An Update on Genetic Resistance of Chickpea to Ascochyta Blight
Abstract
:1. Introduction
2. Characteristics of AB in Chickpea
3. Pathogen Variability
4. Genetic Resources of AB Resistance
5. Genotype × Environment and AB Interactions
6. Inheritance and Marker Assisted Breeding for AB Resistance
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Nene, Y.L.; Reddy, M.V. Chickpea diseases and their control. In The Chickpea; Saxena, M.C., Singh, K.B., Eds.; CABI: Oxon, UK, 1987; pp. 233–270. [Google Scholar]
- Kaiser, W.J.; Muehlbauer, F.J. An outbreak of ascochyta blight of chickpea in the Pacific Northwest, USA. Intl. Chickpea News Lett. 1989, 18, 16–17. [Google Scholar]
- International Centre for Agricultural Research in the Dry Areas (ICARDA). Field Survey of Chickpea Diseases. In Legume Annual Report; ICARDA: Aleppo, Syria, 1996. [Google Scholar]
- Akem, C.N. Ascochyta blight of chickpea: Present status and future priorities. Int. J. Pest Manag. 1999, 45, 131–137. [Google Scholar] [CrossRef]
- Khan, M.S.A.; Ramsey, M.D.; Corbiere, R.; Infantino, A.; Porta-Puglia, A.; Bouznad, Z.; Scott, E.S. Ascochyta blight of chickpea in Australia: Identification, pathogenicity and mating type. Plant Pathol. 1999, 48, 230–234. [Google Scholar] [CrossRef]
- Kaiser, W.J.; Ramsey, M.D.; Makkouk, K.M.; Bretag, T.W.; Acikgoz, N.; Kumar, J.; Nutter, F.W. Foliar diseases of cool season food legumes and their control. In Linking Research and Marketing Opportunities for Pulses in the 21st Century; Knight, R., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 437–455. [Google Scholar]
- Chongo, G.; Buchwaldt, L.; Gossen, B.D.; Lafond, G.P.; May, W.E.; Johnson, E.N.; Hogg, T. Foliar fungicides to manage ascochyta blight (Ascochyta rabiei) of chickpea in Canada. Can. J. Plant Pathol. 2003, 25, 135–142. [Google Scholar] [CrossRef]
- Singh, G.; Singh, K.; Kapoor, S. Screening for sources of resistance to Ascochyta blight of chickpea. Int. Chickpea Newsl. 1982, 6, 15–17. [Google Scholar]
- Singh, G.; Verma, M.M.; Gill, A.S.; Sandhu, T.S.; Brar, H.S.; Sra, S.S.; Kapoor, S. Screening of gram varieties against Ascochyta blight. Crop Improv. 1984, 11, 153–154. [Google Scholar]
- Udupa, S.M.; Baum, M. Genetic dissection of pathotypespecific resistance to Ascochyta blight disease in chickpea (Cicer arietinum L.) using microsatellite markers. Theor. Appl. Genet. 2003, 106, 1196–1202. [Google Scholar] [PubMed]
- Pande, S.; Siddique, K.H.M.; Kishore, G.K.; Bayaa, B.; Gaur, P.M.; Gowda, C.L.L.; Bretag, T.W.; Crouch, J.H. Ascochyta blight of chickpea (Cicer arietinum L.): A review of biology, pathogenicity and disease management. Aust. J. Agric. Res. 2005, 56, 317–332. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Sandhu, J.S.; Kaur, L.; Gupta, S.K.; Gaur, P.M.; Varshney, R.K. Genetics of Ascochyta blight resistance in chickpea. Euphytica 2010, 171, 337–343. [Google Scholar] [CrossRef]
