Effects of N-P-K Ratio in Root Nutrient Solutions on Ectomycorrhizal Formation and Seedling Growth of Pinus armandii Inoculated with Tuber indicum
Abstract
1. Introduction
2. Materials and Methods
2.1. Sterile Seedling Cultivation and Inoculation
2.2. Experimental Design for the Fertilization and Cultivation of Mycorrhizal Seedlings
2.3. Methods for the Inspection, Identification, and Statistical Analysis of Mycorrhizae
2.4. Measurement of the Seedling Crown, Plant Height, Ground Diameter, and Aboveground and Belowground Biomass of Mycorrhizal Seedlings
2.5. Measurement Indicators and Analytical Methods for Nutrient Substrates
2.6. Statistical Analysis
3. Results
3.1. Effects of Different Treatments on the Seedling Crown, Plant Height, and Ground Diameter of T. indicum–P. armandii Seedlings
3.2. Effects of Different Treatments on the Aboveground and Belowground Biomass Dry Weight of T. indicum–P. armandii Seedlings
3.3. Effects of Different Fertilization Treatments on the Mycorrhizal Infection Rate of T. indicum–P. armandii Seedlings
3.4. Nutrient Status Changes in the Substrate and Establishing the Optimal Nutrient Substrate Ratio
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bonito, G.; Smith, M.E.; Nowak, M.; Healy, R.A.; Guevara, G.; Cazares, E.; Kinoshita, A.; Nouhra, E.R.; Dominguez, L.S.; Tedersoo, L.; et al. Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified southern hemisphere sister lineage. PLoS ONE 2013, 8, E52765. [Google Scholar] [CrossRef] [PubMed]
- Zambonelli, A.; Iotti, M.; Murat, C. True Truffle (Tuber spp.) in the World; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 3–18. [Google Scholar] [CrossRef]
- Fan, L.; Li, T.; Xu, Y.Y.; Yan, X.Y. Species diversity, phylogeny, endemism and geography of the truffle genus Tuber in China based on morphological and molecular data. Persoonia 2022, 48, 175–202. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fan, L.; Wang, K.; Song, M.S.; Wang, X.C.; Zhuang, W.Y.; Yao, Y.J. Status and Protection of Threatened Truffle (Tuberaceae) Resources in China. Acta Edulis Fungi 2020, 27, 109–119. [Google Scholar] [CrossRef]
- Guerin-Laguette, A. Successes and challenges in the sustainable cultivation of edible mycorrhizal fungi–furthering the dream. Mycoscience 2021, 62, 10–28. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.; Reddy Bokka, S.K.; Chellem, S.R.; Kalpana, K.; Indrani, K.; Lakshmi Hima Bindu, T.P.; Sri Navya, D. Mutualistic Relationships between Plants and Mycorrhizal Fungi Impacts on Ecosystem Functioning: A Review. Uttar Pradesh J. Zool. 2024, 45, 242–261. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Zhou, Y.; Zou, X.; You, Y.; Hui, L.; Liying, L.; Songzhu, Z. Ectomycorrhizal symbioses increase soil calcium availability and water use efficiency of Quercus acutissima seedlings under drought stress. Eur. J. For. Res. 2021, 140, 1039–1048. [Google Scholar] [CrossRef]
- Pickles, B.J.; Simard, S.W. Mycorrhizal networks and forest resilience to drought. In Mycorrhizal Mediation of Soil Fertility, Structure, and Carbon Storage; Academic Press: Cambridge, MA, USA, 2017; pp. 319–339. [Google Scholar] [CrossRef]
- Chot, E.; Reddy, M. Role of Ectomycorrhizal Symbiosis Behind the Host Plants Ameliorated Tolerance Against Heavy Metal Stress. Front. Microbiol. 2022, 13, 855473. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: New York, NY, USA, 2008; p. 787. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Lü, X.T.; Hartmann, H.; Keller, A.; Han, X.G.; Trumbore, S.; Phillips, R.P. Foliar nutrient resorption differs between arbuscular mycorrhizal and ectomycorrhizal trees at local and global scales. Glob. Ecol. Biogeogr. 2018, 27, 875–885. [Google Scholar] [CrossRef]
