Effects of Long Term Application of Inorganic and Organic Fertilizers on Soil Organic Carbon and Physical Properties in Maize–Wheat Rotation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Soil pH, Bulk Density, Electrical Conductivity and Cation Exchange Capacity
Fertilizer Treatments | pH (1:2) | EC (dS m−1) | Bulk Density (Mg m−3) | CEC (C molc kg−1) |
---|---|---|---|---|
50% NPK | 7.49b | 0.21a | 1.57a | 5.7bc |
100% NPK + W | 7.39bc | 0.20a | 1.56a | 5.8bc |
150% NPK | 7.25c | 0.20a | 1.56a | 6.7a |
100% NPK | 7.39bc | 0.19a | 1.53a | 5.8bc |
100% NPK + Zn | 7.38bc | 0.21a | 1.56a | 5.9bc |
100% NP | 7.30bc | 0.18a | 1.53a | 5.8bc |
100% N | 7.40bc | 0.20a | 1.54a | 5.2c |
100% NPK + FYM | 7.37b | 0.20a | 1.49a | 5.9bc |
100% NPK(-S) | 7.38b | 0.17a | 1.55a | 6.4ab |
Control | 7.90a | 0.20a | 1.59a | 5.2c |
3.2. SOC and Carbon Sequestration
Fertilizer Treatments | SOC (g kg−1) | SOC pool (Mg ha−1) | SOC sequestration rate (kg ha−1yr−1) | ||||
---|---|---|---|---|---|---|---|
1971 | 2007 | Change | 1971 | 2007 | Change | ||
50% NPK | 2.38a | 3.57ab | 1.19bc | 5.70ab | 8.40bc | 2.70de | 75d |
100% NPK + W | 2.26a | 3.65ab | 1.39b | 5.40b | 8.50bc | 3.10bc | 86cd |
150% NPK | 2.03a | 3.74ab | 1.71b | 4.90c | 8.70b | 3.80bc | 106bc |
100% NPK | 2.08a | 3.71ab | 1.63b | 5.00c | 8.70b | 3.70bc | 103bc |
100% NPK + Zn | 2.23a | 3.69ab | 1.46b | 5.30b | 8.60bc | 3.30bc | 92b |
100% NP | 1.75a | 3.52ab | 1.77b | 4.20d | 8.10c | 3.90b | 108b |
100% N | 1.76a | 3.34ab | 1.58b | 4.20d | 7.70cd | 3.50bc | 97b |
100%NPK + FYM | 2.03a | 5.20a | 3.17a | 4.90c | 11.60a | 6.70a | 186a |
100% NPK (-S) | 2.33a | 3.71ab | 1.38b | 5.60ab | 8.60bc | 3.00cd | 83d |
Control | 2.55a | 3.08b | 0.53c | 6.10a | 7.30d | 1.20e | 33e |
Fertilizer Treatments | Aggregate MWD (mm) | Infiltration rate (cm min−1) | Kostiakov infiltration model constants | ||||||
---|---|---|---|---|---|---|---|---|---|
Initial | Steady State | a | b | R2 | a' | b' | R2 | ||
50% NPK | 0.39cd | 0.75c | 0.13c | 0.115 | 0.633 | 0.99** | 0.073 | −0.367 | 0.98** |
100% NPK + W | 0.41c | 0.67d | 0.13c | 0.085 | 0.610 | 0.99** | 0.052 | −0.390 | 0.98** |
150% NPK | 0.41c | 0.76bc | 0.10d | 0.103 | 0.595 | 0.99** | 0.061 | −0.405 | 0.98** |
100% NPK | 0.41c | 0.91a | 0.16ab | 0.126 | 0.652 | 0.99** | 0.082 | −0.348 | 0.98** |
100% NPK + Zn | 0.43bc | 0.81b | 0.12cd | 0.177 | 0.577 | 0.99** | 0.102 | −0.423 | 0.98** |
100% NP | 0.38d | 0.78bc | 0.15abc | 0.050 | 0.686 | 0.99** | 0.034 | −0.314 | 0.98** |
100% N | 0.34e | 0.68d | 0.14bc | 0.006 | 0.669 | 0.99** | 0.004 | −0.331 | 0.97** |
100%NPK + FYM | 0.52a | 0.92a | 0.17a | 0.137 | 0.653 | 0.99** | 0.089 | −0.347 | 0.98** |
100% NPK(-S) | 0.44b | 0.75c | 0.17a | 0.056 | 0.672 | 0.99** | 0.038 | −0.328 | 0.98** |
Control | 0.31f | 0.68d | 0.12cd | 0.064 | 0.644 | 0.99** | 0.041 | −0.356 | 0.98** |
3.3. Cumulative Infiltration and Infiltration Rate
3.4. Kostiakov (1932) Model Constants
3.5. Aggregate Mean Weight Diameter
3.6. Crop Yields and Nutrient Uptake
Fertilizer Treatments | Maize Yield (Mg ha-1) | Nutrient Uptake ( kg ha-1) | |||
---|---|---|---|---|---|
Grain | Straw | N | P | K | |