- Kostrinski, J. Problems in Chickpea Cultivation and Grain Crop Rotation in Israel; Special publication No. 34; Agriculture Research Organization, Volcani Centre: Bet Dagan, Israel, 1974; (In Hebrew, English summary). [Google Scholar]
- Singh, K.B.; Malhotra, R.S.; Saxena, M.C.; Bejiga, G. Superiority of winter sowing over traditional spring sowing of chickpea in the Mediterranean region. Agron. J. 1997, 89, 112–118. [Google Scholar] [CrossRef]
- Singh, K.B.; Reddy, M.V. Advances in disease resistance breeding in chickpea. Adv. Agron. 1991, 45, 191–222. [Google Scholar]
- Bedi, K.S.; Athwal, D.S. C 235 is the answer to blight. Indian Fmg. 1962, 12, 20–22. [Google Scholar]
- Nene, Y.L.; Mengistu, A.; Sinclair, J.B.; Royse, D.J. An Annotated Bibliography of Chickpea Diseases 1915–1976. Australas. Plant Pathol. 1978, 7, 25–26. [Google Scholar] [CrossRef]
- McDonald, B.A.; Linde, C. Pathogen population genetics, evolutionary potential, and durable resistance. Ann. Rev. Phytopathol. 2002, 40, 349–379. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Rodda, M.; Gnanasambandam, A.; Aftab, M.; Redden, R.; Hobson, K.; Rosewarne, G.; Materne, M.; Kaur, S.; Slater, A.T. Breeding for biotic stress resistance in chickpea: Progress and prospects. Euphytica 2015, 204, 257–288. [Google Scholar] [CrossRef]
- Punithalingam, E.; Holliday, P. Ascochyta rabiei. In Descriptions of Pathogenic Fungi and Bacteria; Commonwealth Mycological Institute: Kew, UK, 1972; Volume 34, p. 337. [Google Scholar]
- Nene, Y.L. A review of Ascochyta blight of chickpea. Trop. Pest Manag. 1982, 28, 61–70. [Google Scholar] [CrossRef]
- CAB International. Crop Protection Compendium; CAB International: Wallingford, UK, 2000. [Google Scholar]
- Trapero-Casas, A.; Navas-Cortes, J.A.; Jimenez-Diaz, R.M. Airborne ascospores of Didymella rabiei as a major primary inoculum for Ascochyta blight epidemics in chickpea crops in southern Spain. Eur. J. Plant Pathol. 1996, 102, 237–245. [Google Scholar] [CrossRef]
- Armstrong, C.L.; Chongo, G.; Gossen, B.D.; Duczek, L.J. Mating type distribution and incidence of the teleomorph of Ascochyta rabiei (Didymella rabiei) in Canada. Can. J. Plant Pathol. 2001, 23, 110–113. [Google Scholar] [CrossRef]
- Barve, M.P.; Arie, T.; Salimath, S.; Muehlbauer, F.J.; Peever, T.L. Cloning and characterization of the mating type (MAT) locus from Ascochyta rabiei (teleomorph: Didymella rabiei) and a MAT phylogeny of legume-associated Ascochyta spp. Fungal Genet. Biol. 2003, 39, 151–167. [Google Scholar] [CrossRef]
- Peever, T.L.; Salimath, S.S.; Su, G.; Kaiser, W.J.; Muehlbauer, J. Historical and contemporary multilocus population structure of Ascochyta rabiei (teleomorph: Didymella rabiei) in the Pacific Northwest of the United States. Mol. Ecol. 2004, 13, 291–309. [Google Scholar] [CrossRef] [PubMed]
