The Development of a Transformation System for Four Local Rice Varieties and CRISPR/Cas9-Mediated Editing of the OsCCD7 Gene
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Construction of CRISPR/Cas9 Vector for OsCCD7 Gene
2.3. Establishment of Regeneration System of Callus
2.3.1. Callus Induction
2.3.2. Anti-Browning Treatment of Callus
2.3.3. Pre-Infection and Recovery Culture of Callus
2.3.4. Callus Differentiation Culture
2.4. The Establishment of the Transformation System
2.4.1. Preparation of Infection Suspension
2.4.2. Callus Infection and Recovery Culture
2.4.3. Rooting Culture of Regenerated Seedlings
2.4.4. Transformation of CRISPR/Cas9-ΔOsCCD7 into Rice
2.4.5. Medium Components
- (1)
- LB solid medium: 5 g/L yeast extract, 10 g/L tryptone, 10 g/L NaCl, and 15 g/L agar (pH = 7).
- (2)
- Induction medium: N6 macronutrients, B5 micronutrients, B5 organics, iron salts, 0.2 g/L Glu, 0.1 g/L L-Pro, 0.1 g/L CH, X mg/L 2,4-D, X mg/L NAA, 30 g/L sucrose, and 8 g/L agar (pH = 5.8).
- (3)
- Co-cultivation medium: N6 macronutrients, B5 micronutrients, B5 organics, iron salts, 2 g/L myo-inositol, 3.9 g/L MES, 0.5 g/L CH, 30 g/L sucrose, X µM AS, and 8 g/L agar (pH = 5.5).
- (4)
- Recovery medium: N6 macronutrients, B5 micronutrients, B5 organics, iron salts, 0.2 g/L Glu, 0.1 g/L L-Pro, 0.1 g/L CH, 2.0 mg/L 2,4-D, 30 g/L sucrose, 8 g/L agar, X mg/L Tmt, and X mg/L Cef (pH = 5.8).
- (5)
- Differentiation medium: N6 macronutrients, B5 micronutrients, B5 organics, iron salts, 0.2 g/L Glu, 0.1 g/L L-Pro, 0.1 g/L CH, 30 g/L sucrose, 8 g/L agar, X mg/L KT, X mg/L NAA, and X mg/L 6-BA (pH = 5.8).
- (6)
- Infection buffer: AA macronutrients, B5 micronutrients, B5 organics, iron salts, 3.9 g/L MES, and 0.5 g/L CH (pH = 5.5).
- (7)
2.5. Positive Detection of Transgenic Materials
2.5.1. Histochemical Staining
2.5.2. PCR-Based Detection
2.6. Measurement of Agronomic Traits in Transgenic Rice
2.7. Data Analysis
- (1)
- Induction rate (%) = (Number of induced calli/Number of cultured mature seeds) × 100.
- (2)
- Browning rate (%) = (Number of browned calli/Number of subcultured calli) × 100.
- (3)
- Browning index (%) = (Each browning level × Number of calli at the browning level)/(Total number of calli × Highest browning level) × 100.
- (4)
- Contamination rate (%) = (Number of contaminated calli/Number of Agrobacterium-infected calli) × 100.
- (5)
- Initial differentiation rate (%) = (Number of calli showing differentiation/Total number of calli) × 100.
- (6)
- Differentiation rate (%) = (Number of shoot-forming calli/Total number of calli) × 100.
- (7)
- Resistance rate (%) = (Number of resistant calli/Number of Agrobacterium-infected calli) × 100.
- (8)
- GUS staining rate (%) = (Number of successfully GUS-stained calli/Number of Agrobacterium-infected calli) × 100.
- (9)
- Transformation efficiency (%) = (Number of positive plants/Number of T0 plants) × 100.