50% NPK | 4.3e | 8.9d | 86.9c | 10.2f | 75.7cd |
100% NPK + W | 5.0bc | 10.4c | 125.7b | 15.1d | 104.5ab |
150% NPK | 5.2b | 13.5a | 169.0a | 20.9b | 122.0a |
100% NPK | 5.1b | 11.8bc | 142.7b | 15.9d | 111.8a |
100% NPK + Zn | 4.9bd | 12.4ab | 142.1b | 17.7c | 81.1bc |
100% NP | 4.4de | 11.2bc | 122.8b | 13.2e | 68.1c |
100% N | 2.9f | 8.2d | 99.2c | 10.2f | 53.6d |
100% NPK + FYM | 6.5a | 13.5a | 186.5a | 23.5a | 119.3a |
100% NPK(-S) | 4.5cde | 12.1ab | 135.0b | 16.9c | 84.9bc |
Control | 2.3g | 5.6e | 49.3d | 5.8g | 28.7d |
Fertilizer Treatments | Wheat Yield (Mg ha-1) | Nutrient Uptake ( kg ha-1) | |||
---|---|---|---|---|---|
Grain | Straw | N | P | K | |
50% NPK | 3.53e | 5.34c | 83.8f | 9.4d | 53.9d |
100% NPK + W | 4.56cd | 7.80ab | 117.0cd | 16.4ab | 79.6b |
150% NPK | 5.08ab | 8.43a | 130.1b | 18.3a | 81.8ab |
100% NPK | 4.69bc | 8.25a | 122.8bc | 16.3ab | 82.0a |
100% NPK + Zn | 4.65c | 7.59ab | 120.5c | 17.3a | 81.3ab |
100% NP | 4.17d | 7.60ab | 109.8d | 13.1c | 77.4b |
100% N | 3.74e | 6.38b | 93.7e | 8.8d | 61.7c |
100% NPK + FYM | 5.13a | 8.48a | 150.8a | 18.5a | 92.4a |
100% NPK(-S) | 4.60c | 7.23b | 117.7cd | 14.0bc | 73.4b |
Control | 1.63f | 2.61d | 40.1g | 4.6e | 25.9e |
4. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Haynes, R.; Naidu, R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutr. Cycl. Agroecosys. 1998, 51, 123–137. [Google Scholar]
- Hati, K.M.; Swarup, A.; Dwivedi, A.; Misra, A.; Bandyopadhyay, K. Changes in soil physical properties and organic carbon status at the topsoil horizon of a vertisol of central india after 28 years of continuous cropping, fertilization and manuring. Agric. Ecosyst. Environ. 2007, 119, 127–134. [Google Scholar]
- Kundu, S.; Singh, M.; Saha, J.K.; Biswas, A.; Tripathi, A.K.; Acharya, C.L. Relationship between c addition and storage in a vertisol under soybean-wheat cropping system in sub—Tropical central india. J. Plant Nutr. Soil Sci. 2001, 164, 483–486. [Google Scholar]
- Manna, M.; Swarup, A.; Wanjari, R.; Ravankar, H.; Mishra, B.; Saha, M.; Singh, Y.; Sahi, D.; Sarap, P. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical india. Field Crop. Res. 2005, 93, 264–280. [Google Scholar]
- Reeder, J.; Schuman, G.; Bowman, R. Soil C and N changes on conservation reserve program lands in the central great plains. Soil Till. Res. 1998, 47, 339–349. [Google Scholar] [CrossRef]
- Schuman, G.; Janzen, H.; Herrick, J. Soil carbon dynamics and potential carbon sequestration by rangelands. Environ. Pollut. 2002, 116, 391–396. [Google Scholar] [CrossRef]
- Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450. [Google Scholar] [CrossRef]
- Jarecki, M.K.; Lal, R. Crop management for soil carbon sequestration. Crit. Rev. Plant Sci. 2003, 22, 471–502. [Google Scholar] [CrossRef]
- Tisdall, J.; Oades, J.M. Organic matter and water—Stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.; Paustian, K.; Doran, J. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 1998, 62, 1367–1377. [Google Scholar] [CrossRef]
