A Review of Nutrient Management Studies Involving Finger Millet in the Semi-Arid Tropics of Asia and Africa
Abstract
:1. Introduction
Country | Year | Area under cultivation (‘000 ha) | Production (‘000 tones) | Average yield (kg ha−1) | References |
---|---|---|---|---|---|
India | 2009/2010 | 1268 | 1889 | 1489 | [10] |
2010/2011 | 1286 | 2194 | 1705 | [10] | |
2011/2012 | 1176 | 1929 | 1641 | [10] | |
2012/2013 | 1179 | 1785 | 1514 | [10] | |
2013/2014 | 1138 | 1688 | 1483 | [11] | |
Nepal | 2009/2010 | 268.5 | 299.5 | 1116 | [12] |
2010/2011 | 269.8 | 302.7 | 1122 | [12] | |
2011/2012 | 278.0 | 315.1 | 1133 | [12] | |
2012/2013 | 274.4 | 305.6 | 1114 | [12] | |
2013/2014 | 271.2 | 304.1 | 1121 | [12] | |
Ethiopia | 2009/2010 | 369.0 | 524.2 | 1421 | [13] |
2010/2011 | 408.1 | 634.8 | 1556 | [13] | |
2011/2012 | 432.6 | 651.8 | 1507 | [14] | |
2012/2013 | 431.5 | 742.3 | 1720 | [15] | |
2013/2014 | 454.7 | 849.0 | 1867 | [16] |
2. Current Literature Concerning Inorganic and Organic Nutrient Management
Area/Country | Soil properties | Cropping system | Nutrient treatments | Key results | References | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NPK + FYM | |||||||||||||
Bangalore, Southern India | Alfisol soil Soil organic carbon (SOC) = 0.30%−0.45% Available soil N = 163–204 kg N ha−1 | Finger millet | Control | Higher grain yield was found with FYM (10 t ha−1) + 100% NPK (3167 kg ha−1) and MR (5 t ha−1) + 100% NPK (2518 kg ha−1) compared to the recommended NPK fertilizer (1826 and 1965 kg ha−1 respectively). Similar trend was found for soil NPK. | [29] | ||||||||
100% NPK (50:50:25 kg N, P2O5, K2O ha−1) | |||||||||||||
FYM at 10 t ha−1 | |||||||||||||
FYM at 10 t ha−1 + 50% NPK | |||||||||||||
FYM at 10 t ha−1 + 100% NPK | |||||||||||||
Control | |||||||||||||
Maize residues (MR) at 5 t ha−1 | |||||||||||||
MR at 5 t ha−1 + 50% NPK | |||||||||||||
MR at 5 t ha−1 + 100% NPK | |||||||||||||
Bangalore, Southern India | Alfisol soil SOC = 0.46% Available soil N = 302 kg N ha−1 | Finger millet monocropping under rainfed conditions | Control (no NPK fertilizer or organic amendments) | Higher grain yield (mean grain yield of 3281kg ha–1) and sustainable yield index were achieved with integrated nutrient management (INM) (FYM at 10 t ha−1 + 100% NPK) than recommended NPK. Application of FYM improved soil C stock (35% of soil C buildup after 27 years). | [30] | ||||||||
FYM 10 t ha–1 + 50% NPK | |||||||||||||
FYM 10 t ha–1 + 100% NPK | |||||||||||||
FYM 10 t ha–1 | |||||||||||||
Recommended dose of NPK (50:50:25 kg N, P2O5, K2O ha–1) | |||||||||||||
Tamil Nadu, Southern India | Fine Montmorillonitic, isohyperthermic SOC = 4% (control) and 0.62% (NPK + FYM) | Finger millet-maize rotation | 50% NPK (90:45:17.5 kg N, P2O5, K2O ha−1) | Application of 100% NPK + FYM increased soil organic C level (6.2 vs. 5.3 g kg−1 soil), CEC (34.4 vs. 28.9 cmol (p+) kg−1 soil), available soil N (197 vs. 165 kg ha−1), P (26.2 vs. 16.8 kg ha−1), K (650 vs. 596 kg ha−1), and micronutrients (Cu, Mn, Fe, Zn) compared to NPK fertilizer alone. 100% N and control treatments resulted in lowest soil organic carbon level. | [31,32] | ||||||||
100% NPK | |||||||||||||
150% NPK | |||||||||||||
100% NPK + hand weeding | |||||||||||||
100% NP | |||||||||||||
100% N | |||||||||||||
100% NPK + FYM at 10 t ha−1 | |||||||||||||
100% NPK (-S) | |||||||||||||
Control | |||||||||||||
Karnataka, India | Alfisol, sandy loam soil SOC = 0.42% Available soil N = 302 kg N ha−1 | Finger millet-groundnut rotation | No fertilizer | Higher grain yield was achieved with NPK + FYM treatment (3957 kg ha−1) compared to the recommended NPK (2578 kg ha−1). SOC increased by 41% with INM after 13 years of crop rotation. | [33] | ||||||||
FYM (10 t ha−1) | |||||||||||||
100 % NPK (50:21.8:20.7 kg N, P, K ha−1) | |||||||||||||
FYM + 50% NPK | |||||||||||||
FYM + 100% NPK | |||||||||||||
Bangalore, India | Red sandy loam SOC = 0.34% Available soil N = 172 kg N ha−1 | Finger millet-groundnut | NPK (100:50:50 kg N, P2O5, K2O ha−1) | Application of FYM + NPK improved finger millet yield, soil NPK content, and microbial biomass. INM maintained neutral pH, where the recommended NPK treatment caused acidic conditions. | [34] | ||||||||
NPK + FYM (7.5 t ha−1) | |||||||||||||