3. Results
3.1. Effects of Different Combinations of 2,4-D and NAA on Callus Formation
3.2. Effects of Different Additives on Callus Browning
3.3. Effects of Different Antibiotics and Their Concentrations on Callus Contamination Rate and Differentiation
3.4. Effects of Different PGR Combinations on Callus Differentiation
3.5. Effects of Different AS Concentration and Infection Duration on Rice Transformation
3.6. Effects of Different Rooting Media on Root Growth in Regenerated Seedlings
3.7. Positive Detection of Transgenic Seedlings
3.8. Identification of Agronomic Traits in OsCCD7 Mutants
- (I)
- Plant architecture-related traits between wild type (WT) and OsCCD7 mutants
- (II)
- Spike-related traits in WT vs. OsCCD7 mutants
4. Discussion
4.1. Effects of 2,4-D and NAA Combinations on Callus Induction
4.2. Effects of Different Additives on Anti-Browning in Calli
4.3. Effects of Different Antibiotics and Their Concentrations on Contamination and Differentiation in Calli
4.4. Effects of Different PGR Combinations on Rice Callus Differentiation
4.5. Effects of Different AS Concentrations and Infection Durations on Rice Transformation
4.6. Effects of Different Rooting Media on Root Growth in Regenerated Seedlings
4.7. Agronomic Characteristics Analysis of OsCCD7 Mutants
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, S.B.; Ali, J.; Zhang, C.P.; Li, Z.K.; Zhang, Q.F. Genomic Breeding of Green Super Rice Varieties and Their Deployment in Asia and Africa. Theor. Appl. Genet. 2020, 133, 1427–1442. [Google Scholar] [CrossRef]
- Chen, J.J.; Miao, Z.N.; Kong, D.Y.; Zhang, A.N.; Wang, F.M.; Liu, G.L.; Yu, X.Q.; Luo, L.J.; Liu, Y. Application of CRISPR/Cas9 Technology in Rice Germplasm Innovation and Genetic Improvement. Genes 2024, 15, 1492. [Google Scholar] [CrossRef]
- Su, W.B.; Xu, M.Y.; Radani, Y.; Yang, L.M. Technological Development and Application of Plant Genetic Transformation. Int. J. Mol. Sci. 2023, 24, 10646. [Google Scholar] [CrossRef]
- Mohammed, S.; Samad, A.A.; Rahmat, Z. Agrobacterium-Mediated Transformation of Rice: Constraints and Possible Solutions. Rice Sci. 2019, 26, 133–146. [Google Scholar] [CrossRef]
- Tan, L.W.; Rahman, Z.A.; Goh, H.H.; Hwang, D.J.; Ismail, I.; Zainal, Z. Production of transgenic rice (indica cv. MR219) overexpressing Abp57 gene through Agrobacterium-mediated transformation. Sains Malays. 2017, 46, 703–711. [Google Scholar] [CrossRef]
- Hiei, Y.; Ohta, S.; Komari, T.; Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 1994, 6, 271–282. [Google Scholar] [CrossRef]
- Saika, H.; Toki, S. Mature seed-derived callus of the model indica rice variety Kasalath is highly competent in Agrobacterium-mediated transformation. Plant Cell Rep. 2010, 29, 1351–1364. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Yin, X.; Biswal, A.; Coe, R.; Quick, W.P. CRISPR-Cas9-Mediated Genome Editing of Rice Towards Better Grain Quality. Methods Mol. Biol. 2019, 1892, 311–336. [Google Scholar]
- Fiaz, S.; Ahmad, S.; Noor, M.A.; Wang, X.; Younas, A.; Riaz, A.; Riaz, A.; Ali, F. Applications of the CRISPR/Cas9 System for Rice Grain Quality Improvement: Perspectives and Opportunities. Int. J. Mol. Sci. 2019, 20, 888. [Google Scholar] [CrossRef] [PubMed]
- Fernando, M.R.; Andrés, G. CRISPR/Cas9: Development and Application in Rice Breeding. Rice Sci. 2019, 26, 265–281. [Google Scholar] [CrossRef]