- Rhaiem, A.; Chérif, M.; Peever, T.L.; Dyer, P.S. Population structure and mating system of Ascochyta rabiei in Tunisia: Evidence for the recent introduction of mating type 2. Plant Pathol. 2008, 57, 540–555. [Google Scholar] [CrossRef]
- Vail, S.; Banniza, S. Molecular variability and mating-type of Ascochyta rabiei of chickpea from Saskatchewan, Canada. Aust. J. Plant Pathol. 2009, 38, 392–398. [Google Scholar] [CrossRef]
- Atik, O.; Baum, M.; El-Ahmed, A.; Ahmed, S.; Abang, M.M.; Yabrak, M.M.; Murad, S.; Kabbabeh, S.; Hamwieh, A. Chickpea Ascochyta blight: Disease status and pathogen mating type distribution in Syria. J. Phytopathol. 2011, 159, 443–449. [Google Scholar] [CrossRef]
- Phan, H.T.T.; Ford, R.; Bretag, T.W.; Taylor, P.W.J. A rapid and sensitive polymerase chain reaction (PCR) assay for detection of Ascochyta rabiei, the cause of ascochyta blight of chickpea. Australas. Plant Pathol. 2002, 31, 31–39. [Google Scholar]
- Singh, G.; Sharma, Y.R. Ascochyta blight of chickpea. In IPM System in Agriculture: Pulses; Upadhyay, R.K., Mukherji, K.G., Eds.; Aditya Books Pvt. Ltd.: New Delhi, India, 1998; pp. 163–195. [Google Scholar]
- Vir, S.; Grewal, J.S. Physiological specialization in Ascochyta rabiei, the causal organism of gram blight. Indian Phytopathol. 1974, 27, 265–266. [Google Scholar]
- Udupa, S.M.; Weigand, F.; Saxena, M.C.; Kahl, G. Genotyping with RAPD and microsatellite markers resolves pathotype diversity in the Ascochyta blight pathogen of chickpea. Theor. Appl. Genet. 1998, 97, 299–307. [Google Scholar] [CrossRef]
- Vail, S.; Banniza, S. Structure and pathogenic variability in Ascochyta rabiei populations on chickpea in the Canadian prairies. Plant Pathol. 2008, 57, 665–673. [Google Scholar] [CrossRef]
- Varshney, R.; Pande, S.; Kannan, S.; Mahendar, T.; Sharma, M.; Gaur, P.; Hoisington, D. Assessment and comparison of AFLP and SSR based molecular genetic diversity in Indian isolates of Ascochyta rabiei, a causal agent of Ascochyta blight in chickpea (Cicer arietinum L.). Mycol. Prog. 2009, 8, 87–97. [Google Scholar] [CrossRef]
- Atik, O.; Ahmed, S.; Abang, M.M.; Imtiaz, M.; Hamwieh, A.; Baum, M.; El-Ahmed, A.; Murad, S.; Yabrak, M.M. Pathogenic and genetic diversity of Didymella rabiei affecting chickpea in Syria. Crop Prot. 2013, 46, 70–79. [Google Scholar] [CrossRef]
- Imtiaz, M.; Abang, M.M.; Malhotra, R.S.; Ahmed, S.; Bayaa, B.; Udupa, S.M.; Baum, M. Pathotype IV, a new and highly virulent pathotype of Didymella rabiei, causing Ascochyta blight in chickpea in Syria. Plant Dis. 2011, 95, 1192. [Google Scholar] [CrossRef]
- Bayaa, B.; Udupa, S.M.; Baum, M.; Malhotra, R.S.; Kabbabeh, S. Pathogenic variability in Syrian isolates of Ascochyta rabiei. In Proceedings of the 5th European Conference on Grain Legumes, Dijon, France, 7–11 June 2004.
