Field Phenotyping of Soybean Roots for Drought Stress Tolerance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Procedure
2.2. Planting and Experimental Layout
2.3. Soil Moisture Content
2.4. Root Architecture
2.5. Root Morphology Analysis
2.6. Nodule Size and Abundance Measurement
2.7. Chlorophyll Content
2.8. Biomass and Seed Yield Measurement
2.9. Statistical Analysis
3. Results
3.1. Soil Moisture Content
3.2. Below-Ground Phenotypic Analysis
3.2.1. Root Architectural Traits
Cultivar | Root Growth Angle | Tap Root Diameter (mm) | Lateral Root Diameter (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|
WW | D | (%) | WW | D | (%) | WW | D | (%) | |
A-5409RG | 23.3 ± 1.6c | 25.8 ± 2.3c | 10.7 | 2.5 ± 0.1c | 2.3 ± 0.4c | −8.0 | 4.1 ± 0.3a | 4.2 ± 0.1a | 2.4 |
Jackson | 64.2 ± 2.3a | 68.3 ± 1.6a | 6.3 | 4.5 ± 0.5a | 4.3 ± 0.2a | −4.4 | 2.5 ± 0.2b | 2.1 ± 1.1b | −16.0 |
Prima 2000 | 51.7 ± 3.3b | 54.2 ± 2.9b | 4.8 | 3.8 ± 0.1b | 3.6 ± 0.5b | −5.2 | 2.5 ± 0.1b | 2.2 ± 0.2b | −12.0 |
Significance | ** | ** | ** | ** | ** | ** |
Cultivar | Tap Root Branching Density | Lateral Root Branching Density | ||||
---|---|---|---|---|---|---|
WW | D | (%) | WW | D | (%) | |
A5409RG | 4.4 ± 0.3 | 5.7 ± 0.4b | 29 | 3.4 ± 0.3b | 4.8 ± 0.3b | 42 |
Jackson | 5.0 ± 0.2 | 7.7 ± 0.6a | 53 | 4.2 ± 0.2ab | 7.3 ± 0.2a | 76 |
Prima 2000 | 4.7 ± 0.3 | 7.3 ± 0.3a | 57 | 4.5 ± 0.4a | 7.5 ± 0.2a | 67 |
Significance | ns | * | ns | ** |
3.2.2. Root Morphology
Cultivars | Root Length (cm) | Surface Area (cm2) | Root Volume (cm3) | Root Tip Number | Root Diameter (mm) |
---|---|---|---|---|---|
Well-watered | |||||
A-5409RG | 56.6 ± 10.0 | 8.3 ± 1.3 | 0.10 ± 0.01 | 180.6 ± 21.4 | 0.49 ± 0.03 |
Jackson | 56.9 ± 11.7 | 8.0 ± 1.5 | 0.09 ± 0.02 | 190.5 ± 24.9 | 0.46 ± 0.04 |
Prima 2000 | 51.5 ± 11.4 | 6.5 ± 1.4 | 0.07 ± 0.02 | 168.7 ± 24.2 | 0.43 ± 0.04 |
Significance | ns | ns | ns | ns | ns |
Drought | |||||
A-5409RG | 41.0 ± 0.4b | 4.7 ± 2.31b | 0.05 ± 0.03b | 177.8 ± 58.1b | 0.40 ± 0.07 |
Jackson | 98.6 ± 0.4a | 11.0 ± 1.8a | 0.12 ± 0.02a | 301.4 ± 44.1ab | 0.48 ± 0.05 |
Prima 2000 | 120.5 ± 0.4a | 15.4 ± 1.8a | 0.16 ± 0.02a | 377.8 ± 45.9a | 0.54 ± 0.05 |
Significance | ** | ** | ** | * | ns |
3.2.3. Root Nodules
3.3. Above-Ground Phenotypic Analysis
3.3.1. Pod Harvest Index (PHI), Seed Yield and Chlorophyll Content
Cultivar | Leaf Dry Mass F (g) | Stem Dry Mass F (g) | Total Biomass F (g) | Leaf Dry Mass MP (g) | Stem Dry Mass MP (g) | Pod Dry Mass MP (g) | Total Biomass MP (g) | Seed Yield (t/ha) |
---|---|---|---|---|---|---|---|---|
Well-watered | ||||||||
A5409RG | 6.6 ± 0.3ab | 5.8 ± 0.2ab | 12.4 ± 0.2b | 28.7 ± 0.4a | 29.0 ± 0.4a | 13.3 ± 0.5a | 71.0 ± 0.7a | 4.0 ± 0.08a |
Jackson | 5.9 ± 0.1b | 5.1 ± 0.2b | 11.0 ± 0.4c | 22.9 ± 0.3b | 25.1 ± 0.3b | 10.4 ± 0.3b | 58.4 ± 0.6b | 2.0 ± 0.10 |
