Accumulation Characteristics of Trace Elements in Leafy Vegetables with Different Heavy Metal Tolerances Under Cd and as Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Vegetables
2.2. Hydroponic Experiment
2.3. Data Processing
2.4. Sample Element Analysis
3. Results
3.1. Yield
3.2. Moisture Content of Leafy Vegetables Under Cd/as Treatments
3.3. Accumulation and Translocation of Heavy Metals in Leafy Vegetables
3.3.1. Vegetable Cd Contents
3.3.2. Vegetable as Contents
3.3.3. Heavy Metal Translocation Factor
3.4. Mineral Nutrient Regulation Under Cd/as Stress
3.4.1. Mineral Nutrient Concentration
3.4.2. Translocation Factors of Mineral Elements
3.4.3. Interactions Between Mineral Nutrients
4. Discussion
4.1. Safety Standards for Vegetable Intake and Tolerance Differences
4.2. Heavy Metal Accumulation and Translocation Abilities
4.3. Mineral Nutrition Regulation Mechanisms
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Cd | Cadmium |
As | Arsenic |
Ca | Calcium |
Mg | Magnesium |
Fe | Iron |
Mn | Manganese |
Cu | Copper |
Zn | Zinc |
References
- Hou, D.; Jia, X.; Wang, L.; McGrath, S.P.; Zhu, Y.G.; Hu, Q.; Zhao, F.J.; Bank, M.S.; O’Connor, D.; Nriagu, J. Global soil pollution by toxic metals threatens agriculture and human health. Science 2025, 388, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Su, C.; Zhang, H.; Li, X.; Pei, J.; Peddada, S.D. Interaction of soil heavy metal pollution with industrialisation and the landscape pattern in Taiyuan city, China. PLoS ONE 2014, 9, e105798. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Vareda, J.P.; Valente, A.J.M.; Durães, L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. J. Environ. Manag. 2019, 246, 101–118. [Google Scholar] [CrossRef] [PubMed]
- Rahim, N.; Noor, A.; Kanwal, A.; Tahir, M.M.; Yaqub, A. Assessment of heavy metal contamination in leafy vegetables: Implications for public health and regulatory measures. Environ. Monit. Assess. 2024, 196, 684. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wang, Q.; Zhou, Q.; Ma, L.; Wu, Y.; Liu, Q.; Wang, S.; Feng, Y. Cadmium uptake from soil and transport by leafy vegetables: A meta-analysis. Environ. Pollut. 2020, 264, 114677. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.; Elaksher, S.H.; Shabala, S.; Ouyang, B. Cadmium uptake and detoxification in tomato plants: Revealing promising targets for genetic improvement. Plant Physiol. Biochem. 2024, 214, 108968. [Google Scholar] [CrossRef] [PubMed]
- Vitelli, V.; Giamborino, A.; Bertolini, A.; Saba, A.; Andreucci, A. Cadmium Stress Signaling Pathways in Plants: Molecular Responses and Mechanisms. Curr. Issues Mol. Biol. 2024, 46, 6052–6068. [Google Scholar] [CrossRef] [PubMed]
- Smeets, K.; Ruytinx, J.; Van Belleghem, F.; Semane, B.; Lin, D.; Vangronsveld, J.; Cuypers, A. Critical evaluation and statistical validation of a hydroponic culture system for Arabidopsis thaliana. Plant Physiol. Biochem. 2008, 46, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Zhang, L.; Yao, Z.L.; Ren, Y.B.; Wang, L.Q.; Ou, X.B. Arsenic accumulation and physiological response of three leafy vegetable varieties to As stress. Int. J. Environ. Res. Public Health 2022, 19, 2501. [Google Scholar] [CrossRef] [PubMed]
- GB 15618-2018; Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land. Ministry of Ecology and Environment, State Administration for Market Regulation: Beijing, China, 2018.