- Geistlinger, J.; Weising, K.; Winter, P.; Kahl, G. Locus-specific microsatellite markers for the fungal chickpea pathogen Didymella rabiei (anamorph) Ascochyta rabiei. Mol. Ecol. 2000, 9, 1919–1952. [Google Scholar] [CrossRef]
- Phan, H.T.T.; Ford, R.; Taylor, P.W.J. Population structure of Ascochyta rabiei in Australia based on STMS fingerprints. Fungal Divers. 2003, 13, 111–129. [Google Scholar]
- Bayraktar, H.; Dolar, F.S.; Tör, M. Determination of genetic diversity within Ascochyta rabiei (Pass.) Labr. the cause of Ascochyta blight of chickpea in Turkey. J. Plant Pathol. 2007, 89, 341–347. [Google Scholar]
- Fondevilla, S.; Krezdorn, N.; Rotter, B.; Kahl, G.; Winter, P. In planta Identification of Putative Pathogenicity Factors from the Chickpea Pathogen Ascochyta rabiei by De novo Transcriptome Sequencing Using RNA-Seq and Massive Analysis of cDNA Ends. Front. Microbiol. 2015, 6, 1329. [Google Scholar] [CrossRef] [PubMed]
- Turgeon, B.G. Application of mating type gene technology to problems in fungal biology. Annu. Rev. Phytopathol. 1998, 36, 115–137. [Google Scholar] [CrossRef] [PubMed]
- Turgeon, B.G.; Berbee, M.L. Evolution of pathogenic and reproductive strategies in Cochliobolus and related genera. In Molecular Genetics of Host-Specific Toxins in Plant Disease; Kohmoto, K., Yoder, O.C., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; pp. 153–163. [Google Scholar]
- Poeggeler, S. Phylogenetic relationships between mating-type sequences from homothallic and heterothallic ascomycetes. Curr. Genet. 1999, 36, 222–231. [Google Scholar]
- Singh, K.B.; Malhotra, R.S.; Halila, M.H.; Knights, E.J.; Verma, M.M. Current status and future strategy in breeding chickpea for resistance to biotic and abiotic stresses. Euphytica 1994, 73, 137–149. [Google Scholar] [CrossRef]
- Chen, W.; Mcphee, K.E.; Muehlbauer, F.J. Use of a mini-dome bioassay and grafting to study resistance of chickpea to ascochyta blight. J. Phytopathol. 2005, 153, 579–587. [Google Scholar] [CrossRef]
- Pande, S.; Sharma, M.; Gaur, P.M.; Tripathi, S.; Kaur, L.; Basandarai, A.; Khan, T.; Gowda, C.L.L.; Siddique, K.H.M. Development of screening techniques and identification of new sources of resistance to Ascochyta blight disease of chickpea. Australas. Plant Pathol. 2011, 40, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Muehlbauer, F.J. An improved technique for virulence assay of Ascochyta rabiei on chickpea. Int. Chickpea Pigeonpea Newsl. 2003, 10, 31–33. [Google Scholar]
- Singh, K.B.; Hawtin, G.C.; Nene, Y.L.; Reddy, M.V. Resistance in chickpeas to Ascochyta rabiei. Plant Dis. 1981, 65, 586–587. [Google Scholar] [CrossRef]
- Pande, S.; Sharma, M.; Gaur, P.M.; Gowda, C.L.L. Host Plant Resistance to Ascochyta Blight of Chickpea; Information Bulletin No 82; International Crops Research Institute for the Semi-Arid Tropics: Patancheru, India, 2010; p. 40. [Google Scholar]
- Ahmad, F.; Gaur, P.M.; Croser, J. Chickpea (Cicer arietinum L.). In Genetic Resources, Chromosome Engineering and Crop Improvement; Singh, R.J., Jauhar, P.P., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 187–217. [Google Scholar]
- Collard, B.; Ades, P.; Pang, E.; Brouwer, J.; Taylor, P. Prospecting for sources of resistance to ascochyta blight in wild Cicer species. Australas. Plant Pathol. 2001, 30, 271–276. [Google Scholar] [CrossRef]