Karnataka, India | Red sandy loam Available soil N = 329 kg N ha−1 | Finger millet | Recommended NPK (50:40:25 kg N, P2O5, K2O ha−1) through fertilizer | Application of 50% N through FYM + 50% NPK produced slightly greater yield (30.3 quintiles ha−1) than recommended NPK through fertilizer (28.7 quintiles ha−1). In comparison to recommended NPK, the above treatment had slightly high/similar plant height (77 vs. 75 cm), straw yield (36.2 vs. 35.0 quintiles ha−1), and benefit/cost ratio (3.2 vs. 3.0). | [35] | ||||||||
Farmer practice (20 N, 21 P2O5 kg ha−1) | |||||||||||||
50% N through FYM + 50% NPK through fertilizer | |||||||||||||
Recommended N + P and K through FYM | |||||||||||||
Bangalore, India | Fine, mixed isothermic Kandic Paleustalfs | Finger millet | 50% NPK | In comparison to 100% NPK, INM treatments (100% NPK + FYM + lime and 100% NPK + FYM) showed increased root biomass (10.7 vs. 9.2 quintiles ha−1), root N (0.53–0.54 vs. 0.51%), K (1.04–1.05 vs. 0.9%), Ca (0.54–0.58 vs. 0.48%), Mg (0.31–0.34 vs. 0.26%), and micronutrient content (Fe, Cu, Zn, Mn). | [36] | ||||||||
100% NPK | |||||||||||||
150% NPK | |||||||||||||
100% NPK + HW (not defined) | |||||||||||||
100% NPK + Lime | |||||||||||||
100% NP | |||||||||||||
100% N | |||||||||||||
100% NPK + FYM | |||||||||||||
100% NPK (S-free) | |||||||||||||
100% NPK + FYM+ Lime | |||||||||||||
Control | |||||||||||||
Bangalore, India | Red sandy loam soil SOC = 0.34% Available soil N = 172 kg N ha−1 | Finger millet under irrigation | NPK (100:50:50 kg N, P2O5, K2O ha−1) | Application of 100% NPK + FYM increased millet yield (3086 kg ha−1) by 9.5% compared to NPK alone (2946 kg ha−1). INM also increased the number of tillers per hill, ear length, ear weight, 1000 grain weight, threshing percent, and number of fingers per ear head. | [37] | ||||||||
NPK + FYM (7.5 t ha−1) | |||||||||||||
Pakhribas and Dordor Gaun, Nepal | Sandy loam and silt loam Organic matter and N% = 1.33, 0.08% (Pakhribas) and 0.82, 0.08% (Dordor Gaun) | Maize-finger millet cropping system | No inputs | Highest millet yield was associated with the FYM applied to previous maize crop than inorganic fertilizer treatment. FYM application reduced the rate of C and N losses. | [38] | ||||||||
Farmer practices for fertilizer-T1 | |||||||||||||
Farmer practices for FYM-T2 | |||||||||||||
50% (T1 + T2) | |||||||||||||
50% T1 | |||||||||||||
50% T2 | |||||||||||||
25% (T1 + T2) | |||||||||||||
Pakhribas and Dordor Gaun, Nepal | Sandy loam and silt loam SOC and total N at top 25 cm soil = 1.32, 0.08% (Pakhribas) and 0.82, 0.08% (Dordor Gaun) | Maize-finger millet | No fertilizer | A trend of high yield was found in finger millet plots, which were previously manured, compared to inorganic fertilizer applied plots. Recovery of fertilizer applied to maize by subsequent finger millet crop was very low (3%). | [39] | ||||||||
NPK fertilizer (90:30:30 kg ha−1) | |||||||||||||
FYM alone (90 kg N ha−1) | |||||||||||||
NPK + FYM (different ratios) | |||||||||||||
Dhankuta, Eastern Nepal | Dystochrept (sandy clay loam texture) Organic matter = 1.9% | Maize/millet rotation | NPK | Millet yield increased following maize treated with FYM (by 705 kg ha−1) or FYM + inorganic fertilizer (by 631 kg ha−1), compared to inorganic fertilizer alone. | [40] | ||||||||
FYM (0, 15, 25 t ha−1) | |||||||||||||
NPK + FYM | |||||||||||||
Lime | |||||||||||||
Micronutrients | |||||||||||||
Karnataka, India | Alfisols and Inceptisols SOC = 0.37% | Finger millet under rainfed | Farmers’ inputs (FI) + NP (60:130 kg N, P2O5 ha−1) | In comparison to FI, combined application of FI + NP + S, B, Zn fertilizers enhanced grain yield (3350 vs. 2150 kg ha−1), straw yield (6650 vs. 4630 kg ha−1), and uptake of N (31 vs. 20 kg ha−1), P (7.5 vs. 5.2 kg ha−1), K (17 vs. 11 kg ha−1), S (2.9 vs. 1.8 kg ha−1), and Zn (49 vs. 36 kg ha−1). | [25] | ||||||||
FI + S, B, Zn (30:0.5:10 kg S, B, Zn ha−1) | |||||||||||||
FI + NP + S, B, Zn (60:130:30:0.5:10 kg N, P2O5, S, B, Zn ha−1). | |||||||||||||
Karnataka, India | Vertisol and Alfisol (sandy, loam, clay) SOC = <0.5% Available soil N = <280 kg N ha−1 | Finger millet under rainfed conditions | Farmer practice (N + P) | In comparison to farmers’ practice, farmer practice + Zn, B, S increased finger millet grain yield (3354 vs. 2142 kg ha−1), stover biomass (6654 vs. 4630 kg ha−1), total biomass (10008 vs. 6772 kg ha−1), and plant uptake of Zn (322 vs. 193 g ha−1), B (21 vs. 17 g ha−1), and S (16 vs. 10 kg ha−1). | [41] | ||||||||
