± 0.23 f | 1.29 ± 0.32 f | 1.1 ± 0.24 f | 0.75 ± 0.89 f | 0.63 ± 0.65 f |
T2 | 7.33 ± 0.15 b | 7.31 ± 0.42 a | 360 ± 0.36 e | 358 ± 0.62 e | 4.59 ± 0.65 e | 4.2 ± 0.89 e | 2.66 ± 0.97 e | 2.43 ± 0.54 e |
T3 | 7.29 ± 0.2 c | 7.25 ± 1.02 b | 486 ± 0.65 d | 470 ± 0.15 d | 7.06 ± 0.03 d | 6.7 ± 0.65 d | 4.09 ± 0.36 d | 3.88 ± 0.12 d |
T4 | 7.26 + 0.35 d | 7.22 ± 0.94 b,c | 632 ± 1.23 c | 658 ± 1.15 c | 13.71 ± 0.21 b | 12.8 ± 0.15 b | 7.95 ± 0.87 b | 7.42 ± 0.01 b |
T5 | 7.22 ± 2.01 e | 7.18 ± 1.21 c | 858 ± 0.78 a | 803 ± 0.25 a | 14.62 ± 0.42 a | 13.2 ± 0.23 a | 8.48 ± 0.23 a | 7.65 ± 0.12 a |
T6 | 7.42 ± 0.35 a | 7.32 ± 1.36 a | 704 ± 0.66 b | 700 ± 2.01 b | 1.28 ± 0.32 f | 1.12 ± 0.24 f | 0.75 ± 0.92 f | 0.63 ± 0.67 f |
Soil chemical properties | ||||||||
Samples | Av. N (%) | Ex. K (mg/kg) | Av. P (mg/kg) | Ca (mg/kg) | ||||
Initial | Final | Initial | Final | Initial | Final | Initial | Final | |
T1 | 0.07± 0.23 c | 0.05 ± 0.89 c | 41.25 ± 0.25 f | 32.5 ± 0.65 f | 31.85 ± 0.54 f | 24.77 ± 0.81 f | 16.5 ± 0.66 e | 13 ± 0.01 f |
T2 | 0.13 ± 0.65 b | 0.11 ± 0.58 b | 330 ± 2.15 e | 315 ± 1.33 e | 50.85 ± 0.78 e | 48.37 ± 1.54 e | 21.5 ± 0.21 d,e | 19 ± 2.36 e |
T3 | 0.13 ± 0.54 b | 0.11 ± 0.26 a,b | 495 ± 0.17 d | 460 ± 0.26 d | 59.34 ± 0.64 d | 57.69 ± 0.96 d | 27.5 ± 0.20 d | 23 ± 1.23 d |
T4 | 0.16 ± 0.84 a,b | 0.13 ± 0.14 a,b | 555 ± 1.66 c | 525 ± 0.63 c | 81.17 ± 0.98 c | 77.04 ± 1.23 c | 37.5 ± 0.36 c | 32 ± 0.75 c |
T5 | 0.13 ± 0.78 a,b | 0.11 ± 2.6 a,b | 1612.5 ± 0.55 b | 1475 ± 0.42 b | 82.94 ± 0.33 b | 80.70 ± 0.45 b | 60 ± 0.66 a | 52.5 ± 0.42 a |
T6 | 0.17 ± 0.99 a | 0.14 ± 0.14 a | 1825 ± 0.69 a | 1725 ± 0.25 a | 105.48 ± 1.22 a | 100.52 ± 0.33 a | 50 ± 0.75 b | 46 ± 0.55 b |
Soil chemical properties | ||||||||
Samples | Mg (mg/kg) | CEC cmol/kg | ||||||
Initial | Final | Initial | Final | |||||
T1 | 21.5 ± 0.66 c | 17 ± 0.14 f | 11 ± 0.43 e | 9 ± 0.54 d | ||||
T2 | 28.5 ± 0.23 b | 25.5 ± 1.65 e | 14 ± 0.58 d | 11 ± 0.87 d | ||||
T3 | 30.05 ± 0.41 b | 27 ± 1.66 d | 22 ± 0.32 c | 20 ± 0.31 c | ||||
T4 | 32.5 ± 0.84 b | 29 ± 0.98 c | 28 ± 0.25 b | 23 ± 1.65 b | ||||
T5 | 45 ± 0.55 a | 35 ± 1.85 b | 35 ± 1.26 a | 28 ± 0.51 a | ||||
T6 | 50 ± 0.32 a | 44 ± 0.63 a | 24 ± 0.54 c | 22 ± 0.15 b,c |
Soil physical properties | ||||||||