- Ahmad, F.; Slinkard, A.E. The extent of embryo and endosperm growth following interspecific hybridization between Cicer arietinum L. and related annual wild species. Genet. Resour. Crop Evol. 2004, 51, 765–772. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Taylor, P.W.J.; Redden, R.J.; Ford, R. Genetic diversity in Cicer using AFLP analysis. Plant Breed. 2004, 123, 173–179. [Google Scholar] [CrossRef]
- Pande, S.; Kishore, G.K.; Upadhyaya, H.D.; Narayana Rao, J. Identification of sources of multiple disease resistance in mini-core collection of chickpea. Plant Dis. 2006, 90, 1214–1218. [Google Scholar] [CrossRef]
- Pande, S.; Ramgopal, D.; Kishore, G.K.; Mallikarjuna, N.; Sharma, M.; Pathak, M.; Narayana Rao, J. Evaluation of wild Cicer species for resistance to Ascochyta blight and Botrytis grey mold in controlled environment at ICRISAT, Patancheru, India. J. Sat. Agric. Res. 2006, 2, 1–3. [Google Scholar]
- Mallikarjuna, N. Ovule and embryo culture to obtain hybrids from interspecific incompatible pollinations in chickpea. Euphytica 1999, 110, 1–6. [Google Scholar] [CrossRef]
- Iqbal, S.M.; Hussain, S.; Bakhsh, A.; Bashir, M. Sources of resistance in chickpea against ascochyta blight disease. Int. J. Agri. Biol. 2002, 4, 488–490. [Google Scholar]
- Dubey, S.C.; Singh, B. Evaluation of chickpea genotypes against Ascochyta blight. Indian Phytopath. 2003, 56, 505. [Google Scholar]
- Chen, W.; Coyne, T.C.J.; Peever, T.L.; Muehlbauer, F.J. Characterization of chickpea differentials for pathogenicity assay of Ascochyta blight and identification of chickpea accessions resistant to Didymella rabiei. Plant Pathol. 2004, 53, 759–769. [Google Scholar] [CrossRef]
- Malik, S.R.; Iqbal, S.M.; Iqbal, U.; Ahmad, I.; Haqqani, A.M. Response of Chickpea Lines to Ascochyta rabiei at Two Growing Stages. Caspian J. Env. Sci. 2005, 3, 173–177. [Google Scholar]
- Shokouhifar, F.; Bagheri, A.A.R.; Rastgar, F.M. Identification of resistant chickpea lines against pathotypes causing ascochyta blight disease in Iran. Iranian J. Biol. 2006, 19, 29–42. [Google Scholar]
- Rubio, J.; Moreno, M.T.; Moral, A.; Rubiales, D.; Gil, J. Registration of RIL58-ILC72/Cr5, a chickpea germplasm line with rust and Ascochyta blight resistance. Crop Sci. 2006, 46, 2331–2332. [Google Scholar] [CrossRef]
- Ilyas, M.B.; Chaudhry, M.A.; Javed, N.; Ghazanfar, M.U.; Khan, M.A. Sources of resistance in chickpea germplasm against ascochyta blight. Pak. J. Bot. 2007, 39, 1843–1847. [Google Scholar]
- Chandirasekaran, R.; Warkentin, T.D.; Gan, Y.; Shirtliffe, S.; Gossen, B.D.; Taran, B.; Banniza, S. Improved sources of resistance to ascochyta blight in chickpea. Can. J. Plant Sci. 2009, 89, 107–118. [Google Scholar] [CrossRef]
- Iqbal, S.M.; Ali, S.; Ghafoor, A. Development of resistance in chickpea to Ascochyta blight. Mycopath. 2010, 8, 61–64. [Google Scholar]
- Kaur, l.; Sandhu, J.S.; Malhotra, R.S.; Imtiaz, M.; Sirari, A. Sources of stable resistance to Ascochyta blight in exotic kabuli chickpea. J. Food Legumes 2012, 25, 79–80. [Google Scholar]
- Pande, S.; Sharma, M.; Gaur, P.M.; Basandrai, A.K.; Kaur, L.; Hooda, K.S.; Basandrai, D.; Kiran Babu, T.; Jain, S.K.; Rathore, A. Biplot analysis of genotype × environment interactions and identification of stable sources of resistance to Ascochyta blight in chickpea (Cicer arietinum L.). Australas. Plant Pathol. 2013, 42, 561–571. [Google Scholar] [CrossRef]