- Barzegar, A.R.; Nelson, P.N.; Oades, J.M.; Rengasamy, P. Organic matter, sodicity, and clay type: Influence on soil aggregation. Soil Sci. Soc. Am. J. 1997, 61, 1131–1137. [Google Scholar] [CrossRef]
- Dexter, A. Advances in characterization of soil structure. Soil Till. Res. 1988, 11, 199–238. [Google Scholar] [CrossRef]
- Sharma, S.; Subehia, S. Effects of twenty-five years of fertilizer use on maize and wheat yields and quality of an acidic soil in the western himalayas. Exp. Agric. 2003, 39, 55–64. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- El-Shakweer, M.; El-Sayad, E.; Ewees, M. Soil and plant analysis as a guide for interpretation of the improvement efficiency of organic conditioners added to different soils in egypt. Commun. Soil Sci. Plan. 1998, 29, 2067–2088. [Google Scholar] [CrossRef]
- Ndiaye, B.; Molénat, J.; Hallaire, V.; Gascuel, C.; Hamon, Y. Effects of agricultural practices on hydraulic properties and water movement in soils in brittany (france). Soil Till. Res. 2007, 93, 251–263. [Google Scholar] [CrossRef]
- Shukla, M.; Lal, R.; Owens, L.; Unkefer, P. Land use and management impacts on structure and infiltration characteristics of soils in the north appalachian region of ohio. Soil Sci. 2003, 168, 167–177. [Google Scholar] [CrossRef]
- Zhang, M.-K.; Fang, L.-P. Effect of tillage, fertilizer and green manure cropping on soil quality at an abandoned brick making site. Soil Till. Res. 2007, 93, 87–93. [Google Scholar] [CrossRef]
- Barzegar, A.; Yousefi, A.; Daryashenas, A. The effect of addition of different amounts and types of organic materials on soil physical properties and yield of wheat. Plant Soil 2002, 247, 295–301. [Google Scholar] [CrossRef]
- Duiker, S.; Lal, R. Crop residue and tillage effects on carbon sequestration in a luvisol in central ohio. Soil Till. Res. 1999, 52, 73–81. [Google Scholar] [CrossRef]
- McVay, K.; Budde, J.; Fabrizzi, K.; Mikha, M.; Rice, C.; Schlegel, A.; Peterson, D.; Sweeney, D.; Thompson, C. Management effects on soil physical properties in long-term tillage studies in kansas. Soil Sci. Soc. Am. J. 2006, 70, 434–438. [Google Scholar] [CrossRef]
- Pernes-Debuyser, A.; Tessier, D. Soil physical properties affected by long-term fertilization. Eur. J. Soil Sci. 2004, 55, 505–512. [Google Scholar] [CrossRef]
- Rachman, A.; Anderson, S.; Gantzer, C.; Thompson, A. Influence of long-term cropping systems on soil physical properties related to soil erodibility. Soil Sci. Soc. Am. J. 2003, 67, 637–644. [Google Scholar] [CrossRef]
- Hati, K.; Swarup, A.; Singh, D.; Misra, A.; Ghosh, P. Long-term continuous cropping, fertilisation, and manuring effects on physical properties and organic carbon content of a sandy loam soil. Soil Res. 2006, 44, 487–495. [Google Scholar] [CrossRef]
- Anderson, S.; Gantzer, C.; Brown, J. Soil physical properties after 100 years of continuous cultivation. J. Soil Water Conserv. 1990, 45, 117–121. [Google Scholar]
- Bhattacharyya, R.; Chandra, S.; Singh, R.; Kundu, S.; Srivastva, A.; Gupta, H. Long-term farmyard manure application effects on properties of a silty clay loam soil under irrigated wheat-soybean rotation. Soil Till. Res. 2007, 94, 386–396. [Google Scholar] [CrossRef]