- Ning, C.; Mueller, G.M.; Egerton-Warburton, L.M.; Wilson, A.W.; Yan, W.; Xiang, W. Diversity and Enzyme Activity of Ectomycorrhizal Fungal Communities Following Nitrogen Fertilization in an Urban-Adjacent Pine Plantation. Forests 2018, 9, 99. [Google Scholar] [CrossRef]
- Burke, D.; Carrino-Kyker, S.R.; Chervenak, C.F.; Hoke, A.J.; Hewins, C.R. The function of root mat fungal communities: Changes in response to pH and phosphorus addition. Plants People Planet 2021, 3, 653–666. [Google Scholar] [CrossRef]
- Yang, N.; Hua, J.N.; Zhang, J.B.; Liu, D.; Bhople, P.; Li, X.X.; Zhang, Y.; Ruan, H.H.; Xing, W.; Mao, L.F. Soil nutrients and plant diversity affect ectomycorrhizal fungal community structure and functional traits across three subalpine coniferous forests. Front. Microbiol. 2022, 13, 820144. [Google Scholar] [CrossRef] [PubMed]
- Averill, C.; Hawkes, C. Ectomycorrhizal fungi slow soil carbon cycling. Ecol. Lett. 2016, 19, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, H.; Cargill, R.; Nuland, M.; Hagen, S.; Field, K.; Sheldrake, M.; Soudzilovskaia, N.; Kiers, E. Mycorrhizal mycelium as a global carbon pool. Curr. Biol. 2023, 33, R560–R573. [Google Scholar] [CrossRef] [PubMed]
- Stuart, E.; Singan, V.; Amirebrahimi, M.; Na, H.; Ng, V.; Grigoriev, I.; Martin, F.; Anderson, I.; Plett, J.; Plett, K. Acquisition of host-derived carbon in biomass of the ectomycorrhizal fungus Pisolithus microcarpus is correlated to fungal carbon demand and plant defences. FEMS Microbiol. Ecol. 2023, 99, fiad037. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, M.; Iotti, M.; Pacioni, G.; Hall, I.R.; Zambonelli, A. Truffles: Biodiversity, Ecological Significances, and Biotechnological Applications. In Industrially Important Fungi for Sustainable Development. Volume 1: Biodiversity and Ecological Perspectives; Abdel Azeem, A.M., Yadav, A.N., Yadav, N., Usmani, Z., Eds.; Springer: Cham, Switzerland, 2021; pp. 107–146. [Google Scholar] [CrossRef]
- Martin, F.M.; van der Heijden, M.G.A. The mycorrhizal symbiosis: Research frontiers in genomics, ecology, and agricultural application. New Phytol. 2024, 242, 1486–1506. [Google Scholar] [CrossRef] [PubMed]
- Jaillard, B.; Barry-Etienne, D.; Colinas, C.; Miguel, A.M.D.; Genola, L.; Libre, A.; Neveu, P.; Oliach, D.; Saenz, W.; Saez, M.; et al. Alkalinity and structure of soils determine the truffle production in the Pyrenean Regions. For. Syst. 2014, 23, 364–377. [Google Scholar] [CrossRef]
- Cahanovitc, R.; Livne-Luzon, S.; Angel, R.; Klein, T. Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks. ISME J. 2022, 16, 1420–1429. [Google Scholar] [CrossRef] [PubMed]
- van der Linde, S.; Suz, L.M.; Orme, C.D.L.; Cox, F.; Andreae, H.; Asi, E.; Atkinson, B.; Benham, S.; Carroll, C.; Cools, N.; et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 2018, 558, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Barreda, S.; Sánchez, S.; Marco, P.; Serrano-Notivoli, R. Agro-climatic zoning of Spanish forests naturally producing black truffle. Agric. For. Meteorol. 2019, 269–270, 231–238. [Google Scholar] [CrossRef]
- Castrignano, A.; Goovaerts, P.; Lulli, L.; Bragato, G. A geostatistical approach to estimate probability of occurrence of Tuber melanosporum in relation to some soil properties. Geoderma 2000, 98, 95–113. [Google Scholar] [CrossRef]
