Forage Yield, Quality, and Weed Suppression in Narbon Vetch (Vicia narbonensis L.) and Italian Ryegrass (Lolium multiflorum L.) Mixtures Under Organic Management
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Soil Characteristics
2.2. Climatic Data
2.3. Experimental Design and Field Management
Plant Material and Sowing Rates
- Monoculture plots: 60 kg ha−1 of narbon vetch and 30 kg ha−1 of ryegrass.
- Mixed sowing plots: 30 kg ha−1 of narbon vetch + 15 kg ha−1 of ryegrass (corresponding to a 50:50 ratio based on pure seeding rates).
2.4. Measurements and Harvesting
2.4.1. Land Equivalent Ratio (LER)
- -
- LER >1: Indicates that the intercropping system improves land use efficiency.
- -
- LER = 1: Indicates that the intercropping system has no effect on land use efficiency.
- -
- LER < 1: Indicates that the intercropping system reduces land use efficiency.
2.4.2. Assessment of Weed Suppression
2.5. Statistical Analysis
3. Results
3.1. Morphological Characteristics
3.1.1. Plant Height
3.1.2. Stem Diameter
3.1.3. Leaf Dimensions
3.1.4. Number of Lateral Branches
3.1.5. Number of Sprouts (Tillers)
3.2. Leaf–Stem Ratio, Botanical Composition, Crude Protein, and Fiber Contents (ADF, NDF)
3.2.1. Leaf Ratio in the Plant (%)
3.2.2. Stem Ratio in the Plant (%)
3.2.3. Botanical Composition
3.2.4. Crude Protein Content
3.2.5. Acid Detergent Fiber (ADF) and Neutral Detergent Fiber (NDF)
3.3. Crude Protein Yield, Forage Yield, Total Forage Yields, and Land Equivalent Ratios
3.3.1. Crude Protein Yield (kg da−1)
3.3.2. Green Grass Yield (kg ha−1)
3.3.3. Hay Yield (kg ha−1)
3.3.4. Total Green and Hay Yield
3.3.5. Land Equivalent Ratios (LERs)
3.4. Weed Species Composition and Densities
3.5. Weed Biomass Response to Different Planting Systems
4. Discussion
4.1. Morphological Features
4.2. Leaf–Stem Ratio and Structural Balance
4.3. Botanical Composition in Mixed Stands
4.4. Forage Yield Performance
4.5. Crude Protein Yield and Quality Implications
4.6. Ecological and Practical Significance
4.7. Crude Protein Content
4.8. Fiber Fractions (ADF and NDF)
4.9. Forage Yield
4.10. Land Equivalent Ratio (LER) for Dry Matter and Protein
4.11. Ecological and Practical Implications
4.12. Weed Suppression
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mugwe, J.; Mucheru-Muna, M.; Mugendi, D.; Kung’u, J.; Bationo, A.; Mairura, F. Adoption potential of selected organic resources for improving soil fertility in the central highlands of Kenya. Agrofor. Syst. 2009, 76, 467–485. [Google Scholar] [CrossRef]
- Tahir, M.; Ali, A.; Hussain, M.; Ahmed, M. Impact of Organic and Inorganic Fertilizers on Yield and Quality of Maize under Semi-Arid Conditions. Agronomy 2022, 12, 1234. [Google Scholar] [CrossRef]
- Kuşvuran, A.; Kaplan, M.; veNazlı, R.İ. Effects of ratio and row spacing in hungarianvetch (Vicia pannonica Crantz.) and annual ryegrass (Lolium multiflorum Lam.) intercropping system on yield and quqlity under semiarid climate conditions. Turk. J. Field Crops 2014, 19, 118–128. [Google Scholar] [CrossRef]