Farmer practice + Zn, B, S (10:0.5:30 kg Zn:B:S ha−1) | |||||||||||||
NPK + FYM + Bio-fertilizers/Green manures | |||||||||||||
Wakawali, India | Terraced upland | Finger millet | Recommended fertilizer (RF) (80:40:00 kg N, P2O5, K2O ha−1) | Higher grain yield obtained with FYM at 5 t ha−1 + 75% NPK + bio-fertilizers | [42] | ||||||||
FYM at 5 t ha−1 + RF | |||||||||||||
FYM at 5 t ha−1 + 75% RF + bio-fertilizers (Azospirillum + PSB) | |||||||||||||
FYM at 10 t ha−1 + bio-fertilizers | |||||||||||||
FYM at 15 t ha−1 + bio-fertilizers | |||||||||||||
Karnataka, India | Red sandy loam soil Available soil N = 59 kg N ha−1 | Finger millet under rainfed conditions | Recommended NPK (50:37.5:25 kg NPK ha−1) | In comparison to RF treatment, INM (RF + ZnSO4 + gypsum + Azotobacter) had higher number of tillers (8 vs. 4 plant−1), ear head (8 vs. 3 plant−1), number of fingers (43 vs. 25 plant−1), yield (61 vs. 49 quintiles ha−1), and benefit:cost ratio (2.5 vs. 2.2). | [43] | ||||||||
RF + Azotobacter (1 kg ha−1 root dipping) | |||||||||||||
RF + gypsum (500 kg ha−1) | |||||||||||||
RF + Azotobacter + ZnSO4 (10 kg ha−1) | |||||||||||||
RF + Azotobacter + gypsum | |||||||||||||
RF + ZnSO4 + gypsum | |||||||||||||
RF + Azotobacter + ZnSO4 + gypsum | |||||||||||||
Odisha, India | Red lateritic sandy loam | Finger millet | Farmers’ input (FI) (FYM at 2 t ha−1 + 17:12:0 kg N, P2O5, K2O) | In comparison to FI, INM (50% RF + 2.5 t ha−1 Gliricidia + 2.5 kg ha−1 each of PSB and Azotobacter) treatment increased shoot and root growth (10.9, 3.5 vs. 9.7, 2.8 g plant−1), yield parameters, grain yield (4.0 vs. 3.5 t ha−1), benefit:cost ratio (2.4 vs. 2.1), soil moisture, SOC (0.46 vs. 0.41%), soil available N (278 vs. 240 kg ha−1), available P (14.7 vs. 12.1 kg ha−1), and available K (307 vs. 279 kg ha−1). | [8] | ||||||||
RF (40:20:20 kg N, P2O5, K2O ha−1) | |||||||||||||
FI + 2.5 kg ha−1 each of PSB and Azotobacter | |||||||||||||
FI + Gliricidia at 5 t ha−1 | |||||||||||||
50% RF + 2.5 t ha−1 FYM + 2.5 kg ha−1 each of PSB and Azotobacter | |||||||||||||
50% RF + 2.5 t ha−1 Gliricidia + 2.5 kg ha−1 each of PSB and Azotobacter | |||||||||||||
Bangalore, Southern India | Red sandy clay loam SOC = 0.36% Available soil N = 175 kg N ha−1 | Finger millet-pigeon pea rotation | 100% N through urea | INM had higher grain yield (2666 kg ha−1) with a 29% increase compared to 100% N supply through urea (2067 kg ha−1). In comparison to sole organic N treatment, INM had higher tiller number (5.8 vs. 4.9 plant −1), grain yield (2666 vs. 1665 kg ha−1), and benefit:cost ratio (3.23 vs. 1.71). | [44] | ||||||||
50% N through urea + 25% N through FYM + 25% N through Gliricidia | |||||||||||||
50% N through FYM + 50% N through Gliricidia | |||||||||||||
Bangalore, Southern India | Sandy and gravel soil SOC = 0.44% Available soil N = 307 kg N ha−1 | Finger millet | Recommended FYM + 100% NPK | Recommended FYM + Neem cake equivalent to 100% N increased finger millet yield (2454 vs. 2175 kg ha−1), soil available N (391 vs. 315 kg ha−1), available P (50 vs. 30 kg P2O5 ha−1), and available K (391 vs. 260 kg K2O ha−1) compared to the 100% NPK + recommended FYM. | [45] | ||||||||
Recommended FYM + 100% N through Pongamia cake | |||||||||||||
Recommended FYM + 100% N through Mahua cake | |||||||||||||
Recommended FYM + 100% N through Neem cake | |||||||||||||
Karnataka, India | Sandy loam SOC = 0.57% Available soil N = 205 kg N ha−1 | Finger millet following potato | 100% NPK | In comparison to 100% inorganic fertilizer, 100% N as FYM had higher finger millet grain yield (4.77 vs. 4.13 t ha−1), soil N (133 vs. 107 kg ha−1), soil P (27 vs. 21 kg ha−1), and soil K (174 vs. 142 kg ha−1). | [46] | ||||||||
100% N as FYM | |||||||||||||
100% NPK + FYM (10 t ha−1) | |||||||||||||
25%–50% N as composted weeds | |||||||||||||
Bangalore, India | Red sandy loam Soil organic matter = 0.48% Available soil N = 268 kg N ha−1 | Horse gram in the previous season | FYM | 100% RF + FYM at 7.5 t ha−1 had higher grain yield (3660 kg ha−1) compared to other treatments (1400–3200 kg ha−1). Finger millet supplied with poultry manure produced higher grain yield (2970 kg ha−1) than FYM or green manure treatments (2200–2300 kg ha−1). | [47] | ||||||||