- Barou, V.; Rincón, A.; Parladé, J. Modelling environmental drivers of Tuber melanosporum extraradical mycelium in productive holm oak plantations and forests. For. Ecol. Manag. 2024, 563, 121988. [Google Scholar] [CrossRef]
- Guo, W.J.; Ding, J.X.; Wang, Q.T.; Yin, M.Z.; Zhu, X.Y.; Liu, Q.; Zhang, Z.L.; Yin, H.J. Soil fertility controls ectomycorrhizal mycelial traits in alpine forests receiving nitrogen deposition. Soil. Biol. Biochem. 2021, 161, 108386. [Google Scholar] [CrossRef]
- Hendrick, R.L.; Pregitzer, K.S.; Fogel, R. Effects of nitrogen addition on ectomycorrhizal fungi in forest ecosystems. Front. Plant Sci. 2010, 10, 1658. [Google Scholar] [CrossRef]
- Pang, L.; Zhang, Y.; Zhou, Z.C.; Feng, Z.P.; Chu, D.Y. Effects of simulated nitrogen deposition on root exudates and phosphorus efficiency in Pinus massoniana families under low phosphorus stress. Chin. J. Plant Ecol. 2014, 38, 27–35. [Google Scholar] [CrossRef]
- Jones, M.D.; Phillips, L.A.; Treu, R.; Ward, V.; Berch, S.M. Functional responses of ectomycorrhizal fungal communities to long-term fertilization of lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) stands in central British Columbia. Appl. Soil. Ecol. 2012, 60, 29–40. [Google Scholar] [CrossRef]
- Song, P.; Zhang, Y.; Zhang, R.; Zhuo, Z.C.; Feng, Z.P. Responses of phosphorus efficiency to simulated nitrogen deposition under phosphorus deficiency in Pinus massoniana clones. J. Plant Nutr. 2017, 23, 502–511. [Google Scholar] [CrossRef]
- Hao, L.F.; Hao, W.Y.; Liu, T.Y.; Zhang, M.; Xu, J.K. Responses of root morphology and nutrient content of Pinus sylvestris var. mongolica seedlings to nitrogen addition and inoculation treatments. J. Beijing For. Univ. 2021, 43, 1–7. [Google Scholar] [CrossRef]
- Wang, J.Y.; Hao, L.F.; Bai, S.L.; Bao, H.G. Responses of Pinus sylvestris seedlings to inoculation with ectomycorrhizal fungi and exponential fertilization. Soil. Fertil. Sci. China 2022, 193–200. [Google Scholar] [CrossRef]
- Chen, Q.X. Study on Key Techniques df Cyclobalanopsis glauca Container Seedling. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2010. [Google Scholar]
- Dupre, C.; Chevalier, G.; Morizet, J.; Leblevenec, L. Effect of nitrogen and phosphorus on mycorrhizal association between Quercus pubescens Willd. and Tuber melanasporum Vitt. Under controlled conditions. Colloques-de-1′INRA 1982, 13, 156–158. [Google Scholar]
- Chen, Y.L.; Gong, M.Q.; Chen, Y.; Wang, F.Z. Effects of Inoculation with 11 Ectomycorrhizal Fungal Isolates on Growth and Photosynthesis of Castanopsis hystrix Saplings. For. Res. 2001, 14, 515–522. [Google Scholar] [CrossRef]
- Liu, Q.B.; Li, X.M.; Bai, H.F.; Mu, L.Q.; Xiong, H.K. Establishment and management techniques of truffle ecological plantation in Chuxiong Prefecture. Edible Fungi 2022, 44, 42–45. [Google Scholar] [CrossRef]
- Leff, J.W.; Bardgett, R.D.; Wilkinson, A.; Jackson, B.G.; Pritchard, W.J.; De Long, J.R.; Oakley, S.; Mason, K.E.; Ostle, N.J.; Johnson, D.; et al. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J. 2018, 12, 1794–1805. [Google Scholar] [CrossRef] [PubMed]
- Porazinska, D.L.; Farrer, E.C.; Spasojevic, M.J.; Bueno de Mesquita, C.P.; Sartwell, S.A.; Smith, J.G.; White, C.T.; King, A.J.; Suding, K.N.; Schmidt, S.K. Plant diversity and density predict belowground diversity and function in an early successional alpine ecosystem. Ecology 2018, 99, 1942–1952. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, C.J.; Baer, S.G.; Blair, J.M. Long-term agricultural management alters soil fungal community composition and functional diversity. Agric. Ecosyst. Environ. 2021, 316, 107446. [Google Scholar] [CrossRef]