- Yin, X.; Struik, P.C. Modelling the Crop: From System Dynamics to Systems Biology. J. Exp. Bot. 2010, 61, 2171–2183. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Y.; Chen, H.; Li, X. Effects of Intercropping Systems on Forage Yield and Weed Suppression in Dryland Agriculture. Field Crops Res. 2023, 290, 108760. [Google Scholar]
- Lal, R. Soil Organic Matter and Water Retention. Agron. J. 2020, 112, 3265–3277. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Jørnsgaard, B.; Kinane, J.; Jensen, E.S. Grain legume–cereal intercropping: The practical application of diversity, competition and facilitation in arable and organic cropping systems. Renew. Agric. Food Syst. 2008, 23, 3–12. [Google Scholar] [CrossRef]
- Bavec, F.; Mlakar, S.G.; Rozman, Č.; Bavec, M. Sustainable Agriculture Based on Integrated and Organic Guidelines: Understanding Terms: The Case of Slovenian Development and Strategy. Outlook Agric. 2009, 38, 89–95. [Google Scholar] [CrossRef]
- Ueno, M.; Ueno, H.; Takahashi, T. Evaluation of forage quality in grass–legume mixed swards. Grassl. Sci. 2007, 53, 33–38. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Tansı, V. Studies on the Effects of Different Intercropping Systems on Grain and Forage Yield of Maize and Soybean Grown as Second Crops in the Çukurova Region. Ph.D. Thesis, Institute of Science and Technology, Çukurova University, Adana, Turkey, 1987. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Azizi, K.; Daraei Mofrad, A.; Heidari, S.; Amini Dehaghi, M.; Kahrizi, D. A study on the qualitative and quantitative traits of barley (Hordeum vulgare L.) and Narbon vetch (Vicia narbonensis L.) in intercropping and sole cropping systems under weed interference. J. Appl. Crop Res. 2013, 26, 88. [Google Scholar]
- Bacchi, M.; Monti, M.; Calvi, A.; Lo Presti, E.; Pellicanò, A.; Preiti, G. Forage potential of cereal–legume intercrops: Agronomic performances, yield, quality and LER in two harvest times in a Mediterranean environment. Agronomy 2021, 11, 121. [Google Scholar] [CrossRef]
- Sayar, M.S.; Han, Y. Determination of forage yield performance of some promising Narbon vetch (Vicia narbonensis L.) lines under rainfed conditions in Southeastern Turkey. J. Agric. Sci. 2014, 20, 376–386. [Google Scholar] [CrossRef]
- Saleem, A.; Malik, A.M.; Hassan, N.U.; Qamar, I.A. Effect of common vetch (Vicia sativa L.) on growth and yield of ryegrass (Lolium multiflorum L.). Pak. J. Agric. Res. 2019, 32, 675–683. [Google Scholar] [CrossRef]
- Sheaffer, C.; Goplen, J.; Fernholz, C.; Salzer, T. Advantages of Legume–Grass Mixtures. Minnesota Crop News 2022. Available online: https://blog-crop-news.extension.umn.edu/2022/03/benefits-of-legume-grass-mixtures.html (accessed on 23 July 2025).
- Çağlar, H.; Kızıl Aydemir, S.; Kaçan, K. Assessment of the efficiency of combined seeding rates of common vetch and ryegrass for controlling weed development in organic forage cultivation systems. Life 2025, 15, 731. [Google Scholar] [CrossRef]