---|---|---|---|---|---|---|---|---|
Samples | WHC (%) | IR (m/s) | BD (g/cm3) | TP (%) | ||||
Initial | Final | Initial | Final | Initial | Final | Initial | Final | |
T1 | 32 ± 0.23 e | 35 ± 0.58 e | 3.32 ± 0.74 f | 6.1 ± 0.64 a | 1.5 ± 0.34 a | 1.51 ± 0.54 a | 40.39 ± 0.17 e | 40.32 ± 0.54 e |
T2 | 50 ± 0.78 d | 53 ± 0.75 d | 4.45 ± 0.61 d | 5.1 ± 0.84 b | 1.4 ± 0.47 a,b | 1.4 ± 1.65 b | 43.2 ± 0.61 d | 43 ± 0.35 d |
T3 | 69 ± 0.65 c | 68 ± 0.62 c | 5.56 ± 0.54 c | 3.2 ± 0.71 c | 1.2 ± 0.66 c,d | 1.22 ± 0.23 c | 49 ± 0.75 c | 49.2 ± 0.05 c |
T4 | 97 ± 1.65 b | 98 ± 1.24 b | 7.23 ± 0.65 b | 2.6 ± 0.64 d | 1.05 ± 1.47 d | 1.09 ± 0.17 d | 52 ± 0.56 b | 52 ± 0.01 b |
T5 | 110 ± 0.85 a | 112 ± 0.48 a | 7.78 ± 0.76 a | 1.4 ± 0.47 e | 0.9 ± 1.36 e | 0.97 ± 0.26 e | 58 ± 0.97 a | 57.5 ± 0.19 a |
T6 | 52 ± 0.74 d | 51 ± 0.36 d | 3.61 ± 0.87 e | 5.1 ± 0.21 b | 1.3 ± 0.58 b,c | 1.1 ± 0.74 d | 41 ± 0.71 e | 41 ± 0.65 e |
Soil physical properties | ||||||||
Samples | WRC (%) | Particle size distribution (%) | ||||||
>3 mm | 3–2 mm | 2–1 mm | ||||||
Initial | Final | Initial | Final | Initial | Final | Initial | Final | |
T1 | 17 ± 0.21 e | 16 ± 0.22 e | 43 ± 0.65 a | 44 ± 0.48 a | 36.8 ± 1.65 d | 35.8 ± 0.62 d | 15.1 ± 0.15 c | 15.1 ± 0.41 c,d |
T2 | 21 ± 0.64 d | 20.8 ± 0.81 d | 42 ± 0.61 a,b | 42 ± 0.47 a,b | 37.8 ± 0.15 c,d | 37.5 ± 0.25 c,d | 16.1 ± 0.51 b,c | 16.4 ± 0.62 a,b |
T3 | 25 ± 0.14 c | 24.9 ± 0.61 c | 39 ± 0.17 c | 40 ± 0.15 b | 39 ± 0.65 b,c | 38 ± 0.15 b,c | 16 ± 0.26 b,c | 15 ± 0.11 d |
T4 | 32 ± 0.75 b | 32 ± 0.97 b | 40 ± 0.64 b,c | 41 ± 0.65 b | 40 ± 0.26 b | 40 ± 0.18 a,b | 16.8 ± 0.25 a,b | 15.8 ± 0.02 b,c,d |
T5 | 35 ± 0.66 a | 35 ± 0.17 a | 34 ± 1.31 d | 34 ± 0.17 c | 43 ± 0.16 a | 43 ± 0.11 a | 17.3 ± 0.48 a | 17.3 ± 0.28 a |
T6 | 19 ± 0.64 d,e | 19 ± 0.44 d | 42 ± 0.23 a,b | 42 ± 0.18 a,b | 37 ± 0.29 c,d | 37 ± 0.55 c,d | 16.1 ± 1.51 b,c | 16.1 ± 0.26 b,c |
Soil physical properties | ||||||||
Samples | Particle size distribution (%) | |||||||
1–0.25 mm | <0.25 mm | |||||||
Initial | Final | Initial | Final | |||||
T1 | 3.9± 0.25 b,c | 3.9 ± 0.64 b,c | 1.2 ± 0.12 c | 1.2 ± 0.66 c | ||||
T2 | 3.1 ± 0.21 c,d | 3.1 ± 0.41 c,d | 1 ± 0.15 c,b | 1 ± 0.15 c,b | ||||
T3 | 4.5 ± 0.15 a,b | 4.5 ± 1.35 a,b | 1.5 ± 0.26 b | 1.5 ± 0.66 b | ||||