- Ghuman, B.; Sur, H. Tillage and residue management effects on soil properties and yields of rainfed maize and wheat in a subhumid subtropical climate. Soil Till. Res. 2001, 58, 1–10. [Google Scholar] [CrossRef]
- Miller, J.; Sweetland, N.; Chang, C. Hydrological properties of a clay loam soil after long-term cattle manure application. J. Environ. Qual. 2002, 31, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Rasool, R.; Kukal, S.; Hira, G. Soil physical fertility and crop performance as affected by long term application of fym and inorganic fertilizers in rice-wheat system. Soil Till. Res. 2007, 96, 64–72. [Google Scholar] [CrossRef]
- Sharma, P.K.; Bhushan, L. Physical characterization of a soil amended with organic residues in a rice–wheat cropping system using a single value soil physical index. Soil Till. Res. 2001, 60, 143–152. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, X.; Wiss, M.; Grip, H.; Lövdahl, L. Changes in physical properties of a loess soil in china following two long-term fertilization regimes. Geoderma 2006, 136, 579–587. [Google Scholar] [CrossRef]
- Gregorich, E.; Drury, C.; Baldock, J.A. Changes in soil carbon under long-term maize in monoculture and legume-based rotation. Can. J. Soil Sci. 2001, 81, 21–31. [Google Scholar] [CrossRef]
- Purakayastha, T.J.; Rudrappa, L.; Singh, D.; Swarup, A.; Bhadraray, S. Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize-wheat-cowpea cropping system. Geoderma 2008, 144, 370–378. [Google Scholar] [CrossRef]
- Aune, J.; Lal, R. Agricultural productivity in the tropics and critical limits of properties of oxisols, ultisols, and alfisols. Trop. Agric. 1997, 74, 96–103. [Google Scholar]
- Kaur, T.; Brar, B.S.; Dhillon, N. Soil organic matter dynamics as affected by long-term use of organic and inorganic fertilizers under maize–wheat cropping system. Nutr. Cycl. Agroecosys. 2008, 81, 59–69. [Google Scholar] [CrossRef]
- Ghimire, R.; Adhikari, K.R.; Chen, Z.-S.; Shah, S.C.; Dahal, K.R. Soil organic carbon sequestration as affected by tillage, crop residue, and nitrogen application in rice–wheat rotation system. Paddy Water Environ. 2011, 10, 95–102. [Google Scholar] [CrossRef]
- Malhi, S.; Nyborg, M.; Goddard, T.; Puurveen, D. Long-term tillage, straw management and N fertilization effects on quantity and quality of organic c and n in a black chernozem soil. Nutr. Cycl. Agroecosys. 2011, 90, 227–241. [Google Scholar] [CrossRef]
- Walkley, A.; Black, C. An examination of digestion of method for determining soil organic matter and a proposed modification of the chromic and titration method. Soil Sci. 1934, 29–38. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.; Helmke, P.; Loeppert, R.; Soltanpour, P.; Tabatabai, M.; Johnston, C.; Sumner, M. Methods of Soil Analysis. Part 3-Chemical Methods; Soil Science Society of America Inc.: Madison, WI, USA, 1996. [Google Scholar]
- Rasool, R.; Kukal, S.; Hira, G. Soil organic carbon and physical properties as affected by long-term application of fym and inorganic fertilizers in maize-wheat system. Soil Till. Res. 2008, 101, 31–36. [Google Scholar] [CrossRef]