- Kumlay, A.M.; Yavuz, T.; Altınok, S. Fodder yield and quality performance of Italian ryegrass (Lolium multiflorum Lam.) genotypes under different environmental conditions. Turk. J. Field Crops 2020, 25, 203–210. [Google Scholar]
- Sleugh, B.; Moore, K.J.; George, J.R.; Brummer, E.C. Binary legume–grass mixtures Improve Forage Yield, Quality, and Seasonal Distribution. Agron. J. 2000, 92, 24–29. [Google Scholar] [CrossRef]
- Carlsson, G.; Huss-Danell, K. Nitrogen fixation in perennial forage legumes in the field. Plant Soil 2003, 253, 353–372. [Google Scholar] [CrossRef]
- Cougnon, M.; Baert, J.; Van Waes, C.; Reheul, D. Performance and quality of tall fescue (Festuca arundinacea Schreb.) and perennial ryegrass (Lolium perenne L.) mixtures grown with or without white clover under cutting management. Grass Forage Sci. 2014, 69, 666–677. [Google Scholar] [CrossRef]
- Bàrberi, P. Weed management in organic agriculture: Are we addressing the right issues? Weed Res. 2002, 42, 177–193. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Ambus, P.; Jensen, E.S. Interspecific competition, N use and interference with weeds in pea–barley intercropping. Field Crops Res. 2001, 70, 101–109. [Google Scholar] [CrossRef]
Treatments | Plant Heights, cm | Plant Stem Diameter, mm | Plant Leaf Length, cm | Plant Leaf Width, cm | Number of Lateral Branches in Narbon vetch | Number of Sprouts in Grass | ||||
---|---|---|---|---|---|---|---|---|---|---|
Narbon V. | Ryegrass | Narbon V. | Ryegrass | Narbon V. | Ryegrass | Narbon V. | Ryegrass | Narbon V. | Ryegrass | |
Özgen + Efe 82 | 65.00 gh | 100.3 h | 8.13 a | 2.53 a | 4.50 f | 12.60 ı | 2.93 de | 1.27 cd | 5.00 a | 11.23 c |
Özgen + Bartigra | 69.33 fg | 117.0 def | 7.83 b | 2.13 cd | 4.67 f | 29.30 b | 3.20 bc | 1.50 ab | 3.90 cd | 11.87 bc |
Özgen + Trinova | 72.00 ef | 122.0 bc | 7.10 d | 2.37 b | 4.53 f | 29.23 b | 2.93 de | 1.60 ab | 3.27 f | 13.00 ab |
IFVN 567 + Efe 82 | 81.00 bcb | 114.3 fg | 5.33 ı | 2.27 bc | 5.07 d | 16.80 h | 3.60 a | 1.07 f | 3.53 ef | 11.70 bc |
IFVN 567 + Bartigra | 84.67 ab | 120.3 cd | 5.97 g | 1.97 e | 5.40 b | 18.50 g | 3.27 bc | 0.90 g | 4.43 b | 13.30 ab |
IFVN 567 + Trinova | 86.33 ab | 119.3 cde | 5.63 h | 2.13 cd | 5.60 a | 21.03 f | 3.43 ab | 1.10 ef | 3.70 de | 13.07 ab |
Karakaya + Efe 82 | 79.33 cd | 110.7 g | 6.77 e | 2.40 ab | 5.10 cd | 27.10 c | 2.80 e | 1.20 def | 3.63 de | 11.97 abc |
Karakaya + Bartigra | 75.00 de | 118.0 c-f | 6.40 f | 2.03 de | 4.87 e | 22.57 e | 2.73 e | 1.10 ef | 3.67 de | 12.60 abc |
Karakaya + Trinova | 78.67 cd | 127.0 a | 6.53 f | 2.03 de | 4.93 de | 26.03 d | 2.90 de | 1.10 ef | 3.43 ef | 13.33 ab |
Efe 82 | - | 116.0 ef | - | 2.33 b | - | 33.03 a | - | 1.37 bc | - | 11.10 c |
Özgen | 64.33 h | - | 8.17 a | - | 4.60 f | - | 3.07 cd | - | 4.30 b | - |
IFFN567 | 82.33 abc | - | 6.13 g | - | 5.63 a | - | 3.67 a | - | 4.10 bc | - |