Prima 2000 | 7.3 ± 0.2a | 6.4 ± 0.1a | 13.7 ± 0.3a | 29.9 ± 1.2a | 28.2 ± 1.2a | 13.9 ± 0.4a | 71.9 ± 1.7a | 4.4 ± 0.10 |
Significance | ** | ** | ** | ** | ** | ** | ** | ** |
Drought | ||||||||
A5409RG | 3.8 ± 0.1b | 3.6 ± 0.1b | 7.4 ± 0.1b | 23.1 ± 0.5b | 24.4 ± 0.5ab | 7.9 ± 0.4c | 55.4 ± 1.0b | 1.8 ± 0.02b |
Jackson | 4.0 ± 0.9b | 4.2 ± 0.2b | 8.2 ± 0.2b | 21.7 ± 0.2b | 21.2 ± 0.4b | 9.4 ± 0.1b | 52.2 ± 0.5b | 1.7 ± 0.02b |
Prima 2000 | 6.0 ± 0.2a | 4.9 ± 0.2a | 10.9 ± 0.3a | 26.5 ± 0.6a | 26.2 ± 2.1a | 11.2 ± 0.3a | 63.8 ± 2.6a | 2.3 ± 0.03a |
Significance | ** | ** | ** | ** | * | ** | ** | ** |
3.3.2. Biomass and Plant Maturation
Cultivar | Maturity (days) | Leaf (g/day) | Stem (g/day) |
---|---|---|---|
Well-watered | |||
A5409RG | 101 | 0.24 | 0.25 |
Jackson | 90 | 0.25 | 0.28 |
Prima 2000 | 98 | 0.26 | 0.25 |
Drought | |||
A5409RG | 118 | 0.23 | 0.24 |
Jackson | 81 | 0.27 | 0.26 |
Prima 2000 | 115 | 0.27 | 0.27 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sinclair, T.R.; Marrou, H.; Soltani, A.; Valdez, V. Soybean production in Africa. Glob. Food Biol. 2014. [Google Scholar] [CrossRef]
- Furbank, R.T.; Tester, M. Phenomics—Technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011, 16, 635–644. [Google Scholar] [CrossRef]
- Araus, J.L.; Cairns, J.E. Field high-throughput phenotyping: The new crop breeding frontier. Trends Plant Sci. 2013, 19, 1–62. [Google Scholar]
- Beebe, S.E.; Rao, I.M.; Blair, M.W.; Acosta-Gallegos, J.A. Phenotyping common beans for adaptation to drought. Front Physiol. 2013, 4. [Google Scholar] [CrossRef]
- Manavalan, L.P.; Guttikonda, S.K.; Phan Tran, L.S.; Nguyen, H.T. Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol. 2009, 50, 1260–1276. [Google Scholar]
- Pastenes, C.; Pimentel, P.; Lillo, J. Leaf movements and photoinhibition in relation to water stress in field-grown beans. J. Exp. Bot. 2005, 56, 425–433. [Google Scholar] [CrossRef]
- Acosta Gallegos, J.A. Selection of Common Bean (Phaseolus vulgaris L.) Genotypes with Enhanced Drought Tolerance and Biological Nitrogen Fixation. Ph.D. Thesis, Michigan State University, East Lansing, MI, USA, 1988. [Google Scholar]
- Blum, A. Drought resistance, water-use efficiency, and yield potential—Are they compatible, dissonant, or mutually exclusive? A. J. Agric. Res. 2005, 56, 1159–1168. [Google Scholar] [CrossRef]
- Kanagaraj, P.; Prince, K.S.J.; Sheeba, J.A.; Biji, K.R.; Paul, S.B.; Senthil, A.; Babu, R.C. Microsatellite markers linked to drought resistance in rice. Curr. Sci. 2010, 98, 836–839. [Google Scholar]
- Salunkhe, A.S.; Poornima, R.; Prince, K.S.J.; Kanagaraj, P.; Sheeba, J.A.; Amudha, K.; Suji, K.K.; Senthil, A.; Babu, R.C. Fine mapping QTL for drought resistance traits in rice using bulk segregant analysis. Mol. Biotechnol. 2011, 49, 90–95. [Google Scholar] [CrossRef]
