Influence of GA3 and CPPU on the Quality Attributes and Peelability of ‘Wuhe Cuibao’ Grape
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Materials
2.2. Chemicals and Reagents
2.3. Experimental Design
2.4. Measurement and Methods
2.4.1. Measurement of Fruit Appearance Quality
2.4.2. Measurement of Fruit Colorimetric Attributes
2.4.3. Measurement of Pedicel Detachment Force
2.4.4. Measurement of Peel–Flesh Adhesion Force
2.4.5. Observation of Fruit Tissue Anatomy
2.4.6. Evaluation of the Intrinsic Quality Parameters of Fruit
2.4.7. Data Processing and Analysis
3. Results
3.1. Impact of GA3 and CPPU Application on the Morphological Quality of Clusters and Berries in ‘Wuhe Cuibao’ Grape
3.2. Influence of GA3 and CPPU Application on Skin Color Characteristics of ‘Wuhe Cuibao’ Grape
3.3. Effects of GA3 and CPPU Application on Fruit Texture Traits, Including Firmness and Ease of Peeling, in ‘Wuhe Cuibao’ Grape
3.4. Cellular Responses of ‘Wuhe Cuibao’ Grape to GA3 and CPPU Application
3.5. Influence of GA3 and CPPU Application on the Accumulation of Nutritional Compounds in ‘Wuhe Cuibao’ Grape
3.6. Effects of GA3 and CPPU Application on the Accumulation of Phenolic Compounds in ‘Wuhe Cuibao’ Grape Berries
3.7. Impact of GA3 and CPPU Application on the Accumulation of Flavor Compound Content in ‘Wuhe Cuibao’ Grape Berries
3.8. Correlation Analysis of GA3 and CPPU Application with Fruit Quality Traits in ‘Wuhe Cuibao’ Grape
3.9. Integrated Assessment of the Impact of GA3 and CPPU Application on the Fruit Quality Characteristics of ‘Wuhe Cuibao’ Grape
4. Discussion
4.1. Impact of Various Treatment Applications on the External Fruit Quality Traits of ‘Wuhe Cuibao’ Grape
4.2. Effects of Various Treatments on the Internal Quality Attributes of ‘Wuhe Cuibao’ Grape Berries
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, T.X.; Luo, C.; Mo, X.; Zhang, X.J.; Li, X.; Li, J.; He, X.H. Transcriptome analysis to identify candidate genes that response to GA3 and CPPU treatments for mango fruit development. Plant Growth Regul. 2024, 104, 885–897. [Google Scholar] [CrossRef]
- Bons, H.K.; Kaur, M. Role of plant growth regulators in improving fruit set, quality and yield of fruit crops: A review. J. Hortic. Sci. Biotech. 2020, 95, 137–146. [Google Scholar] [CrossRef]
- Guzmán, Y.; Pugliese, B.; González, C.V.; Travaglia, C.; Bottini, R.; Berli, F. Spray with plant growth regulators at full bloom may improve quality for storage of ‘Superior Seedless’ table grapes by modifying the vascular system of the bunch. Postharvest Biol. Technol. 2021, 176, 111522–111527. [Google Scholar] [CrossRef]
- Abdel-Sattar, M.; Al-Obeed, R.S.; Lisek, A.; Eshra, D.H. Enhancing Anna apples’ productivity, physico-chemical properties, and marketability using sprays of naphthalene acetic acid and inhibitors of ethylene for alleviating abiotic stresses. Horticulturae 2023, 9, 755. [Google Scholar] [CrossRef]
