Measuring the Sustainability of Nitrogen Fertilization in EU Agriculture: A New Index-Based Assessment in the Context of Sustainable Intensification
Abstract
1. Introduction
2. Materials and Methods
2.1. The Nitrogen Management Database
2.2. The Conventional Nitrogen Management Indicators
2.3. Measurement of Land Productivity
2.4. The Sustainable Nitrogen Management Indicators (SNMI)
- CUn—normalized cereal unit;
- NUEn—normalized nitrogen use efficiency.
2.5. Delimitation of the EU Countries
2.6. The Topsoil Nitrogen (N) Content of European Countries
2.7. Statistical Analysis
3. Results and Discussion
3.1. Trends in European Scale in Nitrogen Use and Productivity
3.2. Nitrogen Balance and Soil Nutrient Status
3.3. Long-Term Trends in Changes in Nitrogen Use Efficiency
3.4. The Sustainable Nitrogen Management Indicator (SNMI)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NUE | Nitrogen Use Efficiency |
SBN | The nitrogen balance |
SNMI | Sustainable Nitrogen Management Indicator |
CU | Cereal unit |
H | High-intensity group |
MH | Medium–high-intensity group |
ML | Medium–low-intensity group |
L | Low-intensity group |
References
- Lu, C.; Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 2017, 9, 181–192. [Google Scholar] [CrossRef]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a Century of Ammonia Synthesis Changed the World. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Beusen, A.H.W.; Lassaletta, L.; van Apeldoorn, D.F.; van Grinsven, H.J.M.; Zhang, J.; van Ittersum, M.K. Lessons from Temporal and Spatial Patterns in Global Use of N and P Fertilizer on Cropland. Sci. Rep. 2017, 7, 40366. [Google Scholar] [CrossRef] [PubMed]
- Erisman, J.W.; Van, G.H.; Grizzetti, B.; Bouraoui, F.; Powlson, D.; Sutton, M.A.; Bleeker, A.; Reis, S. The European Nitrogen Problem in a Global Perspective. In The European Nitrogen Assessment; Cambridge University Press: Cambridge, UK, 2011; pp. 9–31. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC57902 (accessed on 10 May 2025).
- McKague, K.; Reid, K.; Simpson, H. Environmental Impacts of Nitrogen Use in Agriculture. In Factsheet; Ministry of Agriculture, Food and Rural Affairs: Guelph, ON, Canada, 2005; pp. 05–073. Available online: https://www.researchgate.net/publication/265236853 (accessed on 10 May 2025).
- UNEP; WHRC. Reactive Nitrogen in the Environment: Too Much or Too Little of a Good Thing; United Nations Environment Programme: Paris, France, 2007. [Google Scholar]
- Hamzeh, R.; Xu, X. Technology selection methods and applications in manufacturing: A review from 1990 to 2017. Comput. Ind. Eng. 2019, 138, 106123. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Pinder, R.W.; Adams, P.J.; Pandis, S.N. Ammonia Emission Controls as a Cost-Effective Strategy for Reducing Atmospheric Particulate Matter in the Eastern United States. Environ. Sci. Tech. 2007, 41, 380–386. [Google Scholar] [CrossRef]
- Xu, P.; Li, G.; Zheng, Y.; Fung, J.C.H.; Chen, A.; Zeng, Z.; Shen, H.; Hu, M.; Mao, J.; Zheng, Y.; et al. Fertilizer management for global ammonia emission reduction. Nature 2024, 626, 792–798. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Water and Agriculture: Towards Sustainable Solutions; EEA Report No. 17/2020; European Environment Agency: Copenhagen, Denmark, 2021; Available online: https://www.eea.europa.eu/publications/water-and-agriculture-towards-sustainable-solutions (accessed on 1 July 2025).
- European Commission. Council Directive 91/676/EEC of 12 December 1991 Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources. Off. J. Eur. Communities 1991, L375, 1–8. [Google Scholar]
- European Commission. The Common Agricultural Policy at a Glance; European Commission: Brussels, Belgium, 2021; Available online: https://agriculture.ec.europa.eu/cap-overview_en (accessed on 1 July 2025).