T4 | 2.4 ± 0.01 d | 2.4 ± 0.98 d | 0.8 ± 0.17 d,e | 0.8 ± 0.55 d,e | ||||
T5 | 5 ± 0.15 a | 5 ± 0.18 a | 0.7 ± 0.61 e | 0.7 ± 0.11 e | ||||
T6 | 3.1 ± 0.54 c,d | 3.1 ± 0.71 c,d | 1.8 ± 0.12 a | 1.8 ± 0.64 a |
Shoot | ||||||
---|---|---|---|---|---|---|
Samples | SFW (g) | SDW (g) | SL (cm) | NL | NB | NYL |
T1 | 67.3 ± 0.31 f | 6.28 ± 0.91 f | 15.3 ± 0.15 f | 11 ± 0.15 e | 4 ± 0.26 d | 9 ± 0.15 a |
T2 | 93.5 ± 0.26 e | 10.29 ± 0.04 e | 22.4 ± 0.16 e | 32 ± 0.35 d | 6 ± 0.84 c,d | 22 ± 0.11 a |
T3 | 152.6 ± 0.01 d | 16.02 ± 0.61 d | 35 ± 0.16 d | 51 ± 0.74 c | 8 ± 0.05 c | 10 ± 0.66 b |
T4 | 213.4 ± 0.11 a | 25.6 ± 0.17 a | 42 ± 0.21 b | 60 ± 0.16 b | 12 ± 0.22 b | 5 ± 0.36 c |
T5 | 201.15 ± 0.45 b | 22.15 ± 0.56 b | 39 ± 0.16 c | 58 ± 0.35 b | 11 ± 0.26 b | 8 ± 0.05 b |
T6 | 172.3 ± 0.25 c | 17.23 ± 0.84 c | 45 ± 0.61 a | 68 ± 0.62 a | 17 ± 0.51 a | 1.5 ± 0.61 d |
Shoot | Seeds | |||||
Samples | NF | Av. N (%) | P (%) | K (%) | Weightof 100 Seeds (g) | |
T1 | 10 ± 0.36 f | 1.1 ± 0.36 e | 0.15 ± 0.26 f | 1.20 ± 0.05 f | 0.19 ± 0.11 e | |
T2 | 22 ± 0.54 e | 1.92 ± 0.65 d | 0.17 ± 0.26 e | 1.22 ± 0.32 e | 0.22 ± 0.62 d | |
T3 | 37 ± 0.30 d | 2.14 ± 0.31 c | 0.24 ± 0.42 d | 1.24 ± 0.14 d | 0.28 ± 1.63 c | |
T4 | 63 ± 0.22 b | 2.42 ± 0.14 b | 0.26 ± 0.62 b | 1.72 ± 1.66 b | 0.32 ± 0.69 b | |
T5 | 59 ± 1.32 c | 2.23 ± 0.62 c | 0.25 ± 0.75 c | 1.68 ± 1.80 c | 0.34 ± 0.35 a,b | |
T6 | 72 ± 1.65 a | 2.8 ± 0.17 a | 0.28 ± 0.95 a | 2.2 ± 0.36 a | 0.35 ± 0.36 a | |
Root | ||||||
Samples | PRL (cm) | RFW (g) | RDW (g) | |||
T1 | 15.3 ± 0.22 f | 6.4 ± 0.47 f | 1.34 ± 0.54 f | |||
T2 | 18.2 ± 0.36 e | 9.2 ± 0.31 e | 2.04 ± 0.65 e | |||
T3 | 18.95 ± 0.75 d | 10.3 ± 0.18 d | 2.28 ± 0.65 d | |||
T4 | 22.4 ± 0.63 b | 13.5 ± 0.88 b | 2.56 ± 0.64 b | |||
T5 | 21.5 ± 0.15 c | 12.8 ± 0.69 c | 2.8 ± 0.64 c | |||
T6 | 23.6 ± 0.61 a | 13.9 ± 0.79 a | 3.19 ± 0.65 a |
Leaf | |||||
---|---|---|---|---|---|
Samples | MSI (%) | RWC (%) | ALL (cm) | ALW (cm) | ALA (cm2) |
T1 | 50.1 ± 0.62 f | 51.4 ± 0.31 e | 2.2 ± 0.34 f | 17 ± 0.36 e | 2.93 ± 0.61 f |
T2 | 72.4 ± 0.16 e | 73.2 ± 0.21 c | 3.4 ± 0.36 e | 2.15 ± 0.35 d | 5.74 ± 0.36 e |
T3 | 79.12 ± 0.36 d | 79.4 ± 0.36 b | 6.8 ± 0.36 d | 3.5 ± 0.75 c | 18.69 ± 0.25 d |
T4 | 90.5 ± 0.15 b | 84.4 ± 0.36 a | 9.2 ± 0.36 b | 3.8 ± 0.15 b | 27.45 ± 0.36 b |