- Manavalan, L.P.; Guttikonda, S.K.; Nguyen, V.T.; Shannon, J.G.; Nguyen, H.T. Evaluation of diverse soybean germplasm for root growth and architecture. Plant Soil 2010, 330, 503–514. [Google Scholar] [CrossRef]
- Suji, K.K.; Prince, K.; Mankhar, P.S.; Kanagaraj, P.; Poornima, R.; Amutha, K.; Kavitha, S.; Biji, K.R.; Gomez, S.M.; Babu, R.C. Evaluation of rice near iso-genic lines with root QTLs for plant production and root traits in rainfed target populations of environment. Field Crop Res. 2012, 137, 89–96. [Google Scholar]
- Trachsel, S.; Kaeppler, S.M.; Brown, K.M.; Lynch, J.P. Shovelomics: High throughput phenotyping of maize root architecture in the field. Plant Soil 2011, 341, 75–87. [Google Scholar] [CrossRef]
- Prince, S.J.; Mutava, R.N.; Pegoraro, C.; Oliveira, A.C.D.; Nguyen, H.T. Root characters. In Genomics and Breeding for Climate Resilient Crops; Kole, C., Ed.; Springer: Berlin, Germany, 2013; pp. 67–131. [Google Scholar]
- Nielsen, K.L.; Lynch, J.P.; Weiss, H.N. Fractal geometry of bean root systems: Correlations between spatial and fractal dimension. Am. J. Bot. 1997, 84, 26–33. [Google Scholar] [CrossRef]
- Osmont, K.S.; Sibout, R.; Hardtke, C.S. Hidden branches: Developments in root system architecture. Annu. Rev. Plant Biol. 2007, 58, 93–113. [Google Scholar] [CrossRef]
- Lopes, M.S.; Araus, J.L.; van Heerden, P.D.R.; Foyer, C.H. Enhancing drought tolerance in C4 crops. J. Exp. Bot. 2011, 62, 3135–3153. [Google Scholar] [CrossRef]
- Matsui, T.; Singh, B.B. Root characteristics in cowpea related to drought tolerance at the seedling stage. Exp. Agric. 2003, 39, 29–38. [Google Scholar] [CrossRef]
- Agbicodo, E.M.; Fatokun, C.A.; Muranaka, S.; Visser, R.G.F.; van der Linden, C.G. Breeding drought tolerant cowpea: Constraints, accomplishments, and future prospects. Euphytica 2009, 167, 353–370. [Google Scholar] [CrossRef]
- Zhao, J.; Fu, J.; Liao, H.; He, Y.; Nian, H.; Hu, Y.; Qiu, L.; Dong, Y.; Yan, X. Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm. Chin. Sci. Bull. 2004, 49, 1611–1620. [Google Scholar] [CrossRef]
- Ao, J.; Fu, J.; Tian, J.; Yan, X.; Liao, H. Genetic variability for root morph-architecture traits and root growth dynamics as related to phosphorus efficiency in soybean. Funct. Plant Biol. 2010, 37, 304–312. [Google Scholar]
- Garay, A.F.; Wilhelm, W.W. Root system characteristics of two soybean isolines undergoing water stress conditions. Agron. J. 1982, 75, 973–977. [Google Scholar] [CrossRef]
- Serraj, R.; Bona, S.; Purcell, L.C.; Sinclair, T.R. Nitrogen accumulation and nodule activity of field-grown Jackson soybean in response to water deficits. Field Crops Res. 1997, 52, 109–116. [Google Scholar] [CrossRef]
- Fenta, B.A.; Driscoll, S.P.; Kunert, K.J.; Foyer, C.H. Characterization of drought-tolerance traits in nodulated soya beans: The importance of maintaining photosynthesis and shoot biomass under drought-induced limitations on nitrogen Metabolism. J. Agric. Crop Sci. 2011, 198, 92–103. [Google Scholar]