- European Commission. Farm to Fork Strategy: For a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2020; Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 1 July 2025).
- Zhang, X.; Wang, Y.; Schulte-Uebbing, L.; De Vries, W.; Zou, T.; Davidson, E.A. Sustainable Nitrogen Management Index: Definition, Global Assessment and Potential Improvements. Front. Agr. Sci. Eng. 2024, 9, 356–368. [Google Scholar] [CrossRef]
- United Nations General Assembly. Resolution 70/1, Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015; Available online: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf (accessed on 12 February 2025).
- Heidenreich, A.; Grovermann, C.; Kadzere, I.; Egyir, I.S.; Muriuki, A.; Bandanaa, J.; Clottey, J.; Ndungu, J.; Blockeel, J.; Muller, A.; et al. Sustainable intensification pathways in Sub-Saharan Africa: Assessing eco-efficiency of smallholder perennial cash crop production. Agric. Syst. 2022, 195, 103304. [Google Scholar] [CrossRef]
- Mouratiadou, I.; Latka, C.; van der Hilst, F.; Müller, C.; Berges, R.; Bodirsky, B.L.; Ewert, F.; Faye, B.; Heckelei, T.; Hoffmann, M.; et al. Quantifying sustainable intensification of agriculture: The contribution of metrics and modelling. Eco. Indic. 2021, 129, 107870. [Google Scholar] [CrossRef]
- Weltin, M.; Zasada, I.; Piorr, A.; Debolini, M.; Geniaux, G.; Moreno Perez, O.; Scherer, L.; Tudela Marco, L.; Schulp, C.J.E. Conceptualising fields of action for sustainable intensification—A systematic literature review and application to regional case studies. Agric. Ecosyst. Environ. 2018, 257, 68–80. [Google Scholar] [CrossRef]
- Sutton, M.A.; Howard, C.M.; Kanter, D.R.; Lassaletta, L.; Móring, A.; Raghuram, N.; Read, N. The Nitrogen Decade: Mobilizing Global Action on Nitrogen to 2030 and Beyond. One Earth 2021, 4, 10–14. [Google Scholar] [CrossRef]
- Quemada, M.; Lassaletta, L. Fertilizer dependency: A new indicator for assessing the sustainability of agrosystems beyond nitrogen use efficiency. Agron. Sustain. Dev. 2024, 44, 44. [Google Scholar] [CrossRef]
- FAO. Cropland Nutrient Balance. FAOSTAT. 2024. Available online: https://www.fao.org/faostat/en/#data/ESB (accessed on 10 February 2025).
- Brankatschk, G.; Finkbeiner, M. Application of the Cereal Unit in a new allocation procedure for agricultural life cycle assessments. J. Clean. Prod. 2014, 73, 72–79. [Google Scholar] [CrossRef]
- Volanti, M.; Savarino, F.O.; Passarini, F.; Vassura, I.; Grosso, S.A. Environmental analysis of crop rotations through the application of the Cereal Unit approach. Ecol. Indic. 2021, 121, 107199. [Google Scholar] [CrossRef]
- FAO. Food Composition Tables. FAOSTAT. 2024. Available online: https://www.fao.org/4/X9892E/X9892e05.htm (accessed on 10 February 2025).