T5 | 89.5 ± 0.14 c | 84.3 ± 0.26 a | 8.2 ± 0.35 c | 3.6 ± 1.64 a,b | 23.18 ± 0.61 c |
T6 | 91.4 ± 0.6 a | 60.3 ± 0.20 d | 9.5 ± 0.36 a | 3.8 ± 0.31 a | 28.35 ± 0.61 a |
Leaf | |||||
Samples | Total Chlorophyll (mg/g FW) | Chlorophyll a (mg/g FW) | Chlorophyll b (mg/g FW) | EOC (%) | |
T1 | 2.11 ± 0.62 e | 1.73 ± 0.36 c | 0.38 ± 0.21 c | 0.5 ± 0.22 d | |
T2 | 2.57 ± 0.14 d | 2.17 ± 1.62 b | 0.4 ± 0.36 b,c | 0.54 ± 0.66 c,d | |
T3 | 2.7 ± 0.98 c | 2.24 ± 0.31 b | 0.46 ± 0.65 b,c | 0.62 ± 0.15 c | |
T4 | 3.01 ± 0.15 b | 2.48 ± 0.36 a | 0.53 ± 0.36 a,b | 0.83 ± 0.78 a,b | |
T5 | 2.92 ± 0.62 a,b | 2.4 ± 0.60 a | 0.52 ± 0.67 a,b | 0.74 ± 0.32 b | |
T6 | 3.12 ± 0.71 a | 2.5 ± 0.45 a | 0.62 ± 0.75 a | 0.93 ± 0.25 a |
Zn (mg/kg DM) | Fe (mg/kg DM) | Mn (mg/kg DM) | ||||
---|---|---|---|---|---|---|
Samples | Soil | Plant | Soil | Plant | Soil | Plant |
T1 | 9 | 18 | 48 | 40 | 28 | 19 |
T2 | 20 | 25 | 52 | 55 | 60 | 22 |
T3 | 29 | 33 | 73 | 70 | 88 | 30 |
T4 | 42 | 42 | 85 | 81 | 90 | 35 |
T5 | 53 | 50 | 98 | 110 | 98 | 41 |
T6 | 9 | 20 | 50 | 45 | 30 | 2 |
Cd (mg/kg DM) | Pb (mg/kg DM) | Cu (mg/kg DM) | ||||
Samples | Soil | Plant | Soil | Plant | Soil | Plant |
T1 | 0.22 | 0.014 | 5.3 | 0.09 | 3.2 | 1.2 |
T2 | 0.23 | 0.015 | 5.6 | 0.10 | 3.3 | 1.19 |
T3 | 0.25 | 0.016 | 5.42 | 0.08 | 3.4 | 1.3 |
T4 | 0.21 | 0.013 | 5.2 | 0.06 | 3.21 | 1.07 |
T5 | 0.25 | 0.015 | 5.3 | 0.11 | 3.4 | 1.19 |
T6 | 0.23 | 0.014 | 5.51 | 0.1 | 3.2 | 1.2 |
Samples | ACF-Zn | ACF-Fe | ACF-Mn | ACF-Cd | ACF-Pd | ACF-Cu |
---|---|---|---|---|---|---|
T1 | 2.00 | 0.83 | 0.68 | 0.064 | 0.017 | 0.375 |
T2 | 1.25 | 1.06 | 0.37 | 0.065 | 0.018 | 0.361 |
T3 | 1.14 | 0.96 | 0.34 | 0.064 | 0.015 | 0.382 |
T4 | 1.00 | 0.95 | 0.39 | 0.062 | 0.012 | 0.333 |
T5 | 0.94 | 1.12 | 0.42 | 0.060 | 0.021 | 0.350 |
T6 | 2.22 | 0.90 | 0.07 | 0.061 | 0.018 | 0.375 |
Variables | pH | EC | SOM | SOC | Av. N | K | P | Ca | Mg | CEC | WHC | IR | BD | TP | WRC | SFW | SDW | SL | Weight of 100 Seeds | MSI | RWC | TCh | EOC | PRL | RFW | RDW |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | |||||||||||||||||||||||||
EC | −0.406 | 1 | ||||||||||||||||||||||||
SOM | −0.638 | 0.903 | 1 | |||||||||||||||||||||||
SOC | −0.548 | 0.743 | 1.000 | 1 | ||||||||||||||||||||||
Av. N | −0.144 | 0.425 | 0.377 | 0.555 | 1 | |||||||||||||||||||||