- USDA, 2011. Available online: http://soils.usda.gov/ (accessed on 13 February 2014).
- Hand Operated Planters. Available online: http://www.almaco.com/products/productDetail.cfm?ProductID=33 (accessed on 13 February 2014).
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 14th ed.; Pearson-Prentice Hall: Upper Saddle River, NJ, USA, 2008; p. 990. [Google Scholar]
- SPAD 502 Plus Chlorophyll Meter. Available online: http://www.specmeters.com/nutrient-management/chlorophyll-meters/spad/spad502p/ (accessed on 18 December 2013).
- Silva, H.C.; Braga, G.L. Effect of soaking and cooking on the oligosaccharide content of dry beans (Phaseolus vulgaris L.). J. Food Sci. 1982, 47, 924–925. [Google Scholar] [CrossRef]
- Fischer, R.; Maurer, R. Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust. J. Agric. Res. 1978, 29, 897–912. [Google Scholar] [CrossRef]
- Fenta, B.A.; Schlüter, U.; Marquez Garcia, B.; DuPlessis, M.; Foyer, C.H.; Kunert, K.J. Identification and Application of Phenotypic and Molecular Markers for Abiotic Stress Tolerance in Soybean. In Soybean—Genetics and Novel Techniques for Yield Enhancement; Krezhova, D., Ed.; InTech: Rijeka, Croatia, 2011; Volume 9; pp. 181–200. [Google Scholar]
- Sall, K.; Sinclair, T.R. Soybean genotypic differences in sensitivity of symbiotic nitrogen fixation to soil dehydration. Plant Soil 1991, 133, 31–37. [Google Scholar] [CrossRef]
- Coque, M.; Martin, A.; Veyrieras, J.B.; Hirel, B.; Gallais, A. Genetic variation for N-remobilization and postsilking N-uptake in a set of maize recombinant inbred lines. 3. QTL detection and coincidences. Theor. Appl. Genet. 2008, 117, 729–747. [Google Scholar] [CrossRef]
- Garnett, T.; Conn, V.; Kaiser, B.N. Root based approaches to improving nitrogen use efficiency in plants. Plant Cell Environ. 2009, 32, 1272–1283. [Google Scholar] [CrossRef]
- King, C.A.; Purcell, L.C. Soybean nodule size and relationship to nitrogen fixation response to water deficit. Crop Sci. 2001, 41, 1099–1107. [Google Scholar] [CrossRef]
- Walsh, K.B.; Canny, M.J.; Layzell, D.B. Vascular transport and soybean nodule function: II. A role for phloem supply in product export. Plant Cell Environ. 1989, 12, 713–723. [Google Scholar] [CrossRef]
- Mayers, J.D.; Lawn, R.J.; Byth, D.E. Adaptation of soybean (Glycine max (L.) Merrill) to the dry season of the tropics. II. Effects of genotype and environment on biomass and seed yield. Aust. J. Agric. Res. 1991, 42, 517–530. [Google Scholar] [CrossRef]
- Beebe, S.; Rao, I.M.; Blair, M.W.; Butare, L. Breeding for abiotic stress tolerance in common bean: Present and future challenges. In Proceedings of the 14th Australian Plant Breeding & 11th SABRAO Conference, Brisbane, Australia, 10–14 August 2009.