- Mashiguchi, K.; Seto, Y.; Yamaguchi, S. Strigolactone biosynthesis, transport and perception. Plant J. 2021, 105, 335–350. [Google Scholar] [CrossRef]
- Butt, H.; Jamil, M.; Wang, J.Y.; Babili, S.A.; Mahfouz, M. Engineering plant architecture via CRISPR/Cas9-mediated alteration of strigolactone biosynthesis. BMC Plant Biol. 2018, 18, 174. [Google Scholar] [CrossRef]
- Zou, X.; Wang, Q.; Chen, P.; Yin, C.X.; Lin, Y.J. Strigolactones regulate shoot elongation by mediating gibberellin metabolism and signaling in rice (Oryza sativa L.). J. Plant Physiol. 2019, 237, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Su, J.; Xu, M.; Zhou, Z.H.; Zhu, X.Y.; Ma, X.; Hou, J.J.; Tan, L.B.; Zhu, Z.F.; Cai, H.W.; et al. A common wild rice-derived BOC1 allele reduces callus browning in indica rice transformation. Nat. Commun. 2020, 11, 443. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Nicolas, K.L.C.; Akther, S.; Torabi, A.; Ebadi, A.A.; Marfori-Nazarea, C.M.; Mahender, A. Improved Anther Culture Media for Enhanced Callus Formation and Plant Regeneration in Rice (Oryza sativa L.). Plants 2021, 10, 839. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Lodhi, M.A.; Ye, G.N.; Weeden, N.F.; Eeisch, B.I. A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol. Biol. Rep. 1994, 12, 6–13. [Google Scholar] [CrossRef]
- Tian, H.J.; Liu, H.; Zhang, D.; Hu, M.T.; Zhang, F.L.; Ding, S.Q.; Yang, K.Z. Screening of salt tolerance of maize (Zea mays L.) lines using membership function value and GGE biplot analysis. Peer J. 2024, 12, e16838. [Google Scholar] [CrossRef]
- Hasan, M.N.; Bhuiyan, F.H.; Hoque, H.; Jewel, N.A.; Ashrafuzzaman, M.; Prodhan, S.H. The Effect of Plant Growth Regulators (PGRs) on Efficient Regeneration of 12 Recalcitrant Indica Rice (Oryza sativa L.) Genotypes. Am. J. Biochem. Biotechnol. 2021, 17, 148–159. [Google Scholar] [CrossRef]
- Alam Khan, N.; Uddin, M.I.; Rana, M.S.; Jahan, N.; Sumi, M.A.; Rashid, M.H. Callus Induction, Regeneration and Establishment of Rice Plant from Mature Embryo. J. Adv. Biol. Biotechnol. 2021, 24, 10–18. [Google Scholar] [CrossRef]
- Mohd Din, A.R.; Ahmad, F.I.; Wagiran, A.; Samad, A.A.; Rahmat, Z.; Sarmidi, M.R. Improvement of efficient in vitro regeneration potential of mature callus induced from Malaysian upland rice seed (Oryza sativa cv. Panderas). Saudi J. Biol. Sci. 2016, 23, S69–S77. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Chen, Y.; Chen, Y.; Zhang, L.; Liu, M.; Mao, D.; Chen, L. Agrobacterium-Mediated High-Efficiency Genetic Transformation and Genome Editing of Chaling Common Wild Rice (Oryza rufipogon Griff.) Using Scutellum Tissue of Embryos in Mature Seeds. Front. Plant Sci. 2022, 13, 849666. [Google Scholar] [CrossRef] [PubMed]
- Hamzah, S.N.A.; Nor, A.Y. Optimization of selected plant growth regulators on callus induction of Oryza sativa L. var MR 219. Food Res. 2021, 5, 38–45. [Google Scholar] [CrossRef]
- Afrin, M.; Ahmed, S.; Ahamed, T.; Mahbubur, M.M.; Rahman, S.M.; Khatun Mohiuddin, A.; Shohael, A.M. Optimization of Plant Growth Regulators for Efficient Embryogenic Callus Induction and Subsequent Plant Regeneration in Two Indigenous Aromatic Rice Varieties of Bangladesh. Plant Tissue Cult. Biotechnol. 2024, 34, 153–164. [Google Scholar] [CrossRef]