- EU Nitrogen Expert Panel. Nitrogen Use Efficiency (NUE)—An Indicator for the Utilization of Nitrogen in Agriculture and Food Systems; EU Nitrogen Expert Panel: Wageningen, The Netherlands, 2015. [Google Scholar]
- Silva, J.V.; Tenreiro, T.R.; Spätjens, L.; Anten, N.P.R.; van Ittersum, M.K.; Reidsma, P. Can big data explain yield variability and water productivity in intensive cropping systems? Field Crops Res. 2020, 255, 107828. [Google Scholar] [CrossRef]
- Joint Research Centre, Institute for Environment and Sustainability. LUCAS Topsoil Survey: Methodology, Data and Results; Jones, A., Montanarella, L., Tóth, G., Eds.; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Ballabio, C.; Lugato, E.; Fernández-Ugalde, O.; Orgiazzi, A.; Jones, A.; Borrelli, P.; Montanarella, L.; Panagos, P. Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression. Geoderma 2019, 355, 113912. [Google Scholar] [CrossRef]
- Panagos, P.; Montanarella, L.; Barbero, M.; Schneegans, A.; Aguglia, L.; Jones, A. Soil priorities in the European Union. Geoderma Reg. 2022, 29, e00510. [Google Scholar] [CrossRef]
- Panagos, P.; Van Liedekerke, M.; Jones, A.; Montanarella, L. European Soil Data Centre: Response to European policy support and public data requirements. Land Use Policy 2012, 29, 329–338. [Google Scholar] [CrossRef]
- Umar, W.; Ayub, M.A.; Rehman, M.Z.U.; Ahmad, H.R.; Farooqi, Z.U.R.; Shahzad, A.; Rehman, U.; Mustafa, A.; Nadeem, M. Nitrogen and Phosphorus Use Efficiency in Agroecosystems. In Resources Use Efficiency in Agriculture; Ahmad, H.R., Hasanuzzaman, M., Eds.; Springer: Singapore, 2020; pp. 213–257. [Google Scholar]
- Riddick, S.; Ward, D.; Hess, P.; Mahowald, N.; Massad, R.; Holland, E. Estimate of changes in agricultural terrestrial nitrogen pathways and ammonia emissions from 1850 to present in the Community Earth System Model. Biogeosciences 2016, 13, 3397–3426. [Google Scholar] [CrossRef]
- Lassaletta, L.; Billen, G.; Grizzetti, B.; Anglade, J.; Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 2014, 9, 105011. [Google Scholar] [CrossRef]
- Sosulski, T.; Szara, E.; Stępień, W.; Rutkowska, B. The influence of mineral fertilization and legumes cultivation on the N2O soil emissions. Plant Soil Environ. 2015, 61, 529–536. [Google Scholar] [CrossRef]
- Szymańska, M.; Gubiec, W.; Smreczak, B.; Ukalska-Jaruga, A.; Sosulski, T. How Does Specialization in Agricultural Production Affect Soil Health? Agriculture 2024, 14, 424. [Google Scholar] [CrossRef]
- Sosulski, T.; Szara, E.; Stępień, W.; Szymańska, M.; Borowska-Komenda, M. Carbon and nitrogen leaching in long-term experiments and DOC/N-NO3- ratio in drainage water as an indicator of denitrification potential in different fertilization and crop rotation systems. Fresenius Environ. Bull. 2016, 25, 2813–2824. [Google Scholar]