Biogas slurry | |||||||||||||
Poultry manure | |||||||||||||
City waste compost | |||||||||||||
Agrimagic | |||||||||||||
Green manure | |||||||||||||
100% RF (50:40:25 NPK kg ha−1) | |||||||||||||
100% RF + FYM | |||||||||||||
100% NK | |||||||||||||
Tamil Nadu, India | Not available | Rice-Finger millet | Recommended fertilizer + FYM (12.5 t ha−1) | Finger millet yield was higher under FYM + RF (2816 kg ha−1) and composted coirpith + RF (2739 kg ha−1). | [48] | ||||||||
RF + composted coirpith (12.5 t ha−1) | |||||||||||||
Tamil Nadu, Southern India | Not available | Finger millet | Control (no organics) | Application of pressmud and composted coirpith significantly improved finger millet yield (3316, 3385 vs. 2593 kg ha−1), soil N (135, 136 vs. 120 kg ha−1), soil P (6.18, 10.3 vs. 5.7 kg ha−1), soil K (134, 138 vs. 116 kg N ha−1) macro and micronutrients (Zn, Cu, Mg, Fe), soil organic carbon (0.45, 0.46 vs. 0.25%), pH (8.33, 8.27 vs. 8.45%), EC (0.25 vs. 0.41 dSm−1), and microbial population (bacteria, fungi, actinomycete) compared to the control. | [49] | ||||||||
FYM at 12.5 t ha−1 | |||||||||||||
Pressmud at 12.5 t ha−1 | |||||||||||||
Composted coirpith at 12.5 t ha−1 | |||||||||||||
Gypsum at 500 kg ha−1 |
2.1. Nitrogen (N)
2.2. Phosphorus (P)
2.3. Nitrogen, Phosphorus, and Potassium (K)
2.4. Micronutrients
2.5. Farmyard Manure (FYM) + Inorganic Fertilizer
2.5.1. Yield Response of FYM + NPK
2.5.2. Effects of Manure + NPK on Soil Carbon
2.5.3. Other Benefits and Challenges of Combining Manure with Inorganic Fertilizers
2.6. Alternative Sources of Organic Fertilizer: By-Products, Biofertilizers, and Green Manures
3. Crop Rotations
4. Intercropping/Mixed-cropping
5. Varietal Effects
6. Research Gaps and Recommendations for Improving Nutrient Management in Finger Millet
6.1. Nitrogen Management
6.2. Phosphorus Management
6.3. Potassium Management
6.4. Micronutrients
6.5. Organic Manure
6.6. NPK + FYM + Soil Testing
6.7. Green Manures, Organic Byproducts, and Bio-fertilizers
6.8. Crop Rotations and Intercropping
6.9. Fertilizer Micro-Dosing and Split Applications
6.10. System of Ragi Intensification (SRI method)
6.11. Varietal Breeding
7. Conclusions
Acknowledgements
Author Contributions
Conflict of Interest
References
- Kerr, R.B. Lost and found crops: Agrobiodiversity, indigenous knowledge, and a feminist political ecology of sorghum and finger millet in Northern Malawi. Ann. Assoc. Am. Geogr. 2014, 104, 577–593. [Google Scholar] [CrossRef]
- Pokharia, A.K.; Kharakwal, J.S.; Srivastava, A. Archaeobotanical evidence of millets in the Indian subcontinent with some observations on their role in the Indus civilization. J. Archaeol. Sci. 2014, 42, 442–455. [Google Scholar] [CrossRef]
- Goron, T.L.; Raizada, M.N. Genetic diversity and genomic resources available for the small millet crops to accelerate a new green revolution. Front. Plant Sci. 2015, 6, 157. [Google Scholar] [CrossRef] [PubMed]
- NRC (National Research Council). Lost Crops of Africa, 1st ed.National Academy Press: Washington, DC, USA, 1996.
- Dida, M.M.; Wanyera, N.; Dunn, M.L.H.; Bennetzen, J.L.; Devos, K.M. Population structure and diversity in finger millet (Eleusine coracana) germplasm. Trop. Plant Biol. 2008, 1, 131–141. [Google Scholar] [CrossRef]
- Gupta, N.; Gupta, A.K.; Gaur, V.S.; Kumar, A. Relationship of nitrogen use efficiency with the activities of enzymes involved in nitrogen uptake and assimilation of finger millet genotypes grown under different nitrogen inputs. Sci. World J. 2012, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, A. Finger millet Eleusine coracana. Adv. Food Nutr. Res. 2010, 59, 215–262. [Google Scholar] [PubMed]
- Dass, A.; Sudhishri, S.; Lenka, N.K. Integrated nutrient management to improve finger millet productivity and soil conditions in hilly region of Eastern India. J. Crop Improv. 2013, 27, 528–546. [Google Scholar] [CrossRef]
- Midega, C.A.O.; Khan, Z.R.; Amudavi, D.A.; Pittchar, J.; Pickett, J.A. Integrated management of Striga hermonthica and cereal stemborers in finger millet (Eleusine coracana (L.) Gaertn.) through intercropping with Desmodium intortum. Int. J. Pest Manag. 2010, 56, 145–151. [Google Scholar] [CrossRef]
- Department of Agriculture and Cooperation. State of Indian Agriculture 2012–2013; Ministry of Agriculture, Government of India: New Delhi, India, 2013.