- Wang, Y.B.; Yang, X.; Xu, G.M.; Ye, X.; Ji, Y.M.; Lou, X.; Su, J.J.; Sun, C.Q.; Fu, Y.C.; Zhang, K. Mapping quantitative trait loci associated with callus browning in Dongxiang common wild rice (Oryza rufipogon Griff.). Mol. Biol. Rep. 2023, 50, 3129–3140. [Google Scholar] [CrossRef]
- Xu, X.R.; Zhu, D.M.; Huan, Z.Q.; Geng, X.M.; Ran, J.C. Mechanisms of tissue culture browning in five Magnoliaceae family species. Plant Cell Tiss. Organ. Cult. 2023, 155, 183–195. [Google Scholar] [CrossRef]
- Cai, X.; Wei, H.; Liu, C.; Ren, X.X.; Thi, L.T.; Jeong, B.R. Synergistic Effect of NaCl Pretreatment and PVP on Browning Suppression and Callus Induction from Petal Explants of Paeonia Lactiflora Pall. ‘Festival Maxima’. Plants 2020, 9, 346. [Google Scholar] [CrossRef]
- Birgitte, N.; Katarzyna, B.; Rita, W. Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacterium tumefaciens. Plant Sci. 1997, 123, 169–177. [Google Scholar] [CrossRef]
- Zhai, N.; Xu, L. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nat. Plants 2021, 7, 1453–1460. [Google Scholar] [CrossRef]
- Abe, T.; Futsuhara, Y. Genotypic variability for callus formation and plant regeneration in rice (Oryza sativa L.). Theoret. Appl. Genet. 1986, 72, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.X.; Chen, G.Q.; Zhang, Y.S.; Shen, X.H. Effect of genotype on callus induction and plant regeneration of Calibrachoa hybrida. Vitr. Cell. Dev. Biol.-Plant 2025, 61, 117–126. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Wu, L.; Zhao, Y.; Zhang, W.; Yang, G.; Xu, Z. Effects of Plant Growth Regulators on the Rapid Propagation System of Broussonetia papyrifera L. Vent Explants. Forests 2021, 12, 874. [Google Scholar] [CrossRef]
- Song, H.Y.; Mao, W.M.; Shang, Y.Y.; Zhou, W.; Li, P.; Chen, X.Y. A regeneration system using cotyledons and cotyledonary node explants of Toona ciliata. J. For. Res. 2021, 32, 967–974. [Google Scholar] [CrossRef]
- Xi, J.; Patel, M.; Dong, S.J.; Que, Q.D.; Qu, R.D. Acetosyringone treatment duration affects large T-DNA molecule transfer to rice callus. BMC Biotechnol. 2018, 18, 48. [Google Scholar] [CrossRef]
- Wang, S.J.; Wang, G.; Li, H.L.; Li, F.; Wang, J.B. Agrobacterium tumefaciens-mediated transformation of embryogenic callus and CRISPR/Cas9-mediated genome editing in ‘Feizixiao’ litchi. Hortic. Plant 2023, 9, 947–957. [Google Scholar] [CrossRef]
- Shri, M.; Rai, A.; Verma, P.K.; Misra, P.; Dubey, S.; Kumar, S.; Verma, S.; Gautam, N.; Tripathi, R.D.; Trivedi, P.K.; et al. An improved Agrobacterium-mediated transformation of recalcitrant indica rice (Oryza sativa L.) cultivars. Protoplasma 2013, 250, 631–636. [Google Scholar] [CrossRef]
- Liu, B.B.; Wu, H.Q.; Yang, S.M.; Wu, E.G.; Yang, P.; Gao, X.L. Efficient callus induction and regeneration in proso millet. Agron. J. 2021, 113, 4003–4012. [Google Scholar] [CrossRef]
- Phillips, G.C.; Garda, M. Plant tissue culture media and practices: An overview. Vitr. Cell. Dev. Biol.-Plant 2019, 55, 242–257. [Google Scholar] [CrossRef]
- Fan, M.X.; Liu, Z.C.; Zhou, L.G.; Lin, T.; Liu, Y.H.; Luo, L.J. Effects of Plant Growth Regulators and Saccharide on In Vitro Plant and Tuberous Root Regeneration of Cassava (Manihot esculenta Crantz). J. Plant Growth Regul. 2011, 30, 11–19. [Google Scholar] [CrossRef]
- Liu, X.; Hu, Q.L.; Yan, J.J.; Sun, K.; Liang, Y.; Jia, M.; Meng, X.B.; Fang, S.; Wang, Y.Q.; Jing, Y.H.; et al. ζ-Carotene Isomerase Suppresses Tillering in Rice through the Coordinated Biosynthesis of Strigolactone and Abscisic Acid. Mol. Plant 2020, 13, 1784–1801. [Google Scholar] [CrossRef]