- Rashid, M.A.; Bruun, S.; Styczen, M.E.; Borgen, S.K.; Hvid, S.K.; Jensen, L.S. Adequacy of nitrogen-based indicators for assessment of cropping system performance: A modelling study of Danish scenarios. Sci. Total Environ. 2022, 842, 156927. [Google Scholar] [CrossRef]
- Sosulski, T.; Szara, E.; Szymańska, M.; Stępień, W.; Rutkowska, B.; Szulc, W. Soil N2O emissions under conventional tillage conditions and from forest soil. Soil Till. Res. 2019, 190, 86–91. [Google Scholar] [CrossRef]
- Jensen, J.L.; Beucher, A.M.; Eriksen, J. Soil organic C and N stock changes in grass-clover leys: Effect of grassland proportion and organic fertilizer. Geoderma 2022, 424, 116022. [Google Scholar] [CrossRef]
- Lin, H.-C.; Huber, J.A.; Gerl, G.; Hülsbergen, K.-J. Nitrogen balances and nitrogen-use efficiency of different organic and conventional farming systems. Nutr. Cycling Agroecosyst. 2016, 105, 1–23. [Google Scholar] [CrossRef]
- van Groenigen, J.W.; van Kessel, C.; Hungate, B.A.; Oenema, O.; Powlson, D.S.; van Groenigen, K.J. Sequestering Soil Organic Carbon: A Nitrogen Dilemma. Environ Sci. Technol. 2017, 51, 4738–4739. [Google Scholar] [CrossRef]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Sosulski, T.; Srivastava, A.K.; Ahrends, H.E.; Smreczak, B.; Szymańska, M. Carbon Storage Potential and Carbon Dioxide Emissions from Mineral-Fertilized and Manured Soil. Appl. Sci. 2023, 13, 4620. [Google Scholar] [CrossRef]
- Oenema, O.; Boers, P.C.M.; van Eerdt, M.M.; Fraters, B.; van der Meer, H.G.; Roest, C.W.J.; Schröder, J.J.; Willems, W.J. Leaching of nitrate from agriculture to groundwater: The effect of policies and measures in the Netherlands. Environ. Pollut. 1998, 102 (Suppl. S1), 471–478. [Google Scholar] [CrossRef]
- Aluko, O.O.; Kant, S.; Adedire, O.M.; Li, C.; Yuan, G.; Liu, H.; Wang, Q. Unlocking the potentials of nitrate transporters at improving plant nitrogen use efficiency. Front. Plant Sci. 2023, 14, 1074839. [Google Scholar] [CrossRef]
- Hao, D.-L.; Zhou, J.-Y.; Yang, S.-Y.; Qi, W.; Yang, K.-J.; Su, Y.-H. Function and Regulation of Ammonium Transporters in Plants. Int. J. Mol. Sci. 2020, 21, 3557. [Google Scholar] [CrossRef]
- Fan, X.; Feng, H.; Tan, Y.; Xu, Y.; Miao, Q.; Xu, G. A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. J. Integr. Plant Biol. 2016, 58, 590–599. [Google Scholar] [CrossRef]
- Xiong, H.; Guo, H.; Zhou, C.; Guo, X.; Xie, Y.; Zhao, L.; Gu, J.; Zhao, S.; Ding, Y.; Liu, L. A combined association mapping and t-test analysis of SNP loci and candidate genes involving in resistance to low nitrogen traits by a wheat mutant population. PLoS ONE 2019, 14, e0211492. [Google Scholar] [CrossRef] [PubMed]