- Li, W.F.; Zhou, Q.; Ma, Z.H.; Zuo, C.W.; Chu, M.Y.; Mao, J.; Chen, B.H. Regulatory mechanism of GA3 application on grape (Vitis vinifera L.) berry size. Plant Physiol. Biochem. 2024, 210, 108543–108555. [Google Scholar] [CrossRef]
- Su, Z.W.; Xuan, X.X.; Sheng, Z.L.; Wang, F.; Zhang, X.W.; Ye, D.D.; Wang, X.C.; Dong, T.Y.; Pei, D.; Zhang, P.A.; et al. Characterization and regulatory mechanism analysis of VvmiR156a-VvAGL80 pair during grapevine flowering and parthenocarpy process induced by gibberellin. Plant Genome 2022, 15, e20181. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.S.; Luo, Y.C.; Wang, S.W.; Wang, H.C.; Harpaz-Saad, S.; Huang, X.M. Residue analysis and the effect of preharvest forchlorfenuron (CPPU) application on on-tree quality maintenance of ripe fruit in “Feizixiao” Litchi (Litchi chinensis Sonn.). Front. Plant Sci. 2022, 4, 829635–829651. [Google Scholar] [CrossRef]
- Yu, Y.H.; Li, X.F.; Yang, S.D.; Bian, L.; Yu, K.K.; Meng, X.X.; Liu, H.N.; Pei, M.S.; Wei, T.L.; Guo, D.L. CPPU-induced changes in energy status and respiration metabolism of grape young berry development in relation to Berry setting. Sci. Hortic. 2021, 283, 110084–110090. [Google Scholar] [CrossRef]
- Nardozza, S.; Boldingh, H.L.; Wohlers, M.W.; Gleave, A.P.; Luo, Z.W.; Costa, G.; MacRae, E.A.; Clearwater, M.J.; Richardson, A.C. Exogenous cytokinin application to Actinidia chinensis var. Deliciosa hayward fruit promotes fruit expansion through water uptake. Hortic. Res. 2017, 4, 17043–17053. [Google Scholar] [CrossRef]
- Tyagi, K.; Maoz, I.; Lapidot, O.; Kochanek, B.; Butnaro, Y.; Shlisel, M.; Lerno, L.; Ebeler, S.E.; Lichter, A. Effects of gibberellin and cytokinin on phenolic and volatile composition of Sangiovese grapes. Sci. Hortic. 2022, 295, 110860–110868. [Google Scholar] [CrossRef]
- Xu, Y.S.; Hou, X.D.; Feng, J.; Khalil-Ur-Rehman, M.; Tao, J.M. Transcriptome sequencing analyses reveals mechanisms of eliminated russet by applying GA3 and CPPU on ‘Shine Muscat’ grape. Sci. Hortic. 2019, 250, 94–103. [Google Scholar] [CrossRef]
- Dong, F.X.; Li, X.Y.; Liu, C.; Zhao, B.X.; Ma, Y.; Ji, W. Exogenous 24-epibrassinolide mitigates damage in grape seedlings under low-temperature stress. Front. Plant Sci. 2025, 16, 1487680–1487694. [Google Scholar] [CrossRef]
- Li, Z.Q.; Jiao, Y.T.; Zhang, C.; Dou, M.R.; Weng, K.; Wang, Y.J.; Xu, Y. VvHDZ28 positively regulate salicylic acid biosynthesis during seed abortion in Thompson Seedless. Plant Biotechnol. J. 2021, 19, 1824–1838. [Google Scholar] [CrossRef]
- Shi, W.T.; Wang, Z.P. Research and application of seedless grape cultivation technology. Sino-Overseas Grapevine Wine 2017, 215, 67–71. [Google Scholar]