Varieties Name | Variety Type | Plant Height/cm | Seed Setting Rate/% | Total Growth Period/d |
---|---|---|---|---|
XG293 | japonica rice | 95.4 | 89.4 | 147.1 |
WD68 | japonica rice | 90.0 | 80.0 | 149.0 |
H128 | indica rice | 118.5 | 89.9 | 112.7 |
E33 | indica rice | 124.0 | 85.0 | 135.0 |
Treatments | Different Varieties | |||
---|---|---|---|---|
XG293 | WD68 | H128 | E33 | |
G1 | 12.50 ± 0.03 bc | 23.02 ± 3.45 ab | 30.00 ± 0.01 b | 17.50 ± 2.50 c |
G2 | 16.67 ± 0.03 b | 13.89 ± 2.78 ab | 22.50 ± 4.79 bc | 12.50 ± 2.50 c |
G3 | 19.44 ± 0.03 b | 22.22 ± 10.14 ab | 12.50 ± 2.50 cd | 25.00 ± 8.66 bc |
G4 | 5.56 ± 0.03 c | 11.11 ± 0.01 b | 5.00 ± 2.89 d | 12.50 ± 2.50 c |
G5 | 11.11 ± 0.05 bc | 16.67 ± 3.21 ab | 15.00 ± 2.89 bcd | 15.00 ± 2.89 c |
G6 | 11.11 ± 0.01 bc | 10.00 ± 0.01 b | 12.50 ± 4.79 cd | 17.50 ± 2.50 c |
G7 | 32.50 ± 0.03 a | 25.00 ± 6.45 ab | 30.00 ± 9.13 b | 60.00 ± 5.77 a |
G8 | 20.00 ± 0.04 b | 29.17 ± 6.94 a | 22.50 ± 4.79 bc | 52.50 ± 6.29 a |
G9 | 13.89 ± 0.03 bc | 19.44 ± 2.78 ab | 72.50 ± 6.29 a | 45.00 ± 17.56 ab |
Cv | 48.51% | 34.45% | 80.02% | 65.26% |
Treatments | Callus Differentiation Rate (%) | |||
---|---|---|---|---|
XG293 | WD68 | H128 | E33 | |
W1 | 9.56% ± 2.54 c | 6.96% ± 1.26 c | 8.77% ± 2.74 d | 1.76% ± 1.12 c |
W2 | 6.92% ± 3.07 c | 14.43% ± 2.53 b | 6.70% ± 2.56 d | 7.72% ± 3.18 bc |
W3 | 9.67% ± 2.05 c | 19.60% ± 1.89 b | 5.09% ± 1.36 d | 5.92% ± 2.42 bc |
W4 | 5.09% ± 2.24 c | 7.74% ± 3.21 c | 7.12% ± 1.96 d | 10.82% ± 4.79 bc |
W5 | 8.79% ± 2.32 c | 4.23% ± 0.86 c | 6.86% ± 2.13 d | 6.67% ± 2.34 bc |
W6 | 21.39% ± 3.52 b | 3.56% ± 1.83 c | 28.80% ± 2.43 a | 23.36% ± 3.05 a |
W7 | 41.71% ± 3.79 a | 31.15% ± 3.17 a | 19.18% ± 1.36 b | 13.57% ± 2.12 b |
W8 | 28.07% ± 3.33 b | 20.37% ± 1.65 b | 17.09% ± 3.73 bc | 8.10% ± 2.35 bc |
W9 | 9.14% ± 1.46 c | 18.45% ± 2.96 b | 10.32% ± 3.69 cd | 8.92% ± 3.77 bc |
W10 | 6.01% ± 2.41 c | 15.36% ± 2.16 b | 8.07% ± 1.14 d | 7.97% ± 2.50 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, H.; Sun, Y.; Wang, Y.; He, Y.; Shi, J.; Tao, Y.; Liu, M.; Huang, X.; Ren, L.; Zheng, J. The Development of a Transformation System for Four Local Rice Varieties and CRISPR/Cas9-Mediated Editing of the OsCCD7 Gene. Agronomy 2025, 15, 2008. https://doi.org/10.3390/agronomy15082008
Dai H, Sun Y, Wang Y, He Y, Shi J, Tao Y, Liu M, Huang X, Ren L, Zheng J. The Development of a Transformation System for Four Local Rice Varieties and CRISPR/Cas9-Mediated Editing of the OsCCD7 Gene. Agronomy. 2025; 15(8):2008. https://doi.org/10.3390/agronomy15082008
Chicago/Turabian StyleDai, Hanjing, Yuxia Sun, Yingrun Wang, Yiyang He, Jia Shi, Yulu Tao, Mengyue Liu, Xiaoxian Huang, Lantian Ren, and Jiacheng Zheng. 2025. "The Development of a Transformation System for Four Local Rice Varieties and CRISPR/Cas9-Mediated Editing of the OsCCD7 Gene" Agronomy 15, no. 8: 2008. https://doi.org/10.3390/agronomy15082008
APA StyleDai, H., Sun, Y., Wang, Y., He, Y., Shi, J., Tao, Y., Liu, M., Huang, X., Ren, L., & Zheng, J. (2025). The Development of a Transformation System for Four Local Rice Varieties and CRISPR/Cas9-Mediated Editing of the OsCCD7 Gene. Agronomy, 15(8), 2008. https://doi.org/10.3390/agronomy15082008