- Geml, J.; Wagner, H. Changes in fungal diversity and composition along a chronosequence of Eucalyptus grandis plantations in Ethiopia. Fungal Ecol. 2018, 39, 328–335. [Google Scholar] [CrossRef]
- Jin, W.H.; Tu, J.Y.; Sheng, W.X.; Xing, J.J.; Peng, L.Y.; Ma, X.M.; Chen, J.H.; Li, Y.F.; Qin, H. The conversion of mycorrhizal types closely associated with the changes in microbial keystone taxa and potential function in subtropical forests. Plant Soil. 2023, 482, 599–615. [Google Scholar] [CrossRef]
- Alexis, S. Effects of Truffle Inoculation on Root Physiology and Mycorrhizosphere Microbial Communities of Carya illinoinensis Seedlings. Forests 2021, 14, 2078. [Google Scholar] [CrossRef]
- Huang, L.L.; Wan, S.P.; Wang, Y.L.; Yu, Y.M.; Shi, X.F.; Yu, F.Q. Mycorrhiza Synthesis of Pinus thunbergii with Eight Ectomycorrhizal Fungi Species. Acta Edulis Fungi 2022, 29, 98–106. [Google Scholar] [CrossRef]
- Bu, W.S.; Wang, F.C.; Zhang, C.C.; Bruelheide, H.; Fang, X.M.; Wang, H.M.; Chen, F.S. The contrasting effects of nitrogen and phosphorus fertilizations on the growth of Cunninghamia lanceolata depend on the season in subtropical China. For. Ecol. Manag. 2020, 482, 118874. [Google Scholar] [CrossRef]
- Fox, T.R.; Allen, H.L.; Albaugh, T.J.; Rubilar, R.; Carlson, C.A. Tree nutrition and forest fertilization of pine plantations in the southern United States. South. J. Appl. For. 2007, 31, 5–11. [Google Scholar] [CrossRef]
- Sanborn, P.; Ott, P.K. Tree growth, foliar nutrition, and soil properties in mixtures of lodgepole pine and Sitka alder in the central interior of British Columbia, Canada: 25-year results. Front. For. Glob. Change 2022, 5, 867247. [Google Scholar] [CrossRef]
- Harrison, K.A.; Bardgett, R.D. Nutrient co-limitation of primary producer communities. Ecol. Lett. 2011, 14, 852–862. [Google Scholar] [CrossRef]
- Feng, W.; Shan, C.D.; Liu, J.M.; Huang, X.S.; Fu, L.S.; Kong, H.P.; Yao, Z.Y. Effects of exponential fertilization on the biomass and nutrient accumulation and allocation of Pinus armandii container seedlings. J. Cent. South. Univ. For. Technol. 2023, 43, 62–69. [Google Scholar] [CrossRef]
- Yu, J.X.; Zhang, H.; Pan, T.C.; Qiu, Z.B.; Gao, X.X.; Zhang, S.L. Study on the container seedling substrate ratio and fertilization of Pinus armandii on the north slope of the Qinling mountains based on regression rotation analysis. J. Cent. South. Univ. For. Technol. 2021, 41, 109–116. [Google Scholar] [CrossRef]
- Pan, T.C.; Zhang, S.L.; Yu, J.X.; Qiu, Z.B.; Gao, X.X. Substrate Compositions and Fertilizer Formulations for Breeding Container Seedings of Pinus armandii Based on Quadratic Regression Universal Rrotation Combination Design. J. Northwest For. Univ. 2020, 35, 85–90. [Google Scholar]
- Zambonelli, A.; Bonito, G.M. Edible Ectomycorrhizal Mushrooms: Current Knowledge and Future Prospects; Springer: Berlin/Heidelberg, Germany, 2013; pp. 227–240. [Google Scholar]
- Allen, G.C.; Flores-Vergara, M.A.; Krasynanski, S.; Kumar, S.; Thompson, W.F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 2006, 1, 2320–2325. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.D. Soil and Agrochemical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000.