- Tang, X.P.; Chen, J.; Ma, X.H.; Zhao, Q.F.; Dong, Z.G.; Li, X.M. A new early-ripening seedless grape cultivar ‘Wuhe Cuibao’. Acta Hortic. Sin. 2012, 39, 2307–2308. [Google Scholar]
- Li, X.M.; Tang, X.P.; Dong, Z.G.; Tan, W.; Ma, X.H.; Zhao, Q.F.; Wang, M.; Ren, R. Cultivation technology of new grape variety Wuhe Cuibao with high quality and abundant production. China Fruits 2015, 173, 63–65+86. [Google Scholar]
- Zhao, B.X.; Bi, J.F.; Wang, H.N.; Wang, M.T.; Ji, W. Effect of cell wall polysaccharides on the peelability in table grape berries. Front. Plant Sci. 2025, 16, 1605812–1605827. [Google Scholar] [CrossRef]
- Ge, M.Q.; Dong, T.Y.; Zheng, T.; Shangguan, L.F.; Fang, J.G.; Liu, C.H. Investigation and difference analysis on characters of fruit size of 48 grape (Vitis spp.) cultivars. J. Plant Resour. Environ. 2020, 29, 19–27. [Google Scholar]
- Jin, H.C.; Jin, L.Y.; Chen, Y.Y.; Wang, L.D.; Wu, Y.; Hu, D.; Zhang, P.A. Different cultivation practices promote berry coloration and quality in Queen Nina grape. J. Fruit. Sci. 2024, 41, 2051–2066. [Google Scholar]
- Zhang, S.Y. Cytopathology and Transcriptome Analysis of Puffingin Satsuma Mandarin ‘Miyagawa’ (Dissertation). Master’s Thesis, Zhejiang A&F University, Hangzhou, China, 2018. [Google Scholar]
- Cao, J.K.; Jiang, W.B.; Zhao, Y.M. Experiment Guidance of Postharvest Physiology and Biochemistry of Fruits and Vegetables; China Light Industry Press: Beijing, China, 2020. (In Chinese) [Google Scholar]
- Gao, J.F.; Sun, Q.; Cao, C.L.; Liang, Z.S.; Wang, Y.G. Experimental Guide for Plant Physiology; Higher Education Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Tyagi, K.; Maoz, I.; Kochanek, B.; Sela, N.; Lerno, L.; Ebeler, S.E.; Lichter, A. Cytokinin but not gibberellin application had major impact on the phenylpropanoid pathway in grape. Hortic. Res. 2021, 8, 51–69. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, N.; Zhang, H.; Huang, J.Q. Effects of GA3 and CPPU treatment on seedlessness and fruit quality of ‘Jinyu’ grapes. Sino-Overseas Grapevine Wine 2024, 257, 69–75. [Google Scholar]
- Zhang, F.X.; Zhang, S.H.; Ma, Y.D.; Chen, F.; Song, X.J.; Liu, R.J. Effects of TDZ, CPPU and GA3 on fruit quality of ‘Shine Muscat’ grape. Acta Hortic. Sin. 2023, 50, 2633–2640. [Google Scholar]
- Pramanick, K.K.; Kashyap, P.; Kishore, D.K.; Sharma, Y.P. Effect of summer pruning and CPPU on yield and quality of kiwi fruit (Actinidia deliciosa). J. Environ. Biol. 2015, 36, 351–356. [Google Scholar]
- Khalil, A.H. Improved yield, fruit quality and shelf life in ‘Flame Seedless’ grapevine with pre-harvest foliar applications of forchlorfenuron, gibberellic acid, and abscisic acid. J. Hortic. Res. 2020, 28, 77–86. [Google Scholar] [CrossRef]
- Xiao, L.; Chen, P.F.; Xue, J.; Chen, Y.N.; Liang, W.; Zhou, L. Effects of GA3 and CPPU on fruit quality of xinjiang medicinal Vitis vinifera suosuo. J. Nucl. Agric. Sci. 2024, 38, 2432–2441. [Google Scholar]