- Ranathunge, K.; El-kereamy, A.; Gidda, S.; Bi, Y.-M.; Rothstein, S.J. AMT1;1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and suboptimal NH4+ conditions. J. Exp. Bot. 2014, 65, 965–979. [Google Scholar] [CrossRef]
- Congreves, K.A.; Otchere, O.; Ferland, D.; Farzadfar, S.; Williams, S.; Arcand, M.M. Nitrogen Use Efficiency Definitions of Today and Tomorrow. Front. Plant Sci. 2021, 12, 637108. [Google Scholar] [CrossRef]
- Liu, J.; You, L.; Amini, M.; Obersteiner, M.; Herrero, M.; Zehnder, A.J.; Yang, H. A High-Resolution Assessment on Global Nitrogen Flows in Cropland. Proc. Natl. Acad. Sci. USA 2010, 107, 8035–8040. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Wendt, J.; Giller, K.E.; Corbeels, M.; Gerard, B.; Nolte, C. A Fourth Principle Is Required to Define Conservation Agriculture in Sub-Saharan Africa: The Appropriate Use of Fertilizer to Enhance Crop Productivity. Field Crops Res. 2014, 155, 10–13. [Google Scholar] [CrossRef]
- Tamagno, S.; Maaz, T.M.; van Kessel, C.; Linquist, B.A.; Ladha, J.K.; Lundy, M.E.; Maureira, F.; Pittelkow, C.M. Critical assessment of nitrogen use efficiency indicators: Bridging new and old paradigms to improve sustainable nitrogen management. Eur. J. Agron. 2024, 159, 127231. [Google Scholar] [CrossRef]
- Cassman, K.G.; Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 2020, 3, 262–268. [Google Scholar] [CrossRef]
- Kanter, D.R.; Chodos, O.; Nordland, O.; Rutigliano, M.; Winiwarter, W. Gaps and opportunities in nitrogen pollution policies around the world. Nat. Sustain. 2020, 3, 956–963. [Google Scholar] [CrossRef]
Countries | Class of Intensity * | Yield [CU ha−1] | N Input [kg ha−1] | N Output [kg ha−1] | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1990–2000 | 2001–2010 | 2011–2021 | 1990–2000 | 2001–2010 | 2011–2021 | 1990–2000 | 2001–2010 | 2011–2021 | ||
Belgium | H | 54.7 | 65.5 | 67.7 | 385.9 | 374.9 | 383.8 | 92.2 | 98.5 | 99.8 |
Denmark | H | 50.2 | 71.4 | 80.2 | 213.7 | 168.7 | 167.2 | 87.7 | 87.4 | 88.2 |
Germany | H | 49.6 | 61.4 | 64.8 | 196.6 | 185.2 | 171.8 | 83.8 | 96.0 | 94.6 |
Ireland | H | 63.6 | 62.3 | 71.8 | 355.4 | 286.2 | 316.8 | 104.9 | 94.1 | 105.6 |
Malta | H | 26.1 | 32.7 | 22.0 | 254.2 | 270.5 | 208.0 | 53.5 | 75.4 | 52.1 |
Netherlands | H | 55.4 | 55.5 | 58.8 | 375.3 | 266.0 | 252.2 | 83.1 | 74.6 | 75.5 |
Slovenia | H | 32.5 | 37.5 | 36.5 | 185.7 | 183.1 | 125.7 | 46.9 | 50.4 | 48.8 |
Average ** | H | 50.4 | 62.3 | 66.6 | 223.0 | 200.6 | 190.1 | 84.8 | 93.0 | 92.4 |
Austria | MH | 44.7 | 51.1 | 55.4 | 170.4 | 148.1 | 155.2 | 72.3 | 75.1 | 82.5 |
Croatia | MH | 31.8 | 43.9 | 49.2 | 138.9 | 193.1 | 170.0 | 47.5 | 70.2 | 82.7 |
Cyprus | MH | 17.8 | 14.2 | 11.2 | 128.0 | 108.7 | 110.6 | 27.7 | 21.9 | 17.4 |