Karakaya | 70.33 ef | - | 7.33 c | - | 5.27 bc | - | 3.30 bc | - | 3.70 de | - |
Bartigra | - | 121.7 c | - | 1.93 e | - | 27.77 c | - | 1.23 cde | - | 11.87 bc |
Trinova | - | 126.0 b | - | 2.17 cd | - | 18.50 g | - | 1.10 ef | - | 13.67 a |
Average | 75.69 | 117.7 | 6.78 | 2.2 | 5.01 | 23.54 | 3.15 | 1.21 | 3.89 | 12.39 |
L.S.D. (%5) ±SE | 4.843 2.86 | 4.309 2.545 | 0.170 0.100 | 0.158 0.095 | 0.192 0.114 | 0.816 0.482 | 0.241 0.141 | 0.153 0.089 | 0.342 0.117 | 1.764 0.602 |
Treatments | Leaf Ratio in the Plant, % | Stem Ratio in the Plant, % | Botanical Composition, % | Crude Protein Ratio, % | ADF Ratio, % | NDF Ratio, % | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Narbon V. | Ryegrass | Narbon V. | Ryegrass | Narbon V. | Ryegrass | Narbon V. | Ryegrass | Narbon V. | Ryegrass | Narbon V. | Ryegrass | |
Özgen + Efe 82 | 56.63 g | 76.63 g | 43.37 b | 23.37 a | 16.93 e | 83.07 a | 21.27 de | 8.97 e | 28.80 cde | 31.73 b | 34.53 abc | 46.43 b |
Özgen + Bartigra | 60.80 ef | 83.53 b-f | 39.20 cd | 16.47 b-f | 20.07 b | 79.93 d | 22.23 c | 10.83 c | 29.17 bcd | 29.70 de | 35.40 a | 45.07 cd |
Özgen + Trinova | 67.70 a | 83.57 b-e | 32.30 h | 16.43 c-f | 23.43 a | 76.57 e | 22.43 bc | 12.70 a | 29.20 bcd | 28.93 ef | 35.57 a | 43.93 e |
IFVN 567 + Efe 82 | 64.37 b | 84.40 bcd | 35.63 g | 15.60 def | 19.00 bcd | 81.00 bcd | 22.40 c | 9.87 d | 27.73 fg | 30.20 d | 33.23 cd | 45.10 cd |
IFVN 567 + Bartigra | 54.27 h | 85.37 abc | 45.73 a | 14.63 efg | 16.77 e | 83.23 a | 22.23 c | 11.67 b | 27.77 fg | 29.17 ef | 32.33 de | 45.13 c |
IFVN 567 + Trinova | 61.23 de | 81.27 ef | 38.77 de | 18.73 bc | 19.73 bc | 80.27 cd | 21.90 cd | 12.43 a | 27.97 efg | 28.40 f | 31.30 e | 44.17 de |
Karakaya + Efe 82 | 61.63 cde | 80.77 f | 38.37 def | 19.23 b | 18.50 d | 81.50 b | 20.83 ef | 9.10 e | 29.63 abc | 31.07 bc | 34.73 ab | 46.80 ab |
Karakaya + Bartigra | 63.50 bc | 83.30 c-f | 36.50 fg | 16.70 b-e | 18.80 cd | 81.20 bc | 20.20 f | 10.17 d | 30.47 a | 29.77 de | 34.70 ab | 46.63 ab |
Karakaya + Trinova | 64.90 b | 84.63 a-d | 35.10 g | 15.37 d-g | 23.07 a | 76.93 e | 22.10 c | 12.67 a | 29.97 ab | 28.70 f | 34.67 ab | 44.73 cde |
Efe 82 | - | 82.37 def | - | 17.63 bcd | - | - | - | 7.80 f | - | 32.93 a | - | 47.40 ab |
Özgen | 57.47 g | - | 42.53 b | - | - | - | 23.07 bc | - | 28.43 def | - | 33.27 cd | - |
IFFN567 | 58.83 fg | - | 41.17 bc | - | - | - | 24.17 a | - | 27.17 g | - | 32.30 de | - |
Karakaya | 63.43 bcd | - | 36.57 efg | - | - | - | 22.17 c | - | 29.30 bcd | - | 33.40 bcd | - |
Bartigra | - | 87.23 a | - | 12.77 g | - | - | - | 9.27 e | - | 31.77 b | - | 46.80 ab |
Trinova | - | 86.1 abc | - | 13.90 fg | - | - | - | 10.70 c | - | 30.30 cd | - | 45.30 c |
Average | 61.23 | 83.3 | 38.77 | 16.7 | 19.59 | 80.41 | 22.08 | 10.51 | 28.80 | 30.22 | 33.79 | 45.62 |
L.S.D. (%5) | 2.252 | 2.785 | 2.252 | 2.785 | 1.115 | 1.115 | 0.655 | 0.444 | 0.904 | 0.839 | 1.376 | 0.956 |