- Dane, J.H.; Topp, C.; Campbell, G.S.; Horton, R.; Jury, W.A.; Nielsen, D.R.; van Es, H.M.; Wierenga, P.J.; Topp, G.C. Methods of Soil Analysis. Part 4: Physical Methods; Soil Science Society of America Inc.: Madison, WI, USA, 2002. [Google Scholar]
- Kukal, S.S.; Rehanarasool; Benbi, D.K. Soil organic carbon sequestration in relation to organic and inorganic fertilization in rice-wheat and maize-wheat systems. Soil Till. Res. 2009, 102, 87–92. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, C.; Ma, Y.; Liu, Y.; Li, L.; Zhou, Q.; Xiong, Z. Two approaches for net ecosystem carbon budgets and soil carbon sequestration in a rice-wheat rotation system in China. Nutr. Cycl. Agroecosys. 2014, 100, 301–313. [Google Scholar] [CrossRef]
- Cambardella, C.; Elliott, E. Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils. Soil Sci. Soc. Am. J. 1994, 58, 123–130. [Google Scholar] [CrossRef]
- Van Bavel, C. Mean weight-diameter of soil aggregates as a statistical index of aggregation. Soil Sci. Soc. Am. J. 1950, 14, 20–23. [Google Scholar] [CrossRef]
- Bouwer, H. Methods of Soil Analysis, Part 1. Physical and Mineralogical Properties, Monograph 9; ASA: Madison, WI, USA, 1986. [Google Scholar]
- Kostiakov, A.N. On the dynamics of the coefficient of water-percolation in soils and on the necessity for studying it from a dynamic point of view for purposes of amelioration. Trans 1932, 6, 17–21. [Google Scholar]
- Uloma, A.R.; Samuel, A.C.; Kingsley, I.K. Estimation of Kostiakov’s Infiltration Model Parameters of Some Sandy Loam Soils of Ikwuano-Umuahia, Nigeria. Open Trans. Geosci. 2014, 1, 34–38. [Google Scholar] [CrossRef]
- Benbi, D.K.; Brar, J.S. A 25-year record of carbon sequestration and soil properties in intensive agriculture. Agron. Sustain. Dev. 2009, 29, 257–265. [Google Scholar] [CrossRef]
- Anderson, S.H.; Gantzer, C.J.; Brown, J.R. Soil physical properties after 100 years of continuous cultivation. J. Soil Water Conserv. 1990, 45, 117–121. [Google Scholar]
- Miles, R.J.; Brown, J.R. The Sanborn Field experiment: Implications for long-term soil organic carbon levels. Agron. J. 2011, 103, 268–278. [Google Scholar] [CrossRef]
- Benbi, D.K.; Senapati, N. Soil aggregation and carbon and nitrogen stabilization in relation to residue and manure application in rice-wheat systems in northwest india. Nutr. Cycl. Agroecosys. 2009, 87, 233–247. [Google Scholar] [CrossRef]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions; Wiley: New York, NY, USA, 1982; p. 443. [Google Scholar]
- Lutz, J.; Pinto, R.A.; Garcia-Lagos, R.; Hilton, H.G. Effect of phosphorus on some physical properties of soils: II. Water retention. Soil Sci. Soc. Am. J. 1966, 30, 433–437. [Google Scholar] [CrossRef]
- Laddha, K.; Totawat, K. Interactive effect of tillage and phosphate fertilization in conjunction with fym to sorghum+ greengram intercropping system on physico-chemical properties of the soil. Ann. Arid Zone 1998, 37, 75–81. [Google Scholar]
- Haris, H.; Megharaj, M. The effects of sludge and green manure on hydraulic conductivity and aggregation in pyretic mine tailings material. Environ. Geol. 2001, 41, 285–296. [Google Scholar]