- Department of Agriculture and Cooperation. State of Indian Agriculture 2013–2014; Ministry of Agriculture, Government of India: New Delhi, India, 2014.
- Agri-business Promotion and Statistics Divisions. Statistical Information on Nepalese Agriculture 2013/2014; Agri Statistics Section, Ministry of Agricultural Development, Government of Nepal: Kathmandu, Nepal, 2014.
- Central Statistics Agency. Report on Area and Production of Major Crops. Agricultural Sample Survey 2010–2011; The Fedaral Democratic Republic of Ethiopia: Addis Ababa, Ethiopia, 2011; Volume 1.
- Central Statistics Agency. Report on Area and Production of Major Crops. Agricultural Sample Survey 2011–2012; The Fedaral Democratic Republic of Ethiopia: Addis Ababa, Ethiopia, 2012; Volume 1.
- Central Statistics Agency. Report on Area and Production of Major Crops. Agricultural Sample Survey 2012–2013; The Fedaral Democratic Republic of Ethiopia: Addis Ababa, Ethiopia, 2013; Volume 1.
- Central Statistics Agency. Report on Area and Production of Major Crops. Agricultural Sample Survey 2014–2015; The Fedaral Democratic Republic of Ethiopia: Addis Ababa, Ethiopia, 2015; Volume 1.
- Shobana, S.; Krishnaswamy, K.; Sudha, V.; Malleshi, N.G.; Anjana, R.M.; Palaniappan, L.; Mohan, V. Finger millet (Ragi, Eleusine coracana L.). A review of its nutritional properties, processing, and plausible health benefits. Adv. Food Nutr. Res. 2013, 69, 1–39. [Google Scholar] [PubMed]
- Verma, V.; Patel, S. Value added products from nutri-cereals: Finger millet (Eleusine coracana). Emirates J. Food Agric. 2013, 25, 169–176. [Google Scholar] [CrossRef]
- Singh, P.; Raghuvanshi, R.S. Finger millet for food and nutritional security. Afr. J. Food Sci. 2012, 6, 77–84. [Google Scholar]
- Rurinda, J.; Mapfumo, P.; van Wijk, M.T.; Mtambanengwe, F.; Rufino, M.C.; Chikowo, R.; Giller, K.E. Comparative assessment of maize, finger millet and sorghum for household food security in the face of increasing climatic risk. Eur. J. Agron. 2014, 55, 29–41. [Google Scholar] [CrossRef]
- Devi, P.B.; Vijayabharathi, R.; Sathyabama, S.; Malleshi, N.G.; Priyadarisini, V.B. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: A review. J. Food Sci. Technol. 2014, 51, 1021–1040. [Google Scholar] [CrossRef] [PubMed]
- Hegde, B.R.; Gowda, L. Cropping systems and production technology for small millets in India. In Proceedings of the First International Small Millets Workshop, Bangalore, India, 29 October–2 November 1986; pp. 209–236.
- Samarajeewa, K.B.D.; Horiuchi, T.; Oba, S. Finger millet (Eleucine corocana L. Gaertn.) as a cover crop on weed control, growth and yield of soybean under different tillage systems. Soil Tillage Res. 2006, 90, 93–99. [Google Scholar] [CrossRef]
- Tenywa, J.S.; Nyende, P.; Kidoido, M.; Kasenge, V.; Oryokot, J.; Mbowa, S. Prospects and constraints of finger millet production in Eastern Uganda. Afr. Crop Sci. J. 1999, 7, 569–583. [Google Scholar] [CrossRef]
- Rao, B.K.R.; Krishnappa, K.; Srinivasarao, C.; Wani, S.P.; Sahrawat, K.L.; Pardhasaradhi, G. Alleviation of multinutrient deficiency for productivity enhancement of rain-fed soybean and finger millet in the semi-arid region of India. Commun. Soil Sci. Plant Anal. 2012, 43, 1427–1435. [Google Scholar]
- Wu, W.; Ma, B. Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: A review. Sci. Total Environ. 2015, 512–513, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-P.; Cui, Z.-L.; Vitousek, P.M.; Cassman, K.G.; Matson, P.A.; Bai, J.-S.; Meng, Q.-F.; Hou, P.; Yue, S.-C.; Römheld, V.; Zhang, F.-S. Integrated soil-crop system management for food security. Proc. Natl. Acad. Sci. USA 2011, 108, 6399–6404. [Google Scholar] [CrossRef] [PubMed]
- Drinkwater, L.E.; Snapp, S.S. Nutrients in agroecosystems: Rethinking the management paradigm. Adv. Agron. 2007, 92, 163–186. [Google Scholar]
- Sankar, G.R.M.; Sharma, K.L.; Dhanapal, G.N.; Shankar, M.A.; Mishra, P.K.; Venkateswarlu, B.; Grace, J.K. Influence of soil and fertilizer nutrients on sustainability of rainfed finger millet yield and soil fertility in semi-arid Alfisols. Commun. Soil Sci. Plant Anal. 2011, 42, 1462–1483. [Google Scholar] [CrossRef]
- Srinivasarao, C.; Venkateswarlu, B.; Singh, A.K.; Vittal, K.P.R.; Kundu, S.; Chary, G.R.; Gajanan, G.N.; Ramachandrappa, B.K. Critical carbon inputs to maintain soil organic carbon stocks under long-term finger-millet (Eleusine coracana [L.] Gaertn.) cropping on Alfisols in semiarid tropical India. J. Plant Nutr. Soil Sci. 2012, 175, 681–688. [Google Scholar] [CrossRef]