K | −0.216 | 0.842 | 0.866 | 0.800 | 0.752 | 1 | ||||||||||||||||||||
P | −0.116 | 0.782 | 0.713 | 0.855 | 0.841 | 1.000 | 1 | |||||||||||||||||||
Ca | −0.406 | 1.000 | 0.943 | 0.785 | 0.638 | 0.785 | 0.943 | 1 | ||||||||||||||||||
Mg | −0.306 | 0.789 | 0.855 | 0.815 | 0.820 | 1.000 | 1.000 | 0.943 | 1 | |||||||||||||||||
CEC | −0.638 | 0.874 | 1.000 | 1.000 | 0.577 | 0.785 | 0.829 | 0.951 | 0.855 | 1 | ||||||||||||||||
WHC | −0.899 | 0.657 | 0.756 | 0.885 | 0.254 | 0.475 | 0.429 | 0.657 | 0.429 | 0.766 | 1 | |||||||||||||||
IR | −0.868 | 0.754 | 0.844 | 0.885 | 0.308 | 0.541 | 0.551 | 0.754 | 0.551 | 0.855 | 0.986 | 1 | ||||||||||||||
BD | 0.518 | −0.943 | −1.000 | −1.000 | −0.577 | −0.855 | −0.829 | −0.943 | −0.751 | −1.000 | −0.829 | −0.899 | 1 | |||||||||||||
TP | −0.899 | 0.601 | 0.525 | 0.851 | 0.155 | 0.429 | 0.320 | 0.657 | 0.429 | 0.886 | 1.000 | 0.986 | −0.786 | 1 | ||||||||||||
WRC | −0.751 | 0.655 | 0.796 | 0.801 | 0.255 | 0.349 | 0.429 | 0.657 | 0.420 | 0.856 | 1.000 | 0.756 | −0.929 | 1.000 | 1 | |||||||||||
SFW | −0.552 | 0.888 | 0.955 | 0.962 | 0.698 | 0.884 | 0.771 | 0.829 | 0.781 | 0.753 | 0.771 | 0.802 | −0.753 | 0.871 | 0.771 | 1 | ||||||||||
SDW | −0.545 | 0.859 | 0.900 | 0.955 | 0.698 | 0.455 | 0.771 | 0.777 | 0.801 | 0.843 | 0.842 | 0.741 | −0.863 | 0.903 | 0.841 | 1.000 | 1 | |||||||||
SL | −0.058 | 0.855 | 0.751 | 0.771 | 0.941 | 0.855 | 0.943 | 0.755 | 0.943 | 0.746 | 0.371 | 0.493 | −0.521 | 0.371 | 0.321 | 0.829 | 0.829 | 1 | ||||||||
Weight of 100 seeds | −0.116 | 0.943 | 0.855 | 0.829 | 0.820 | 1.000 | 1.000 | 0.943 | 1.000 | 0.829 | 0.429 | 0.551 | −0.829 | 0.429 | 0.429 | 0.841 | 0.771 | 0.943 | 1 | |||||||
MSI | −0.058 | 0.829 | 0.700 | 0.901 | 0.941 | 0.785 | 0.943 | 0.829 | 0.893 | 0.746 | 0.371 | 0.493 | −0.801 | 0.371 | 0.371 | 0.655 | 0.712 | 1.000 | 0.753 | 1 | ||||||
RWC | −0.841 | 0.543 | 0.752 | 0.585 | 0.334 | 0.236 | 0.371 | 0.543 | 0.511 | 0.782 | 0.943 | 0.928 | −0.762 | 0.943 | 0.943 | 0.763 | 0.827 | 0.429 | 0.371 | 0.429 | 1 | |||||
TCh | −0.055 | 0.845 | 0.820 | 0.752 | 0.901 | 0.943 | 0.894 | 0.885 | 0.744 | 0.755 | 0.444 | 0.455 | −0.541 | 0.421 | 0.352 | 0.871 | 0.719 | 1.000 | 0.743 | 1.000 | 0.444 | 1 | ||||