- Lin, Y.X.; Wang, C.Y.; Cao, S.P.; Sun, Z.Q.; Zhang, Y.T.; Li, M.Y.; He, W.; Wang, Y.; Chen, Q.; Zhang, Y.; et al. Proanthocyanidins Delay Fruit Coloring and Softening by Repressing Related Gene Expression during Strawberry (Fragaria × ananassa Duch.) Ripening. Int. J. Mol. Sci. 2023, 24, 3139. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, X.; Zhang, Y.T.; Zhou, F.H.; Zhu, P.F. Simultaneous changes in anthocyanin, chlorophyll, and carotenoid contents produce green variegation in pink-leaved ornamental kale. BMC Genom. 2021, 22, 455–470. [Google Scholar] [CrossRef]
- Durán-Soria, S.; Pott, D.M.; Osorio, S.; Vallarino, J.G. Sugar Signaling During Fruit Ripening. Front. Plant Sci. 2020, 11, 11564917–11564934. [Google Scholar] [CrossRef]
- Espley, R.V.; Jaakola, L. The role of environmental stress in fruit pigmentation. Plant Cell Environ. 2023, 46, 3663–3679. [Google Scholar] [CrossRef]
- Jiang, J.F.; Fan, X.C.; Zhang, Y.; Sun, L.; Li, M.; Liu, Y.X.; Niu, S.Y.; Zhang, Z.W.; Liu, C.H. Analysis and comprehensive evaluation of grape berry texture based on TPA method. China Fruits 2022, 221, 31–36. [Google Scholar]
- Li, Y.H.; Wang, L.J.; Zhang, N.; Zhang, H.; Huang, J.Q.; Jia, G.Y.; Shen, Y. Effects of GA3 and CPPU on fruit quality of ‘Himrod’ and its bud mutation ‘Jinzao Wuhe’ grapevine. Sino-Overseas Grapevine Wine 2023, 248, 37–43. [Google Scholar]
- Simons, T.; Sivertsen, H.; Guinard, J.X. Mapping the preferences of adult and child consumers for California-grown Mandarins. HortScience 2018, 53, 1029–1037. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, X.N.; Jiang, D.; Zhu, S.P.; Cao, L.; Liu, X.F.; Shen, W.X.; Zhao, W.T.; Zhao, X.C. Genetic diversity of the ease of peeling in mandarins. Sci. Hortic. 2021, 8, 109852–109859. [Google Scholar] [CrossRef]
- Wang, S.S. Effects of SM, GA3 and CPPU on Seedless Induction and Fruit Quality of ‘Shine Muscat’ Grape (Vitis labrusca L.). Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2020. [Google Scholar]
- Guo, S.P.; Yang, S.L.; Yang, Y.J.; Meng, F.X.; Zhang, Y.H.; He, J.J. “Wuhe Cuibao” grape introduction performance and cultivation technology in the dry and hot valley area of Yunnan Province. China Fruits 2020, 49, 169–171. [Google Scholar]
- Lv, K.; Zhang, J.H.; Dong, X.J.; Hu, X.N.; Liu, S.; Wang, H.X. Effects of GA3 and CPPU on berry enlargement and quality of ‘Wuhe Cuibao’ grape. Sino-Overseas Grapevine Wine 2020, 231, 24–27. [Google Scholar]
- He, B.G.; Guo, Q.X.; Ma, C.W.; Li, Z.H.; Wang, C.F.; Zheng, X.F. Effects of GA3 and CPPU on inducing seedless fruit and quality of ‘Kyoho’ grapevine. Sino-Overseas Grapevine Wine 2019, 225, 37–42. [Google Scholar]
- Azuara, M.; González, M.R.; Mangas, R.; Martín, P. Effects of the application of forchlorfenuron (CPPU) on the composition of verdejo grapes. BIO Web Conf. 2023, 56, 56–59. [Google Scholar] [CrossRef]