±SE | 0.768 | 0.950 | 0.768 | 0.950 | 0.372 | 0.372 | 0.224 | 0.151 | 0.308 | 0.286 | 0.308 | 0.308 |
Treatments | Crude Protein Yield, kg ha−1 | Green Grass Yield, kg ha−1 | Hay Yield, kg ha−1 | Total Green Grass Yield, kg ha−1 | Total Hay Grass Yield, kg ha−1 | DM-LER, % | Protein-LER, % | |||
---|---|---|---|---|---|---|---|---|---|---|
Narbon V. | Ryegrass | Narbon V. | Ryegrass | Narbon V. | Ryegrass | Mixture | Mixture | Mixture | Mixture | |
Özgen + Efe 82 | 1331.1 g | 389.2 h | 28,258 f | 18,691 hı | 6260.0 f | 4342 e | 46,949 e | 10,602 d | 1.32 e | 1.36 e |
Özgen + Bartigra | 1269.4 g | 637.5 cd | 22,622 h | 24,908 d | 5709.7 g | 5885 c | 47,529 e | 11,595 c | 1.43 d | 1.72 b |
Özgen + Trinova | 1320.0 g | 637.7 cd | 25,390 g | 21,410 f | 5882.7 g | 5019 d | 46,800 e | 10,902 d | 1.35 e | 1.75 b |
IFVN 567 + Efe 82 | 1969.6 b | 384.7 h | 40,195 b | 15,372 j | 8794.3 b | 3900 ffg | 55,567 c | 12,694 b | 1.60 b | 1.71 b |
IFVN 567 + Bartigra | 1814.6 c | 596.8 de | 37,911 c | 21,464 f | 8162.7 c | 5115 d | 59,375 a | 13,278 a | 1.66 a | 1.96 a |
IFVN 567 + Trinova | 1918.1 b | 560.6 ef | 39,771 b | 19,925 gh | 8757.7 b | 4516 e | 59,696 a | 13,273 a | 1.67 a | 1.96 a |
Karakaya + Efe 82 | 1614.5 e | 351.3 h | 35,184 d | 17,542 ı | 7750.3 d | 3858 g | 52,726 d | 11,608 c | 1.46 cd | 1.46 d |
Karakaya + Bartigra | 1521.8 f | 450.2 g | 33,852 de | 23,343 e | 7533.7 de | 4428 e | 57,195 b | 11,961 c | 1.50 c | 1.57 c |
Karakaya + Trinova | 1651.5 e | 535.6 f | 34,145 d | 20,176 fg | 7475.7 e | 4224 ef | 54,321 c | 11,700 c | 1.47 cd | 1.77 b |
Efe 82 | - | 643.4 cd | - | 33,298 c | - | 8256 b | - | - | 1.00 f | 1.00 f |
Özgen | 1748.6 d | - | 32,499 e | - | 7580.3 de | - | - | - | 1.00 f | 1.00 f |
IFFN567 | 2237.1 a | - | 43,526 a | - | 9256.0 a | - | - | - | 1.00 f | 1.00 f |
Karakaya | 1934.9 b | - | 38,072 c | - | 8728.3 b | - | - | - | 1.00 f | 1.00 f |
Bartigra | - | 871.8 b | - | 42,486 a | - | 9403 a | - | - | 1.00 f | 1.00 f |
Trinova | - | 972.7 a | - | 39,674 b | - | 9090 a | - | - | 1.00 f | 1.00 f |
Average | 1694.3 | 585.9 | 342,854 | 24,857 | 7657.6 | 5670 | 53,351 | 1195.7 | 1.30 | 1.42 |
L.S.D. (%5) | 62.33 | 435.0 | 1544.07 | 1421.77 | 235.91 | 357.20 | 1540.31 | 500.80 | 0.045 | 0.064 |
±SE | 28.9 | 14.8 | 526.4 | 484.8 | 80.4 | 121.8 | 513.8 | 167.0 | 0.018 | 0.018 |
Treatments | AMARE | ATXPA | AVEFA | BROIN | CAPBU | CONAR | CYNDA | CYPRO | FUMOF | HORMU | LACSE | LAMAP | LOLTE | MALNE | MATCH | PHRCO | POROL | PAPRH | SETVI | SİNAR | STEME | SONOL | SOLNİ | SORHA | VERHE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Özgen + Bartigra | - | - | - | - | 0,75 | - | - | - | - | - | - | - | 1.00 | - | - | - | 0,25 | - | - | - | 0,75 | - | - | - | 2.00 |
IFVN 567 + Bartigra | - | - | 0.31 | - | - | 0.50 | - | - | - | - | - | 0.50 | 0.75 | 0.25 | 0.25 | - | - | - | - | 0.50 | - | - | 0.70 | - | 0.80 |
Karakaya + Bartigra | - | - | 1.00 | - | 0.50 | - | 0.44 | - | 0.44 | - | - | 0.31 | - | - | - | 0.85 | - | - | - | - | - | - | 1.06 | 0.50 | - |