- Hemalatha, S.; Chellamuthu, S. Effect of long term fertilization on phosphorous fractions under finger millet-maize cropping sequence. Madras Agric. J. 2011, 98, 344–346. [Google Scholar]
- Hemalatha, S.; Chellamuthu, S. Impacts of long term fertilization on soil nutritional quality under finger millet: Maize cropping sequence. J. Environ. Res. Dev. 2013, 7, 1571–1576. [Google Scholar]
- Srinivasarao, C.; Venkateswarlu, B.; Lal, R.; Singh, A.K.; Kundu, S.; Vittal, K.P.R.; Ramachandrappa, B.K.; Gajanan, G.N. Long-term effects of crop residues and fertility management on carbon sequestration and agronomic productivity of groundnut–finger millet rotation on an Alfisol in southern India. Int. J. Agric. Sustain. 2012, 10, 230–244. [Google Scholar] [CrossRef]
- Kumara, O.; Naik, T.B.; Ananadakumar, B.M. Effect weed management practices and fertility levels on soil health in finger millet-groundnut cropping system. Int. J. Agric. Sci. 2014, 10, 351–355. [Google Scholar]
- Basavaraju, T.B.; Gururaja Rao, M.R. Integrated nitrogen management in finger millet under rainfed conditions. Karnataka J. Agric. Sci. 1997, 10, 855–856. [Google Scholar]
- Pushpa, H.M.; Gowda, R.C.; Naveen, D.V.; Bhagyalakshmi, T.; Hanumanthappa, D.C. Influence of long term fertilizer application on root biomass and nutrient addition of finger millet. Asian J. Soil Sci. 2013, 8, 67–71. [Google Scholar]
- Kumara, O.; Naik, T.B.; Palaiah, P. Effect of weed management practices and fertility levels on growth and yield parameters in finger millet. Karnataka J. Agric. Sci. 2007, 20, 230–233. [Google Scholar]
- Matthews, R.B.; Pilbeam, C. Modelling the long-term productivity and soil fertility of maize/millet cropping systems in the mid-hills of Nepal. Agric. Ecosyst. Environ. 2005, 111, 119–139. [Google Scholar] [CrossRef]
- Pilbeam, C.J.; Gregory, P.J.; Tripathi, B.P.; Munankarmy, R.C. Fate of nitrogen-15-labelled fertilizer applied to maize-millet cropping systems in the mid-hills of Nepal. Biol. Fertil. Soils 2002, 35, 27–34. [Google Scholar]
- Sherchan, D.P.; Pilbeam, C.J.; Gregory, P. Response of wheat-rice and maize/millet systems to fertilizer and manure applications in the mid-hills of Nepal. Exp. Agric. 1999, 35, 1–13. [Google Scholar] [CrossRef]
- Srinivasarao, C.; Wani, S.P.; Sahrawat, K.L.; Rego, T.J.; Pardhasaradhi, G. Zinc, boron and sulphur deficiencies are holding back the potential of rainfed crops in semi-arid India: Experiences from participatory watershed management. Int. J. Plant Prod. 2008, 2, 89–99. [Google Scholar]
- Ahiwale, P.H.; Chavan, L.S.; Jagtap, D.N. Effect of establishment methods and nutrient management on yield attributes and yield of finger millet (Eleusine coracana G.). Adv. Res. J. Crop Improv. 2011, 2, 247–250. [Google Scholar]
- Sridhara, C.J.; Mavarkar, N.S.; Naik, S.K. Yield maximization in Ragi under rainfed condition. Karnataka J. Agric. Sci. 2003, 16, 220–222. [Google Scholar]
- Vijaymahantesh; Nanjappa, H.V.; Ramachandrappa, B.K. Effect of tillage and nutrient management practices on weed dynamics and yield of fingermillet (Eleusine coracana L.) under rainfed pigeonpea (Cajanus cajan L.) fingermillet system in Alfisols of Southern India. 2013, 8, 2470–2475. [Google Scholar]
- Shivakumar, B.C.; Girish, A.C.; Gowda, B.; Kumar, G.C.V.; Mallikarjuna, A.P.; Thimmegowda, M.N. Influence of pongamia, mahua and neem cakes on finger millet productivity and soil fertility. J. Appl. Nat. Sci. 2011, 3, 274–276. [Google Scholar]
- Saravanane, P.; Nanjappa, H.V.; Ramachandrappa, B.K.; Soumya, T. Effect of residual fertility of preceding potato crop on yield and nutrient uptake of finger millet. Karnataka J. Agric. Sci. 2011, 24, 234–236. [Google Scholar]
- Govindappa, M.; Vishwanath, A.P.; Harsha, K.N.; Thimmegowda, P.; Jnanesh, A.C. Response of finger millet (Eluesine coracana L.) to organic and inorganic sources of nutrients under rainfed condition. J. Crop Weed 2009, 5, 291–293. [Google Scholar]
- Parasuraman, P.; Mani, A.K. Growth, yield and economics of rice (Oryza sativa-finger millet (Eleusine coracana) crop sequence as influenced by coirpith and farmyard manure with and without inorganic fertilizers. Indian J. Agron. 2003, 48, 12–15. [Google Scholar]
- Rangaraj, T.; Somasundaram, E.; Amanullah, M.M.; Thirumurugan, V.; Ramesh, S.; Ravi, S. Effect of agro-industrial wastes on soil properties and yield of irrigated finger millet (Eleusine coracana L. Gaertn) in coastal soil. Res. J. Agric. Biol. Sci. 2007, 3, 153–156. [Google Scholar]
- Roy, D.K.; Chakraborty, T.; Sounda, G.; Maitra, S. Effect of fertility levels and plant population on yield and uptake of nitrogen, phosphorus and potassium in finger millet (Eleusine coracana) in lateritic soil of West Bengal. Indian J. Agron. 2001, 46, 707–711. [Google Scholar]