Czechia | MH | 30.2 | 40.3 | 48.3 | 120.7 | 141.7 | 179.6 | 52.0 | 67.9 | 82.4 |
France | MH | 45.9 | 53.6 | 56.5 | 182.3 | 166.8 | 156.4 | 78.6 | 80.8 | 82.7 |
Italy | MH | 28.8 | 38.2 | 39.6 | 132.4 | 123.4 | 123.9 | 49.6 | 50.1 | 50.5 |
Luxembourg | MH | 32.4 | 43.8 | 41.6 | 139.6 | 142.6 | 137.7 | 54.1 | 61.8 | 55.9 |
Average ** | MH | 38.8 | 47.5 | 50.8 | 160.3 | 151.8 | 149.4 | 66.3 | 70.0 | 73.5 |
Greece | ML | 26.4 | 26.9 | 25.7 | 111.8 | 83.9 | 83.1 | 52.0 | 51.7 | 50.4 |
Hungary | ML | 32.6 | 39.9 | 48.5 | 90.4 | 95.3 | 116.1 | 49.5 | 58.7 | 72.3 |
Poland | ML | 27.0 | 31.3 | 39.4 | 86.5 | 104.6 | 120.5 | 45.2 | 51.5 | 64.2 |
Portugal | ML | 10.3 | 11.3 | 13.5 | 83.1 | 88.1 | 101.3 | 16.4 | 17.6 | 19.2 |
Slovakia | ML | 29.1 | 34.3 | 43.6 | 96.1 | 101.6 | 128.8 | 48.2 | 54.5 | 70.5 |
Spain | ML | 17.0 | 20.8 | 23.6 | 86.6 | 92.8 | 97.8 | 26.9 | 31.6 | 35.7 |
Sweden | ML | 26.1 | 33.6 | 39.5 | 112.1 | 99.9 | 105.7 | 44.7 | 44.9 | 50.0 |
Average ** | ML | 22.7 | 27.0 | 31.9 | 90.4 | 96.1 | 106.4 | 37.5 | 42.6 | 49.8 |
Bulgaria | L | 20.9 | 27.5 | 41.9 | 80.6 | 80.5 | 117.4 | 33.2 | 42.8 | 64.1 |
Estonia | L | 9.1 | 24.2 | 32.9 | 48.0 | 65.0 | 91.1 | 14.8 | 28.6 | 47.3 |
Finland | L | 20.8 | 28.5 | 28.4 | 59.4 | 68.2 | 63.6 | 34.3 | 37.4 | 34.2 |
Latvia | L | 11.7 | 29.3 | 41.4 | 51.5 | 57.3 | 81.8 | 19.3 | 29.7 | 51.7 |
Lithuania | L | 12.1 | 28.2 | 41.0 | 56.6 | 100.4 | 107.9 | 20.6 | 38.0 | 60.0 |
Romania | L | 22.7 | 24.8 | 37.7 | 75.8 | 63.5 | 86.6 | 33.1 | 35.9 | 55.4 |
Average ** | L | 19.5 | 26.3 | 37.9 | 69.8 | 70.5 | 92.0 | 29.9 | 37.0 | 54.5 |
Countries | Class of Intensity * | SBN [kg ha−1 y−1] | NUE [%] | N productivity [CU kg N−1] | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1990–2000 | 2001–2010 | 2011–2021 | 1990–2000 | 2001–2010 | 2011–2021 | 1990–2000 | 2001–2010 | 2011–2021 | ||
Belgium | H | 293.7 | 276.4 | 283.9 | 23.9 | 26.3 | 26.0 | 0.14 | 0.17 | 0.18 |
Denmark | H | 126.0 | 81.3 | 79.0 | 41.2 | 52.0 | 52.9 | 0.23 | 0.42 | 0.48 |
Germany | H | 112.9 | 89.2 | 77.2 | 42.6 | 52.0 | 55.2 | 0.25 | 0.33 | 0.38 |
Ireland | H | 250.5 | 192.1 | 211.1 | 29.7 | 33.0 | 33.6 | 0.18 | 0.22 | 0.23 |
Malta | H | 200.8 | 195.1 | 156.0 | 20.7 | 28.0 | 25.0 | 0.10 | 0.12 | 0.11 |
Netherlands | H | 292.2 | 191.4 | 176.7 | 22.3 | 28.1 | 30.0 | 0.15 | 0.21 | 0.23 |
Slovenia | H | 138.8 | 132.7 | 76.8 | 25.6 | 28.6 | 38.9 | 0.18 | 0.20 | 0.29 |
Average ** | H | 138.1 | 107.6 | 97.8 | 39.8 | 48.3 | 51.0 | 0.24 | 0.32 | 0.37 |
Austria | MH | 98.1 | 73.0 | 72.8 | 42.5 | 50.8 | 53.1 | 0.26 | 0.35 | 0.36 |
Croatia | MH | 91.3 | 122.9 | 87.2 | 34.8 | 37.3 | 48.8 | 0.23 | 0.23 | 0.29 |
Cyprus | MH | 100.3 | 86.8 | 93.3 | 21.4 | 20.2 | 15.8 | 0.14 | 0.13 | 0.10 |