IFVN 567 + Efe 82 | - | - | - | 1.19 | - | - | 0.50 | - | - | - | 0.31 | - | - | - | - | - | 0.94 | - | 1.00 | - | 0.70 | 0.50 | - | - | - |
Özgen + Efe 82 | - | - | 0.25 | - | 0.33 | 1.00 | - | - | - | - | 0.13 | - | 1.31 | - | 0.19 | - | 0.50 | - | 0.63 | - | 0.83 | - | - | - | - |
Karakaya + Trinova | 0.50 | 1.50 | - | - | - | 0.50 | 1.00 | - | 0.33 | - | - | 0.50 | - | - | 0.31 | - | - | 1.00 | - | - | - | - | - | - | 0.50 |
Karakaya + Efe 82 | - | 1.00 | - | - | 0.25 | - | - | - | - | - | 0.19 | - | 3.00 | 0.31 | - | - | - | 0.50 | - | - | - | - | 0.83 | - | 0.50 |
Bartigra | - | - | - | - | - | - | 1.00 | 0.69 | - | - | 0.25 | - | - | - | - | - | 2.00 | 0.50 | 0.81 | - | 1.06 | - | - | - | 1.00 |
Trinova | - | 0.50 | - | - | - | 2.50 | - | - | - | - | - | 0.69 | 1.56 | - | - | - | 0.94 | - | - | 0.55 | 1.44 | 0.19 | - | - | - |
Özgen + Trinova | - | - | 0.33 | 0.45 | 1.44 | 2.50 | - | - | - | 0.30 | - | - | 1.50 | - | 0.64 | - | - | - | - | - | 0.50 | 0.31 | - | 0.69 | - |
Efe 82 | 0.50 | - | - | - | 0.81 | 1.00 | - | 0.44 | - | 1.50 | - | 1.50 | - | - | - | - | - | 1.00 | - | 0.19 | 1.50 | - | 1.50 | - | - |
IFVN 567 + Trinova | - | 0.50 | - | - | - | 2.00 | - | - | - | - | - | - | 3.00 | 0.19 | 0.31 | - | - | - | 0.20 | - | - | 1.00 | - | - | 3.00 |
Özgen | 0.50 | 1.00 | - | - | - | 0.50 | 1.56 | - | 0.25 | 0.61 | - | 1.03 | 2.10 | - | 0.19 | 0.43 | - | - | - | 0.86 | - | - | 1.44 | 0.50 | 0.81 |
Karakaya | 0.33 | 2.00 | - | - | - | 1.00 | - | - | - | - | - | 1.90 | 3.50 | - | - | - | - | - | 1.68 | - | - | 0.50 | 0.50 | 1.00 | 1.00 |
IFVN 567 | 0.50 | - | - | - | - | 1.00 | - | 0.50 | - | - | - | - | 9.00 | - | - | 0.28 | - | 1.50 | 0.50 | - | - | - | - | 1.00 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demircan, M.; Kizil Aydemir, E.S.; Kaçan, K. Forage Yield, Quality, and Weed Suppression in Narbon Vetch (Vicia narbonensis L.) and Italian Ryegrass (Lolium multiflorum L.) Mixtures Under Organic Management. Agronomy 2025, 15, 1796. https://doi.org/10.3390/agronomy15081796
Demircan M, Kizil Aydemir ES, Kaçan K. Forage Yield, Quality, and Weed Suppression in Narbon Vetch (Vicia narbonensis L.) and Italian Ryegrass (Lolium multiflorum L.) Mixtures Under Organic Management. Agronomy. 2025; 15(8):1796. https://doi.org/10.3390/agronomy15081796
Chicago/Turabian StyleDemircan, Melek, Emine Serap Kizil Aydemir, and Koray Kaçan. 2025. "Forage Yield, Quality, and Weed Suppression in Narbon Vetch (Vicia narbonensis L.) and Italian Ryegrass (Lolium multiflorum L.) Mixtures Under Organic Management" Agronomy 15, no. 8: 1796. https://doi.org/10.3390/agronomy15081796
APA StyleDemircan, M., Kizil Aydemir, E. S., & Kaçan, K. (2025). Forage Yield, Quality, and Weed Suppression in Narbon Vetch (Vicia narbonensis L.) and Italian Ryegrass (Lolium multiflorum L.) Mixtures Under Organic Management. Agronomy, 15(8), 1796. https://doi.org/10.3390/agronomy15081796