- Rao, K.L.; Rao, C.P.; Rao, K.V. Response of finger miller (Eleusine-coracana L. Gaertn) cultivars to nitrogen under rain-fed conditions. Indian J. Agron. 1989, 34, 302–306. [Google Scholar]
- Subramanian, K.S.; Kumaraswami, K. Effect of continuous cropping and fertilization on the response of finger millet to phosphorus. J. Ind. Soc. Soil Sci. 1989, 37, 328–332. [Google Scholar]
- Ebanyat, P.; de Ridder, N.; de Jager, A.; Delve, R.J.; Bekunda, M.A.; Giller, K.E. Impacts of heterogeneity in soil fertility on legume-finger millet productivity, farmers’ targeting and economic benefits. Nutr. Cycl. Agroecosys. 2010, 87, 209–231. [Google Scholar] [CrossRef]
- Bhoite, S.V.; Nimbalkar, V.S. Response of finger millet cultivars to nitrogen and phosphorus under rain-fed condition. J. Maharashtra Agric. Univ. 1996, 20, 189–190. [Google Scholar]
- Kang, B.T.; Osiname, O. Micronutrient problems in tropical Africa. Fertil. Res. 1985, 7, 131–150. [Google Scholar] [CrossRef]
- Maury, A.N.; Verma, K.P. Zn tolerance by Finger millet (Eleusine coracana L.) under interactions of certain heavy metals and NPK. Geobios (Jodhpur) 1997, 24, 138–141. [Google Scholar]
- Ramachandrappa, B.K.; Sathish, A.; Dhanapal, G.N.; Babu, P.N. Nutrient management strategies for enhancing productivity of dryland crops in Alfisols. Indian J. Dryl. Agric. Res. Dev. 2014, 29, 49–55. [Google Scholar] [CrossRef]
- Pilbeam, C.J.; Tripathi, B.P.; Munankarmy, R.C.; Gregory, P.J. Productivity and economic benefits of integrated nutrient management in three major cropping systems in the mid-hills of Nepal. Mt. Res. Dev. 1999, 19, 333–344. [Google Scholar]
- Parasuraman, P. Response of farming studies in rainfed finger millet (Eleusine coracana) under erratic monsoon conditions of North-Western agroclimatic zone of Tamil Nadu. Indian J. Agron. 2002, 47, 384–389. [Google Scholar]
- Subbiah, S.; Ramanathan, K.M.; Francis, H.J.; Sureshkumar, R.; Kothandaraman, G.V. Influence of nitrogenous fertilizers with and without neem cake blending on the yield of finger millet (Eleucine coracana Gaertn.). J. Ind. Soc. Soil Sci. 1982, 30, 37–43. [Google Scholar]
- Ramakrishnan, K.; Bhuvaneswari, G. Effect of inoculation of am fungi and beneficial microorganisms on growth and nutrient uptake of Eleusine coracana (L.) Gaertn. (Finger millet). Int. Lett. Nat. Sci. 2014, 13, 59–69. [Google Scholar] [CrossRef]
- Apoorva, K.B.; Prakash, S.S.; Rajesh, N.; Nandin, B. STCR approach for optimizing integrated plant nutrient supply on growth, yield and economics of finger millet (Eleusine coracana (L.) Garten.). EJBS 2010, 4, 19–27. [Google Scholar]
- Tewari, L.; Johri, B.N.; Tandon, S.M. Host genotype dependency and growth enhancing ability of VA-mycorrhizal fungi for Eleusine coracana (finger millet). World J. Microbiol. Biotechnol. 1993, 9, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Adipala, E.; Okoboi, C.A.; Ssekabembe, C.K.; Ogenga-Latigo, M.W. Foliar diseases and yield of finger millet [Eleusine coracana (L.)] under monocropping and intercropping systems. Discov. Inov. 1994, 6, 301–306. [Google Scholar]
- Padhi, A.K.; Panigrahi, R.K.; Jena, B.K. Effect of planting geometry and duration of intercrops on performance of pigeonpea-finger millet intercropping systems. Indian J. Agric. Res. 2010, 44, 43–47. [Google Scholar]
- Maitra, S.; Ghosh, D.C.; Sounda, G.; Jana, P.K.; Roy, D.K. Productivity, competition and economics of intercropping legumes in finger millet (Eleusine coracana) at different fertility levels. Indian J. Agric. Sci. 2000, 70, 824–828. [Google Scholar]
- Mal, B.; Padulosi, S.; Ravi, S.B. Minor millets in South Asia: Learning from IFAD-NUS Project in India and Nepal; Bioversity International: Maccarese, Rome, Italy; The M.S. Swaminathan Research Foundation: Chennai, India, 2010. [Google Scholar]
- Pradhan, A.; Rajput, A.S.; Thakur, A. Yield and economic of finger millet (Eleusine coracana L . Gaertn) intercropping system. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 626–629. [Google Scholar]
- AICRP. Research Achievements of AICRPs on Crop Sciences; Indian Council of Agricultural Research Directorate of Information and Publications of Agriculture: Krishi Anusandhan Bhavan, New Delhi, India, 2007. [Google Scholar]
- LI-BIRD. Constraints and opportunities for promotion of finger millet in Nepal. 2014, pp. 1–4. Available online: http://www.dhan.org/smallmillets/docs/report/Constraints_and_Opportunities_for_Promotion_of_Finger_Millet_in_Nepal.pdf (accessed on 17 May 2015).