- Liao, M.L.; Chen, W.T.; Bai, M.; Xu, F.; Yang, G.S. Research on fruit enlargement of ‘Summer black’. Chin. Agric. Sci. Bull. 2015, 31, 62–66. [Google Scholar]
Treatment | Treatment Time | |
---|---|---|
The First Time (in Full Bloom) | The Second Time (14 d After Flowering) | |
CK | clear water | clear water |
T1 | 25 mg·L−1 GA3 | 25 mg·L−1 GA3 |
T2 | 50 mg·L−1 GA3 | 50 mg·L−1 GA3 |
T3 | 2.5 mg·L−1 CPPU | 2.5 mg·L−1 CPPU |
T4 | 5.0 mg·L−1 CPPU | 5.0 mg·L−1 CPPU |
T5 | 25 mg·L−1 GA3 + 2.5 mg·L−1 CPPU | 25 mg·L−1 GA3 + 2.5 mg·L−1 CPPU |
T6 | 25 mg·L−1 GA3 + 5.0 mg·L−1 CPPU | 25 mg·L−1 GA3 + 5.0 mg·L−1 CPPU |
T7 | 50 mg·L−1 GA3 + 2.5 mg·L−1 CPPU | 50 mg·L−1 GA3 + 2.5 mg·L−1 CPPU |
T8 | 50 mg·L−1 GA3 + 5.0 mg·L−1 CPPU | 50 mg·L−1 GA3 + 5.0 mg·L−1 CPPU |
Treatment | Cluster Length (mm) | Cluster Width (mm) | Cluster Weight (g) |
---|---|---|---|
CK | 16.65 ± 0.21 e | 10.70 ± 0.33 cd | 331.65 ± 2.03 e |
T1 | 18.51 ± 0.08 bcd | 10.80 ± 0.35 bcd | 405.76 ± 14.22 c |
T2 | 18.60 ± 0.12 bc | 10.85 ± 0.24 bcd | 440.27 ± 4.10 b |
T3 | 17.21 ± 0.24 de | 10.73 ± 0.38 cd | 344.67 ± 4.31 e |
T4 | 17.72 ± 0.55 cde | 10.42 ± 0.67 d | 371.88 ± 28.38 d |
T5 | 18.70 ± 0.32 bc | 11.49 ± 0.48 bc | 440.79 ± 14.68 b |
T6 | 19.36 ± 1.17 ab | 11.63 ± 0.69 b | 455.90 ± 15.07 ab |
T7 | 19.41 ± 0.76 ab | 11.40 ± 0.18 bc | 456.31 ± 3.09 ab |
T8 | 20.30 ± 1.35 a | 12.58 ± 0.08 a | 470.67 ± 8.02 a |
Treatment | Longitudinal Diameter (mm) | Transverse Diameter (mm) | Fruit Shape Index | Single Fruit Weight (g) | Fruit Stalk Coarseness (mm) | Pedicel Detachment Force (N) |
---|---|---|---|---|---|---|
CK | 16.50 ± 0.14 d | 18.45 ± 0.23 e | 1.12 ± 0.02 d | 3.34 ± 0.08 d | 1.23 ± 0.06 g | 1.40 ± 0.00 g |
T1 | 16.77 ± 0.14 d | 22.68 ± 0.60 b | 1.35 ± 0.04 b | 4.05 ± 0.04 c | 2.10 ± 0.05 b | 2.80 ± 0.00 ab |
T2 | 17.75 ± 0.39 bc | 25.00 ± 0.46 a | 1.41 ± 0.04 a | 4.79 ± 0.18 a | 2.33 ± 0.07 a | 2.87 ± 0.06 a |
T3 | 16.73 ± 0.12 d | 18.02 ± 0.30 e | 1.08 ± 0.03 d | 2.79 ± 0.11 e | 1.28 ± 0.10 g | 2.07 ± 0.06 e |
T4 | 17.42 ± 0.28 c | 18.68 ± 0.24 e | 1.07 ± 0.02 d | 3.51 ± 0.26 d | 1.51 ± 0.11 f | 2.30 ± 0.10 d |
T5 | 17.76 ± 0.09 bc | 21.01 ± 0.48 d | 1.19 ± 0.02 c | 4.20 ± 0.20 bc | 1.55 ± 0.12 ef | 2.33 ± 0.06 d |
T6 | 17.93 ± 0.08 bc | 21.45 ± 0.12 d | 1.20 ± 0.01 c | 4.22 ± 0.14 bc | 1.69 ± 0.06 cd | 2.40 ± 0.00 cd |
T7 | 18.05 ± 0.07 b | 21.60 ± 0.61 cd | 1.20 ± 0.03 c | 4.12 ± 0.03 c | 1.80 ± 0.06 cd | 2.50 ± 0.17 c |
T8 | 18.73 ± 0.62 a | 22.41 ± 0.55 bc | 1.20 ± 0.03 c | 4.48 ± 0.07 b | 1.92 ± 0.06 c | 2.70 ± 0.10 b |
Treatment | L* | a* | b* | C* | h° | CIRG |
---|---|---|---|---|---|---|
CK | 27.41 ± 0.12 d | −3.74 ± 0.05 c | 12.56 ± 0.33 de | 13.11 ± 0.33 ef | 106.58 ± 0.24 d | 1.81 ± 0.02 a |
T1 | 27.33 ± 0.53 d | −4.29 ± 0.13 ab | 13.53 ± 0.59 bc | 14.20 ± 0.60 bcd | 107.56 ± 0.23 abcd | 1.74 ± 0.02 b |