- Dixit, G.; Singh, A.P.; Kumar, A.; Singh, P.K.; Kumar, S.; Dwivedi, S.; Trivedi, P.K.; Pandey, V.; Norton, G.J.; Dhankher, O.P.; et al. Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. J. Hazard. Mater. 2015, 298, 241–251. [Google Scholar] [CrossRef] [PubMed]
- McBride, M.B. A comparison of reliability of soil cadmium determination by standard spectrometric methods. J. Environ. Qual. 2011, 40, 1863–1869. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, S.; Shah, M.T.; Khan, S.; Saddique, U.; Gul, N.; Khan, M.U.; Malik, R.N.; Farooq, M.; Naz, A. Wild plant assessment for heavy metal phytoremediation potential along the mafic and ultramafic terrain in northern Pakistan. BioMed Res. Int. 2013, 2013, 194765. [Google Scholar] [CrossRef] [PubMed]
- WHO. Evaluation of Certain Food Additives and Contaminants: Seventy-Third Report of the Joint FAO/WHO Expert Committee on Food Additives; WHO: Geneva, Switzerland, 2011; p. 9601.
- Liu, Z.; Hou, L.; Yan, J.; Ahmad, P.; Qin, M.; Li, R.; El-Sheikh, M.A.; Deshmukh, R.; Sudhakaran, S.S.; Ali, B.; et al. Aquaporin mediated silicon-enhanced root hydraulic conductance is benefit to cadmium dilution in tobacco seedlings. J. Hazard. Mater. 2024, 476, 134905. [Google Scholar] [CrossRef] [PubMed]
- Ucar, S.; Yaprak, E.; Yigider, E.; Kasapoglu, A.G.; Oner, B.M.; Ilhan, E.; Ciltas, A.; Yildirim, E.; Aydin, M. Genome-wide analysis of miR172-mediated response to heavy metal stress in chickpea (Cicer arietinum L.): Physiological, biochemical, and molecular insights. BMC Plant Biol. 2024, 24, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Zhang, L.; Wang, L.; Zhou, C.; Shangguan, Y.; Yang, Y. Antioxidative enzymes activity and thiol metabolism in three leafy vegetables under Cd stress. Ecotoxicol. Environ. Saf. 2019, 173, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Song, J.; Fang, B.; Wang, L.; Zou, J.; Su, N.; Cui, J. BcNRAMP1 promotes the absorption of cadmium and manganese in Arabidopsis. Chemosphere 2021, 283, 131113. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Liu, J.; Chen, M.; Zheng, W.; Liu, Y.; Wang, Y.; Ruan, X.; Wang, Y. Accumulation and risk assessment of heavy metals in different varieties of leafy vegetables. Environ. Geochem. Health 2024, 46, 527. [Google Scholar] [CrossRef] [PubMed]
- Hammill, E.; Pendleton, M.; Brahney, J.; Kettenring, K.M.; Atwood, T.B. Metal concentrations in wetland plant tissues influences transfer to terrestrial food webs. Ecotoxicology 2022, 31, 836–845. [Google Scholar] [CrossRef] [PubMed]
- Jogawat, A.; Yadav, B.; Chhaya; Narayan, O.P. Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. Physiol. Plant. 2021, 173, 259–275. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Awan, S.A.; Rizwan, M.; Ali, S.; Hassan, M.J.; Brestic, M.; Zhang, X.; Huang, L. Effects of silicon on heavy metal uptake at the soil-plant interphase: A review. Ecotoxicol. Environ. Saf. 2021, 222, 112510. [Google Scholar] [CrossRef] [PubMed]