- Subbian, P.; Lal, R.; Akala, V. Long-term effects of cropping systems and fertilizers on soil physical properties. J. Sustain. Agr. 2000, 16, 89–100. [Google Scholar] [CrossRef]
- Roberson, E.B.; Shennan, C.; Firestone, M.K.; Sarig, S. Nutritional management of microbial polysaccharide production and aggregation in an agricultural soil. Soil Sci. Soc. Am. J. 1995, 59, 1587–1594. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Kundu, S.; Prakash, V.; Gupta, H. Sustainability under combined application of mineral and organic fertilizers in a rainfed soybean-wheat system of the Indian Himalayas. Eur. J. Soil Sci. 2008, 28, 33–46. [Google Scholar] [CrossRef]
- Roldan, A.; Albaladejo, J.; Thornes, J.B. Aggregate stability changes in a semiarid soil after treatment with different organic amendments. Arid Soil Res. Rehab. 1996, 10, 139–148. [Google Scholar] [CrossRef]
- Aggarwal, R.K.; Kumar, P.; Power, J.F. Use of crop residue and manure to conserve water and enhance nutrient availability and pearl millet yields in an arid tropical region. Soil Till. Res. 1997, 41, 43–51. [Google Scholar] [CrossRef]
- Lal, R. Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad. Dev. 2006, 17, 197–209. [Google Scholar] [CrossRef]
- Körschens, M.; Dhaliwal, G.S.; Arora, R.; Randhawa, N.S.; Dhawan, A.K. Possibilities and limits of carbon accumulation in arable soils. In Ecological Agriculture and Sustainable Development; Centre for research in rural and industrial development: Chandigarh, India, 1998; pp. 536–543. [Google Scholar]
- Ghosh, P.; Dayal, D.; Mandal, K.; Wanjari, R.; Hati, K. Optimization of fertilizer schedules in fallow and groundnut-based cropping systems and an assessment of system sustainability. Field Crop Res. 2003, 80, 83–98. [Google Scholar] [CrossRef]
- Shankar, G.; Verma, L.; Singh, R. Effect of integrated nutrient management on field and quality of Indian mustard (brassica juncea) and properties of soil. Indian J. Agric. Sci. 2002, 72, 551–552. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh Brar, B.; Singh, J.; Singh, G.; Kaur, G. Effects of Long Term Application of Inorganic and Organic Fertilizers on Soil Organic Carbon and Physical Properties in Maize–Wheat Rotation. Agronomy 2015, 5, 220-238. https://doi.org/10.3390/agronomy5020220
Singh Brar B, Singh J, Singh G, Kaur G. Effects of Long Term Application of Inorganic and Organic Fertilizers on Soil Organic Carbon and Physical Properties in Maize–Wheat Rotation. Agronomy. 2015; 5(2):220-238. https://doi.org/10.3390/agronomy5020220
Chicago/Turabian StyleSingh Brar, Babbu, Jagdeep Singh, Gurbir Singh, and Gurpreet Kaur. 2015. "Effects of Long Term Application of Inorganic and Organic Fertilizers on Soil Organic Carbon and Physical Properties in Maize–Wheat Rotation" Agronomy 5, no. 2: 220-238. https://doi.org/10.3390/agronomy5020220
APA StyleSingh Brar, B., Singh, J., Singh, G., & Kaur, G. (2015). Effects of Long Term Application of Inorganic and Organic Fertilizers on Soil Organic Carbon and Physical Properties in Maize–Wheat Rotation. Agronomy, 5(2), 220-238. https://doi.org/10.3390/agronomy5020220