- Zen, W.J.; Wang, J.; Yang, Y.H.; He, Y.W.; Liu, Q.B.; Kang, C.; Yang, L. Soil Nutrition and Microbial Diversity Changes of Truffle Pond in the Mature Stage of Tuber indicum. J. West. China For. Sci. 2022, 51, 26–33. [Google Scholar] [CrossRef]
- Li, Q.; Yan, L.; Ye, L.; Zhou, J.; Zhang, B.; Peng, W.; Zhang, X.; Li, X. Chinese black truffle (Tuber indicum) alters the ectomycorrhizosphere and endoectomycosphere microbiome and metabolic profiles of the host tree Quercus aliena. Front. Microbiol. 2018, 9, 2202. [Google Scholar] [CrossRef] [PubMed]
- Geng, L.Y.; Wang, X.H.; Yu, F.Q.; Deng, X.J.; Tian, X.F.; Shi, X.F.; Xie, X.D.; Liu, P.G.; Shen, Y.Y. Mycorrhizal synthesis of Tuber indicum with two indigenous hosts, Castanea mollissima and Pinus armandii. Mycorrhiza 2009, 19, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Innangi, M.; Fioretto, A.; Fondon, C.; García-Montero, L.; Marzaioli, R.; Pinto, S.; Rutigliano, F.; Menta, C. Tuber aestivum is associated with changes in soil chemistry and reduced biological quality in a Quercus pubescens stand in Northern Italy. Pedobiologia 2020, 80, 150648. [Google Scholar] [CrossRef]
- Ye, L.; Yang, X.Z.; Zhang, B.; Zhou, J.; Tian, H.; Zhang, X.P.; Li, X.L. Seasonal succession of fungal communities in native truffle (Tuber indicum) ecosystems. Appl. Environ. Microbiol. 2023, 89, 599–615. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Herrera, M.; Zhang, P.; He, X.H.; Pérez-Moreno, J.; Chater, C.; Yu, F.Q. Truffle species strongly shape their surrounding soil mycobiota in a Pinus armandii forest. Arch. Microbiol. 2021, 203, 6303–6314. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Q.; Li, H.; Chen, X. Fertilization combined with mycorrhization significantly improves organic matter content in substrate and enhances nutrient uptake in high-demand crops. PLoS ONE 2023, 18, e0256879. [Google Scholar] [CrossRef]
- Antony-Babu, S.; Deveau, A.; Van Nostrand, J.D.; Zhou, J.; Le Tacon, F.; Robin, C.; Frey-Klett, P.; Uroz, S. Black truffle-associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles. Env. Microbiol. 2014, 16, 2831–2847. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, X.; Jia, Y.; Liu, J.; Zhang, Q.; Li, S. Differential mechanisms underlying responses of soil bacterial and fungal communities to nitrogen and phosphorus inputs in a subtropical forest. PeerJ 2018, 6, e5986. [Google Scholar] [CrossRef] [PubMed]
- Siebyła, M.; Hilszczańska, D. Species diversity of bacteria associated with fungi of the genus Tuber (truffles). Adv. Microbiol. 2019, 56, 28–32. [Google Scholar] [CrossRef]
- Kang, Z.; Li, X.; Li, Y.; Ye, L.; Zhang, B.; Zhang, X.; Penttinen, P.; Gu, Y. Black truffles affect Quercus aliena physiology and root-associated nirK- and nirS-type denitrifying bacterial communities in the initial stage of inoculation. Front. Microbiol. 2022, 13, 792568. [Google Scholar] [CrossRef] [PubMed]