- Goncharuk, E.A.; Zagoskina, N.V. Heavy metals, their phytotoxicity, and the role of phenolic antioxidants in plant stress responses with focus on cadmium. Molecules 2023, 28, 3921. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Yu, A.; Tang, Y.M.; Jiang, Z.Y.; Guan, W.J.; Li, Z.S.; Yu, H.Y.; Zou, L.Y. Visualization and quantification of cadmium accumulation, chelation and antioxidation during the process of vacuolar compartmentalization in the hyperaccumulator plant Solanum nigrum L. Plant Sci. 2021, 310, 110961. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.T.; Ming, F.; Chen, W.W.; Yan, J.Y.; Xu, Y.Z.; Li, X.G.; Xu, Y.C.; Yang, L.J.; Zheng, J.S. TcOPT3, a member of oligopeptide transporters from the hyperaccumulator Thlaspi caerulescens, is a novel Fe/Zn/Cd/Cu transporter. PLoS ONE 2012, 7, e38535. [Google Scholar] [CrossRef] [PubMed]
- Švestková, P.; Balík, J.; Soural, I. Synergistic effect of selected carboxylic acids and phenolic compounds detected by the FRAP method. Food Chem. X 2024, 23, 101573. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, C.; Liang, C.; Wang, T.; Tian, J. The Phosphorus-Iron Nexus: Decoding the Nutrients Interaction in Soil and Plant. Int. J. Mol. Sci. 2024, 25, 6992. [Google Scholar] [CrossRef] [PubMed]
- Khaliq, M.A.; James, B.; Chen, Y.H.; Saqib, H.S.A.; Li, H.H.; Jayasuriya, P.; Guo, W. Uptake, translocation, and accumulation of Cd and its interaction with mineral nutrients (Fe, Zn, Ni, Ca, Mg) in upland rice. Chemosphere 2019, 215, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Huang, Q.; Liu, Y.; Li, B.; Ma, T.; Qin, X.; Zhao, L.; Sun, Y.; Xu, Y. Foliar application of three dithiocarbamates inhibits the absorption and accumulation of Cd in wheat. Environ. Sci. Process. Impacts 2022, 24, 2324–2335. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, Q.; Sun, X.; Ren, W. Effects of cadmium on uptake and translocation of nutrient elements in different welsh onion (Allium fistulosum L.) cultivars. Food Chem. 2016, 194, 101–110. [Google Scholar] [CrossRef] [PubMed]
Tolerance | Chinese Name | English Name | Latin Name |
---|---|---|---|
Tolerant | 四季奶油小白菜 | Four-Season Creamy Pak Choi | Brassica rapa subsp. pekinensis |
九头鸟雪里蕻 | Jiutouniao Snow Cabbage | Brassica juncea var. crispifolia | |
小八叶榻菜 | Small Eight-Leaf Takaicai | Brassica rapa subsp. narinosa | |
Moderately Tolerant | 泰国香油麦菜 | Thai Fragrant Youmaicai | Lactuca sativa var. longifolia |
柳叶空心菜 | Willow-Leaf Water Spinach | Ipomoea aquatica | |
黑豆苗 | Black Bean Sprouts | Vigna mungo (L.) Hepper | |
白萝卜苗 | White Radish Sprouts | Raphanus sativus L. | |
Sensitive | 麻豌豆苗 | Pea Sprouts | Pisum sativum |
Number | Treatment | Cd Content (mg L−1) | As Content (mg L−1) |
---|---|---|---|
1 | CK | 0 | 0 |
2 | Cd1 | 1 | 0 |
3 | Cd2 | 2 | 0 |
4 | Cd3 | 4 | 0 |
5 | Cd4 | 10 | 0 |
6 | Cd5 | 20 | 0 |
7 | As1 | 0 | 10 |
8 | As2 | 0 | 20 |
9 | As3 | 0 | 40 |
10 | As4 | 0 | 100 |
11 | As5 | 0 | 200 |
12 | Cd2As2 | 2 | 20 |
13 | Cd2As4 | 2 | 100 |
14 | Cd4As2 | 10 | 20 |
Tolerance Type | Leafy Vegetable Species | Average Cd Content in Shoot (mg kg−1) | Average Cd Content in Root (mg kg−1) | Average As Content in Shoot (mg kg−1) | Average As Content in Root (mg kg−1) | Average TF-Cd | Average TF-As | Heavy Metal Accumulation Characteristics |
---|---|---|---|---|---|---|---|---|
Tolerant | Pak Choi | 163.81 | 270.06 | 426.16 | 149.02 | 0.54 | 2.97 | Cd Accumulation Type |
Snow Cabbage | 80.90 | 108.62 | 431.89 | 95.28 | 0.67 | 5.02 | / | |