Czechia | MH | 68.7 | 73.8 | 97.3 | 43.3 | 48.0 | 46.1 | 0.25 | 0.28 | 0.27 |
France | MH | 103.7 | 86.0 | 73.7 | 43.1 | 48.6 | 52.9 | 0.25 | 0.32 | 0.36 |
Italy | MH | 82.8 | 73.3 | 73.4 | 37.5 | 40.7 | 40.8 | 0.22 | 0.31 | 0.32 |
Luxembourg | MH | 85.5 | 80.8 | 81.8 | 38.7 | 43.4 | 40.7 | 0.23 | 0.31 | 0.30 |
Average ** | MH | 94.1 | 81.7 | 75.8 | 41.0 | 45.9 | 48.8 | 0.24 | 0.31 | 0.34 |
Greece | ML | 59.8 | 32.2 | 32.8 | 47.3 | 61.8 | 60.9 | 0.24 | 0.32 | 0.31 |
Hungary | ML | 40.9 | 36.6 | 43.9 | 55.4 | 61.9 | 62.5 | 0.36 | 0.42 | 0.42 |
Poland | ML | 41.3 | 53.1 | 56.3 | 52.3 | 49.5 | 53.4 | 0.31 | 0.30 | 0.33 |
Portugal | ML | 66.7 | 70.5 | 82.2 | 19.8 | 20.1 | 18.9 | 0.12 | 0.13 | 0.13 |
Slovakia | ML | 47.9 | 47.1 | 58.3 | 50.1 | 53.8 | 54.6 | 0.30 | 0.34 | 0.34 |
Spain | ML | 59.6 | 61.3 | 62.2 | 31.1 | 34.2 | 36.5 | 0.20 | 0.22 | 0.24 |
Sweden | ML | 67.3 | 55.0 | 55.6 | 40.0 | 45.0 | 47.3 | 0.23 | 0.34 | 0.37 |
Average ** | ML | 52.9 | 53.6 | 56.7 | 41.4 | 44.3 | 46.3 | 0.25 | 0.28 | 0.30 |
Bulgaria | L | 47.4 | 37.7 | 53.3 | 44.7 | 53.4 | 54.8 | 0.26 | 0.34 | 0.36 |
Estonia | L | 33.2 | 36.4 | 43.8 | 31.5 | 44.0 | 51.6 | 0.19 | 0.37 | 0.36 |
Finland | L | 25.0 | 30.9 | 29.4 | 59.7 | 54.9 | 53.7 | 0.35 | 0.42 | 0.45 |
Latvia | L | 32.2 | 27.6 | 30.1 | 38.9 | 51.8 | 63.0 | 0.23 | 0.51 | 0.51 |
Lithuania | L | 36.0 | 62.4 | 47.8 | 36.9 | 37.9 | 55.3 | 0.21 | 0.28 | 0.38 |
Romania | L | 42.7 | 27.5 | 31.2 | 46.8 | 56.8 | 63.6 | 0.30 | 0.39 | 0.44 |
Average ** | L | 39.8 | 33.5 | 37.5 | 45.3 | 53.4 | 59.3 | 0.28 | 0.38 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymańska, M.; Sulewski, P.; Wąs, A.; Sosulski, T. Measuring the Sustainability of Nitrogen Fertilization in EU Agriculture: A New Index-Based Assessment in the Context of Sustainable Intensification. Agronomy 2025, 15, 1643. https://doi.org/10.3390/agronomy15071643
Szymańska M, Sulewski P, Wąs A, Sosulski T. Measuring the Sustainability of Nitrogen Fertilization in EU Agriculture: A New Index-Based Assessment in the Context of Sustainable Intensification. Agronomy. 2025; 15(7):1643. https://doi.org/10.3390/agronomy15071643
Chicago/Turabian StyleSzymańska, Magdalena, Piotr Sulewski, Adam Wąs, and Tomasz Sosulski. 2025. "Measuring the Sustainability of Nitrogen Fertilization in EU Agriculture: A New Index-Based Assessment in the Context of Sustainable Intensification" Agronomy 15, no. 7: 1643. https://doi.org/10.3390/agronomy15071643
APA StyleSzymańska, M., Sulewski, P., Wąs, A., & Sosulski, T. (2025). Measuring the Sustainability of Nitrogen Fertilization in EU Agriculture: A New Index-Based Assessment in the Context of Sustainable Intensification. Agronomy, 15(7), 1643. https://doi.org/10.3390/agronomy15071643