- Rao, I.M.; Beebe, S.; Ricaurte, J.; Cajiao, C.; Polania, J.; Garcia, R. Phenotypic evaluation of drought resistance in advanced lines of common bean (Phaseolus vulgaris L.). In Proceedings of the ASA-CSSA-SSSA International Annual Meeting, New Orleans, LA, USA, 4–8 November 2007.
- Guler, S.; Ozcelik, H. Relationships between leaf chlorophyll and yield related characters of dry bean (Phaseolus vulgaris L.). Asian J. Plant Sci. 2007, 6, 700–703. [Google Scholar] [CrossRef]
- Lynch, J.P. Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for Future Crops. Plant Physiol. 2011, 156, 1041–1049. [Google Scholar] [CrossRef]
- Zhu, J.; Ingram, P.A.; Benfey, P.N.; Elich, T. From lab to field, new approaches to phenotyping root system architecture. Curr. Opin. Plant Biol. 2011, 14, 310–317. [Google Scholar] [CrossRef]
- Zhong, D.; Novais, J.; Grift, T.E.; Bohn, M.; Han, J. Maize root complexity analysis using a Support Vector Machine method. Comput. Electron. Agric. 2009, 69, 46–50. [Google Scholar] [CrossRef]
- Eberbach, P.L.; Hoffmann, J.; Moroni, S.J.; Wade, L.J.; Weston, L.A. Rhizo-lysimetry: Facilities for the simultaneous study of root behavior and resource use by agricultural crop and pasture systems. Plant Methods 2013, 9. [Google Scholar] [CrossRef]
- Mooney, S.J.; Pridmore, T.P.; Helliwell, J.; Bennett, M.J. Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil. Plant Soil 2012, 352, 1–22. [Google Scholar] [CrossRef]
- Mairhofer, S.; Zappala, S.; Tracy, S.; Sturrock, C.; Bennett, M.J.; Jon Mooney, S.; Pridmore, T.P. Recovering complete plant root system architectures from soil via X-ray μ-Computed Tomography. Plant Methods 2013, 9. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Fenta, B.A.; Beebe, S.E.; Kunert, K.J.; Burridge, J.D.; Barlow, K.M.; Lynch, J.P.; Foyer, C.H. Field Phenotyping of Soybean Roots for Drought Stress Tolerance. Agronomy 2014, 4, 418-435. https://doi.org/10.3390/agronomy4030418
Fenta BA, Beebe SE, Kunert KJ, Burridge JD, Barlow KM, Lynch JP, Foyer CH. Field Phenotyping of Soybean Roots for Drought Stress Tolerance. Agronomy. 2014; 4(3):418-435. https://doi.org/10.3390/agronomy4030418
Chicago/Turabian StyleFenta, Berhanu A., Stephen E. Beebe, Karl J. Kunert, James D. Burridge, Kathryn M. Barlow, Jonathan P. Lynch, and Christine H. Foyer. 2014. "Field Phenotyping of Soybean Roots for Drought Stress Tolerance" Agronomy 4, no. 3: 418-435. https://doi.org/10.3390/agronomy4030418
APA StyleFenta, B. A., Beebe, S. E., Kunert, K. J., Burridge, J. D., Barlow, K. M., Lynch, J. P., & Foyer, C. H. (2014). Field Phenotyping of Soybean Roots for Drought Stress Tolerance. Agronomy, 4(3), 418-435. https://doi.org/10.3390/agronomy4030418