- Ryan, J.; Ibrikci, H.; Delgado, A.; Torrent, J.; Sommer, R.; Rashid, A. Significance of phosphorus for agriculture and the environment in the West Asia and North Africa region. In Advances in Agronomy; Elsevier Inc.: Amsterdam, The Netherlands, 2012; Volume 114, pp. 91–153. [Google Scholar]
- Lynch, J.P.; Brown, K.M. Topsoil foraging—An architectural adaptation of plants to low phosphorus availability. Plant Soil 2001, 237, 225–237. [Google Scholar] [CrossRef]
- Timsina, J.; Singh, V.K.; Majumdar, K. Potassium management in rice-maize systems in South Asia. J. Plant Nutr. Soil Sci. 2013, 176, 317–330. [Google Scholar] [CrossRef]
- Cakmak, I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci. 2005, 168, 521–530. [Google Scholar] [CrossRef]
- Sangakkara, R.; Amarasekera, P.; Stamp, P. Growth, yields, and nitrogen-use efficiency of maize (Zea mays L.) and mungbean (Vigna radiata L. Wilczek) as affected by potassium fertilizer in tropical South Asia. Commun. Soil Sci. Plant Anal. 2011, 42, 832–843. [Google Scholar] [CrossRef]
- Ryan, J.; Sommer, R.; Ibrikci, H. Fertilizer best management practices: A perspective from the dryland West Asia-North Africa region. J. Agron. Crop Sci. 2012, 198, 57–67. [Google Scholar] [CrossRef]
- CGIAR Annual Progress Report. CGIAR Research Program on Dryland Cereals. Performance monitoring report for calendar year 2013. Available online: http://www.cgiar.org/resources/crp-documents/ (accessed on 17 May 2015).
- Mgonja, M.; Audi, P.; Mgonja, A.P.; Manyasa, E.; Ojulong, H. Integrated blast and weed management and microdosing in finger millet. In A HOPE Project Manual for Increasing Finger Millet Productivity; International crops research institute for the Semi-Arid Tropics: Patancheru, Hyderabad, Andhra Pradesh, India, 2013. [Google Scholar]
- Mukherjee, K.; Gahoi, S.; Sinha, B. Promotion of SRI-Millet: Reopening a closed chapter. Intl. J. Agric. Innov. Res. 2014, 3, 812–816. [Google Scholar]
- Geetha, K.; Mani, A.K.; Suresh, M.; Vijayabaskaran, S. Identification of finger millet (Eleusine coracana gaertn.) variety suitable to rainfed areas of north western zone of Tamil Nadu. Indian J. Agric. Res. 2012, 28, 60–64. [Google Scholar]
- Bajracharya, S.; Prasad, R.C.; Budhathoki, S.K. Participatory crop improvement of Nepalese finger millet cultivars. Nepal Agric. Res. J. 2009, 9, 12–16. [Google Scholar]
- Baniya, B.K.; Tiwari, R.; Chaudhary, P.; Shrestha, S.K.; Tiwari, P.R. Planting materials seed systems of finger millet, rice and taro in Jumla, Kaski and Bara districts of Nepal. Nepal Agric. Res. J. 2005, 6, 39–48. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thilakarathna, M.S.; Raizada, M.N. A Review of Nutrient Management Studies Involving Finger Millet in the Semi-Arid Tropics of Asia and Africa. Agronomy 2015, 5, 262-290. https://doi.org/10.3390/agronomy5030262
Thilakarathna MS, Raizada MN. A Review of Nutrient Management Studies Involving Finger Millet in the Semi-Arid Tropics of Asia and Africa. Agronomy. 2015; 5(3):262-290. https://doi.org/10.3390/agronomy5030262
Chicago/Turabian StyleThilakarathna, Malinda S., and Manish N. Raizada. 2015. "A Review of Nutrient Management Studies Involving Finger Millet in the Semi-Arid Tropics of Asia and Africa" Agronomy 5, no. 3: 262-290. https://doi.org/10.3390/agronomy5030262
APA StyleThilakarathna, M. S., & Raizada, M. N. (2015). A Review of Nutrient Management Studies Involving Finger Millet in the Semi-Arid Tropics of Asia and Africa. Agronomy, 5(3), 262-290. https://doi.org/10.3390/agronomy5030262