T2 | 27.13 ± 0.52 d | −4.48 ± 0.07 a | 13.90 ± 0.28 bc | 14.60 ± 0.25 b | 107.85 ± 0.57 abcd | 1.73 ± 0.02 bc |
T3 | 30.65 ± 0.43 a | −4.02 ± 0.15 bc | 12.81 ± 0.61 d | 13.43 ± 0.61 def | 107.41 ± 0.67 abcd | 1.65 ± 0.01 de |
T4 | 30.15 ± 0.39 ab | −4.10 ± 0.07 bc | 12.66 ± 0.12 de | 13.31 ± 0.14 ef | 107.93 ± 0.17 abc | 1.66 ± 0.02 de |
T5 | 29.07 ± 0.18 c | −4.24 ± 0.49 ab | 13.85 ± 0.27 b | 14.48 ± 0.40 bc | 107.00 ± 1.55 cd | 1.68 ± 0.05 d |
T6 | 28.97 ± 0.22 c | −4.33 ± 0.06 ab | 13.01 ± 0.19 cd | 13.71 ± 0.20 cde | 108.40 ± 0.12 ab | 1.68 ± 0.01 d |
T7 | 29.69 ± 0.76 bc | −4.03 ± 0.02 bc | 12.00 ± 0.21 e | 12.66 ± 0.20 f | 108.56 ± 0.31 a | 1.69 ± 0.03 cd |
T8 | 29.43 ± 0.25 bc | −4.57 ± 0.14 a | 14.77 ± 0.50 a | 15.46 ± 0.50 a | 107.21 ± 0.46 bcd | 1.62 ± 0.02 e |
Treatment | Cuticle Thickness (μm) | Epidermal Cell Size (μm2) | Hypodermal Cell Size (μm2) |
---|---|---|---|
CK | 2.42 ± 0.22 e | 106.90 ± 7.58 e | 145.43 ± 7.02 e |
T1 | 3.77 ± 0.20 cd | 414.63 ± 26.91 a | 471.06 ± 21.54 a |
T2 | 3.86 ± 0.12 bc | 326.63 ± 21.77 bc | 323.51 ± 21.22 bc |
T3 | 3.44 ± 0.13 d | 426.17 ± 28.47 a | 356.70 ± 14.34 b |
T4 | 4.24 ± 0.17 ab | 243.60 ± 9.66 d | 226.08 ± 3.50 d |
T5 | 3.94 ± 0.26 abc | 293.33 ± 19.25 c | 249.17 ± 19.71 d |
T6 | 4.28 ± 0.13 a | 403.75 ± 2.80 a | 317.66 ± 16.59 c |
T7 | 3.80 ± 0.18 cd | 339.66 ± 14.77 b | 351.90 ± 17.83 bc |
T8 | 3.73 ± 0.25 cd | 412.01 ± 17.86 a | 346.22 ± 24.39 bc |
Treatment | Positive Ideal Solution Distance D+ | Negative Ideal Solution Distance D− | Relative Proximity C | Sorting of the Results |
---|---|---|---|---|
CK | 2.382 | 0.079 | 0.032 | 9 |
T1 | 1.114 | 1.273 | 0.533 | 6 |
T2 | 0.525 | 1.864 | 0.780 | 5 |
T3 | 2.161 | 0.225 | 0.094 | 8 |
T4 | 1.695 | 0.690 | 0.289 | 7 |
T5 | 0.522 | 1.869 | 0.782 | 4 |
T6 | 0.271 | 2.128 | 0.887 | 3 |
T7 | 0.260 | 2.135 | 0.891 | 2 |
T8 | 0.077 | 2.381 | 0.969 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Mi, Y.; Wang, H.; Ye, S.; Abe-Kanoh, N.; Ji, W. Influence of GA3 and CPPU on the Quality Attributes and Peelability of ‘Wuhe Cuibao’ Grape. Agronomy 2025, 15, 1986. https://doi.org/10.3390/agronomy15081986
Han X, Mi Y, Wang H, Ye S, Abe-Kanoh N, Ji W. Influence of GA3 and CPPU on the Quality Attributes and Peelability of ‘Wuhe Cuibao’ Grape. Agronomy. 2025; 15(8):1986. https://doi.org/10.3390/agronomy15081986
Chicago/Turabian StyleHan, Xinyue, Yufei Mi, Huanling Wang, Shaosong Ye, Naomi Abe-Kanoh, and Wei Ji. 2025. "Influence of GA3 and CPPU on the Quality Attributes and Peelability of ‘Wuhe Cuibao’ Grape" Agronomy 15, no. 8: 1986. https://doi.org/10.3390/agronomy15081986
APA StyleHan, X., Mi, Y., Wang, H., Ye, S., Abe-Kanoh, N., & Ji, W. (2025). Influence of GA3 and CPPU on the Quality Attributes and Peelability of ‘Wuhe Cuibao’ Grape. Agronomy, 15(8), 1986. https://doi.org/10.3390/agronomy15081986