- Emri, T.; Antal, K.; Varga, K.; Gila, B.C.; Pócsi, I. The Oxidative Stress Response Highly Depends on Glucose and Iron Availability in Aspergillus fumigatus. J. Fungi 2024, 10, 221. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.Y.; Yang, Y.; Zhao, Z.G.; Zhou, Y.; Liao, Y.; Guan, Z.Y.; Chen, S.M.; Fang, W.M.; Chen, F.D.; Zhao, S.A. Optimum nitrogen, phosphorous, and potassium fertilizer application increased chrysanthemum growth and quality by reinforcing the soil microbial community and nutrient cycling function. Plants 2023, 12, 4062. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Du, X.; Wang, F.; Sha, J.; Chen, Q.; Tian, G.; Zhu, Z.; Ge, S.; Jiang, Y. Effects of potassium levels on plant growth, accumulation and distribution of carbon, and nitrate metabolism in apple dwarf rootstock seedlings. Front. Plant Sci. 2020, 11, 904. [Google Scholar] [CrossRef] [PubMed]
- Joner, E.J.; Jakobsen, I. Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil. Biol. Biochem. 1995, 27, 1153–1159. [Google Scholar] [CrossRef]
- Fu, Y. Effects of arbuscular mycorrhizal fungi on carbon assimilation and ecological stoichiometry of maize under combined abiotic stresses. J. Plant Ecol. 2023, 16, 234–246. [Google Scholar] [CrossRef]
- Gryndler, M.; Larsen, J.; Hrselova, H.; Rezacova, V.; Gryndlerova, H.; Kubat, J. Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza 2006, 16, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.L. Cultivation Techniques for European Truffles (Tuber spp.). Edible Fungi China 2002, 21, 7–9+11. [Google Scholar] [CrossRef]
- Ning, H.; Ling, L.; Sun, X.; Kang, X.; Chen, H. Predicting the future redistribution of Chinese white pine Pinus armandii Franch. Under climate change scenarios in China using species distribution models. Glob. Ecol. Conserv. 2021, 25, e01420. [Google Scholar] [CrossRef]
- Brundrett, M. Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil. 2009, 320, 37–77. [Google Scholar] [CrossRef]
- Shi, L.; Guttenberger, M.; Kottke, I.; Hampp, R. The effect of drought on mycorrhizas of beech (Fagus sylvatica L.): Changes in community structure, and the content of carbohydrates and nitrogen storage bodies of the fungi. Mycorrhiza 2002, 12, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C.; Mummey, D.L. Mycorrhizas and soil structure. New Phytol. 2006, 171, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, X.; Kou, Y. Ectomycorrhizal fungi: Participation in nutrient turnover and community assembly pattern in forest ecosystems. Forests 2020, 11, 453. [Google Scholar] [CrossRef]