Takaicai | 97.77 | 97.86 | 360.20 | 137.75 | 1.11 | 2.12 | As Root Accumulation Type | |
Sensitive | Pea Sprouts | 50.61 | 69.85 | 244.28 | 14.20 | 1.97 | 24.61 | Avoidance Type-Translocation Type |
Moderately Tolerant | Water Spinach | 39.26 | 92.11 | 180.57 | 73.89 | 0.42 | 2.12 | Avoidance Type |
Black Bean Sprouts | 73.71 | 63.08 | 683.07 | 51.01 | 2.38 | 13.09 | Translocation Type | |
White Radish Sprouts | 132.80 | 227.53 | 1038.31 | 459.76 | 1.78 | 4.01 | Accumulation Type-Translocation Type | |
Youmaicai | 47.64 | 137.62 | 441.42 | 116.39 | 0.30 | 3.76 | Cd Root Accumulation Type |
Mineral Element | Root | Shoot | ||||||
---|---|---|---|---|---|---|---|---|
CK | Single Cd | Single As | Combined Cd-As | CK | Single Cd | Single As | Combined Cd-As | |
Mg-Ca | / | 0.41 Synergistic | 0.61 Synergistic | 0.54 Synergistic | / | / | / | / |
Fe-Ca | 0.71 * Synergistic | / | / | −0.46 * Antagonistic | / | / | / | / |
Mn-Ca | / | / | 0.46 Synergistic | / | / | −0.38 * Antagonistic | −0.39 * Antagonistic | / |
Cu-Ca | / | −0.32 * Antagonistic | / | / | / | −0.50 Antagonistic | −0.49 Antagonistic | −0.49 * Antagonistic |
Zn-Ca | / | / | / | 0.76 Synergistic | −0.73 * Antagonistic | −0.42 Antagonistic | −0.36 * Antagonistic | / |
Mg-Fe | / | / | / | / | / | / | −0.45 Antagonistic | −0.56 Antagonistic |
Mg-Mn | / | 0.40 * Synergistic | 0.50 Synergistic | 0.49 * Synergistic | / | / | 0.34 * Synergistic | / |
Mg-Cu | / | −0.57 Antagonistic | / | / | / | / | / | −0.41 * Antagonistic |
Mg-Zn | / | 0.42 Synergistic | 0.34 * Synergistic | 0.54 Synergistic | / | 0.39 * Synergistic | 0.50 Synergistic | 0.44 * Synergistic |
Fe-Mn | / | / | / | / | / | / | −0.39 * Antagonistic | −0.48 * Antagonistic |
Fe-Cu | / | / | / | / | / | 0.45 Synergistic | 0.63 Synergistic | 0.50 * Synergistic |
Fe-Zn | / | / | / | / | / | 0.64 Synergistic | / | / |
Mn-Cu | / | / | / | / | / | / | −0.33 * Antagonistic | / |
Mn-Zn | / | / | / | / | / | / | / | / |
Cu-Zn | / | / | 0.33 * Synergistic | / | / | 0.51 Synergistic | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Y.; Zhang, L.; Li, L.; Wang, L.; Wu, Y.; Zeng, T.; Shi, H.; Chang, Z.; Shi, Q.; Ma, J. Accumulation Characteristics of Trace Elements in Leafy Vegetables with Different Heavy Metal Tolerances Under Cd and as Stress. Agronomy 2025, 15, 1790. https://doi.org/10.3390/agronomy15081790
Meng Y, Zhang L, Li L, Wang L, Wu Y, Zeng T, Shi H, Chang Z, Shi Q, Ma J. Accumulation Characteristics of Trace Elements in Leafy Vegetables with Different Heavy Metal Tolerances Under Cd and as Stress. Agronomy. 2025; 15(8):1790. https://doi.org/10.3390/agronomy15081790
Chicago/Turabian StyleMeng, Yuan, Liang Zhang, Liping Li, Linquan Wang, Yongfu Wu, Tao Zeng, Haiqing Shi, Zeli Chang, Qian Shi, and Jian Ma. 2025. "Accumulation Characteristics of Trace Elements in Leafy Vegetables with Different Heavy Metal Tolerances Under Cd and as Stress" Agronomy 15, no. 8: 1790. https://doi.org/10.3390/agronomy15081790
APA StyleMeng, Y., Zhang, L., Li, L., Wang, L., Wu, Y., Zeng, T., Shi, H., Chang, Z., Shi, Q., & Ma, J. (2025). Accumulation Characteristics of Trace Elements in Leafy Vegetables with Different Heavy Metal Tolerances Under Cd and as Stress. Agronomy, 15(8), 1790. https://doi.org/10.3390/agronomy15081790