EOC | −0.014 | 0.875 | 0.923 | 0.700 | 0.985 | 0.852 | 0.751 | 0.806 | 0.813 | 0.880 | 0.422 | 0.469 | −0.521 | 0.451 | 0.342 | 0.903 | 0.909 | 1.000 | 0.843 | 1.000 | 0.477 | 1.000 | 1 | |||
PRL | −0.010 | 0.753 | 0.742 | 0.712 | 0.748 | 0.759 | 0.722 | 0.751 | 0.783 | 0.726 | 0.756 | 0.526 | −0.771 | 0.372 | 0.364 | 0.852 | 0.789 | 1.000 | 0.943 | 1.000 | 0.464 | 1.000 | 1.000 | 1 | ||
RFW | −0.005 | 0.806 | 0.767 | 0.755 | 0.888 | 0.855 | 0.788 | 0.759 | 0.901 | 0.785 | 0.555 | −0.393 | −0.741 | 0.301 | 0.471 | 0.791 | 0.629 | 1.000 | 0.789 | 1.000 | 0.419 | 1.000 | 1.000 | 1.000 | 1 | |
RDW | −0.114 | 0.943 | 0.804 | 0.829 | 0.820 | 1.000 | 1.000 | 0.943 | 1.000 | 0.829 | 0.429 | −0.551 | −0.829 | 0.329 | 0.429 | 0.786 | 0.771 | 0.823 | 1.000 | 0.823 | 0.371 | 0.754 | 0.823 | 0.713 | 0.731 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oueld Lhaj, M.; Moussadek, R.; Mouhir, L.; Sanad, H.; Manhou, K.; Iben Halima, O.; Yachou, H.; Zouahri, A.; Mdarhri Alaoui, M. Application of Compost as an Organic Amendment for Enhancing Soil Quality and Sweet Basil (Ocimum basilicum L.) Growth: Agronomic and Ecotoxicological Evaluation. Agronomy 2025, 15, 1045. https://doi.org/10.3390/agronomy15051045
Oueld Lhaj M, Moussadek R, Mouhir L, Sanad H, Manhou K, Iben Halima O, Yachou H, Zouahri A, Mdarhri Alaoui M. Application of Compost as an Organic Amendment for Enhancing Soil Quality and Sweet Basil (Ocimum basilicum L.) Growth: Agronomic and Ecotoxicological Evaluation. Agronomy. 2025; 15(5):1045. https://doi.org/10.3390/agronomy15051045
Chicago/Turabian StyleOueld Lhaj, Majda, Rachid Moussadek, Latifa Mouhir, Hatim Sanad, Khadija Manhou, Oumaima Iben Halima, Hasna Yachou, Abdelmjid Zouahri, and Meriem Mdarhri Alaoui. 2025. "Application of Compost as an Organic Amendment for Enhancing Soil Quality and Sweet Basil (Ocimum basilicum L.) Growth: Agronomic and Ecotoxicological Evaluation" Agronomy 15, no. 5: 1045. https://doi.org/10.3390/agronomy15051045
APA StyleOueld Lhaj, M., Moussadek, R., Mouhir, L., Sanad, H., Manhou, K., Iben Halima, O., Yachou, H., Zouahri, A., & Mdarhri Alaoui, M. (2025). Application of Compost as an Organic Amendment for Enhancing Soil Quality and Sweet Basil (Ocimum basilicum L.) Growth: Agronomic and Ecotoxicological Evaluation. Agronomy, 15(5), 1045. https://doi.org/10.3390/agronomy15051045