- Garcia, K. Potassium nutrition of ectomycorrhizal Pinus pinaster: Overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K+ and phosphorus in the host plant. New Phytol. 2014, 201, 951–960. [Google Scholar] [CrossRef] [PubMed]
Fertilizer | Fertilizer Application | Fertile Period | NPK Content and Ratio | Trace Element |
---|---|---|---|---|
Aolu 318S | roots | 9 months | 15-9-11 + TE | Fe0.45, Mg0.06, Cu0.05, Zn0.015, B0.03 |
Aolu 328S | roots | 9 months | 11-11-18 + TE | Fe0.25, Mg0.03, Cu0.055, Zn0.01, B0.01 |
Youguduo | roots | 1 week | 19-19-19 + TE | Fe0.05, B0.12, Zn0.06, Mo0.015 |
Treatments | Aboveground Dry Weight | Belowground Dry Weight | ||||
---|---|---|---|---|---|---|
90 Day | 180 Day | 270 Day | 90 Day | 180 Day | 270 Day | |
CK | 2.25 ± 0.04 d | 2.41 ± 0.06 d | 2.44 ± 0.04 d | 2.14 ± 0.03 d | 2.27 ± 0.08 d | 2.33 ± 0.07 e |
T | 2.29 ± 0.08 cd | 2.42 ± 0.05 d | 2.46 ± 0.08 d | 2.17 ± 0.04 d | 2.30 ± 0.07 d | 2.35 ± 0.08 de |
318S | 2.35 ± 0.08 bc | 2.49 ± 0.14 cd | 2.67 ± 0.06 c | 2.30 ± 0.12 c | 2.37 ± 0.07 cd | 2.44 ± 0.08 cd |
328S | 2.39 ± 0.06 bc | 2.64 ± 0.05 b | 2.70 ± 0.03 c | 2.36 ± 0.08 bc | 2.43 ± 0.07 c | 2.47 ± 0.08 c |
P19 | 2.30 ± 0.07 cd | 2.47 ± 0.08 cd | 2.49 ± 0.04 d | 2.20 ± 0.04 d | 2.31 ± 0.07 d | 2.34 ± 0.06 de |
TF318S | 2.41 ± 0.05 ab | 2.71 ± 0.13 ab | 3.06 ± 0.17 b | 2.40 ± 0.04 ab | 2.67 ± 0.06 b | 2.71 ± 0.06 b |
TF328S | 2.49 ± 0.08 a | 2.84 ± 0.15 a | 3.19 ± 0.12 a | 2.46 ± 0.04 a | 2.82 ± 0.14 a | 2.86 ± 0.09 a |
TFP19 | 2.32 ± 0.08 cd | 2.55 ± 0.06 bc | 2.68 ± 0.08 c | 2.21 ± 0.04 d | 2.34 ± 0.05 cd | 2.38 ± 0.06 cde |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Wang, R.; Yu, F.; Liu, R.; He, C.; Huang, L.; Yang, S.; Liu, D.; Wan, S. Effects of N-P-K Ratio in Root Nutrient Solutions on Ectomycorrhizal Formation and Seedling Growth of Pinus armandii Inoculated with Tuber indicum. Agronomy 2025, 15, 1749. https://doi.org/10.3390/agronomy15071749
Huang L, Wang R, Yu F, Liu R, He C, Huang L, Yang S, Liu D, Wan S. Effects of N-P-K Ratio in Root Nutrient Solutions on Ectomycorrhizal Formation and Seedling Growth of Pinus armandii Inoculated with Tuber indicum. Agronomy. 2025; 15(7):1749. https://doi.org/10.3390/agronomy15071749
Chicago/Turabian StyleHuang, Li, Rui Wang, Fuqiang Yu, Ruilong Liu, Chenxin He, Lanlan Huang, Shimei Yang, Dong Liu, and Shanping Wan. 2025. "Effects of N-P-K Ratio in Root Nutrient Solutions on Ectomycorrhizal Formation and Seedling Growth of Pinus armandii Inoculated with Tuber indicum" Agronomy 15, no. 7: 1749. https://doi.org/10.3390/agronomy15071749
APA StyleHuang, L., Wang, R., Yu, F., Liu, R., He, C., Huang, L., Yang, S., Liu, D., & Wan, S. (2025). Effects of N-P-K Ratio in Root Nutrient Solutions on Ectomycorrhizal Formation and Seedling Growth of Pinus armandii Inoculated with Tuber indicum. Agronomy, 15(7), 1749. https://doi.org/10.3390/agronomy15071749