- Benzohra, I.E.; Bendahmane, B.S.; Labdi, M.; Benkada, M.Y. Sources of Resistance in Chickpea Germplasm to Three Pathotypes of Ascochyta rabiei (Pass.) Labr. In Algeria. World Appl. Sci. J. 2013, 21, 873–878. [Google Scholar]
- Kimurto, P.K.; Towett, B.K.; Mulwa, R.S.; Njogu, N.; Jeptanui, L.J.; Rao, G.N.V.P.R.; Silim, S.; Kaloki, P.; Korir, P.; Macharia, J.K. Evaluation of chickpea genotypes for resistance to Ascochyta blight (Ascochyta rabiei) disease in the dry highlands of Kenya. Phytopathol. Mediterr. 2013, 52, 212–221. [Google Scholar]
- Ahmad, S.; Khan, M.A.; Sahi, S.T.; Ahmad, R. Evaluation of chickpea germplasm against Ascochyta rabiei (pass) lab. J. Animal Plant Sci. 2013, 23, 440–443. [Google Scholar]
- Duzdemir, O.; Selvi, B.; Yanar, Y.; Yildirimi, A. Sources of resistance in chickpea (Cicer arietinum L.) land races against Ascochyta rabiei causal agent of ascochyta blight disease. Pak. J. Bot. 2014, 46, 1479–1483. [Google Scholar]
- Benzohra, I.E.; Bendahmane, B.S.; Benkada, M.Y.; Labdi, M. Screening of 15 chickpea germplasm accessions for resistance to Ascochyta rabiei in North West of Algeria. American-Eurasian J. Agric. Environ. Sci. 2015, 15, 109–114. [Google Scholar]
- Lichtenzveig, J.; Shtienberg, D.; Zhang, H.B.; Bonfil, D.J.; Abbo, S. Biometricanalyses of the inheritance of resistance to Didymella rabiei in chickpea. Phytopathology 2002, 92, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Gossen, B.D.; Li, L.; Ford, G.; Banniza, S. Cultivar type, plant population and ascochyta blight in chickpea. Agron. J. 2007, 99, 1463–1470. [Google Scholar] [CrossRef]
- Rubiales, D.; Avila, C.M.; Sillero, J.C.; Hybl, M.; Narits, L.; Sass, O.; Flores, F. Identification and multi-environment validation of resistance to Ascochyta fabae in faba bean (Vicia faba). Field Crop Res. 2012, 126, 165–170. [Google Scholar] [CrossRef]
- Sharma, M.; Kiran Babu, T.; Gaur, P.M.; Ghosh, R.; Rameshwar, T.; Chaudhary, R.G.; Upadhyay, J.P.; Gupta, Om.; Saxena, D.R.; Kaur, L.; et al. Identification and multi-environment validation of resistance to Fusarium oxysporum f. sp. Ciceris in chickpea. Field Crop Res. 2012, 135, 82–88. [Google Scholar] [CrossRef]
- Hafiz, A.; Ashraf, M. Studies on inheritance of resistance to Mycosphaerella blight in gram. Phytopathology 1953, 43, 580–581. [Google Scholar]
- Vir, S.; Grewal, J.S.; Gupta, V.P. Inheritance of resistance to Ascochyta blight in chickpea. Euphytica 1975, 24, 209–211. [Google Scholar] [CrossRef]
- Eser, D. Heritability of Some Important Plant Characters, Their Relationships with Plant Yield and Inheritance of Ascochyta Blight Resistance in Chickpea (Cicer arietinum L.); Ankara University, Faculty of Agriculture Publications No. 620: Ankara, Turkey, 1976. [Google Scholar]
- Taleei, A.; Kanouni, H.; Baum, M. Genetical analysis of ascochyta blight resistance in chickpea. In Bioscience and Biotechnology, Communications in Computer and Information Science; Slezak, D., Arsalan, T., et al., Eds.; Springer-Verlag: Berlin, Germany, 2009. [Google Scholar]
- Singh, K.B.; Reddy, M.V. Inheritance of resistance to ascochyta blight in chickpea. Crop Sci. 1983, 23, 9–10. [Google Scholar] [CrossRef]
- Labdi, M.; Malhotra, R.S.; Benzohra, I.E.; Imtiaz, M. Inheritance of resistance to Ascochyta rabiei in 15 chickpea germplasm accessions. Plant Breed. 2013, 132, 197–199. [Google Scholar] [CrossRef]
- Varshney, R.K.; Mohan, S.M.; Gaur, P.M.; Gangarao, N.V.P.R.; Pandey, M.K.; Bohra, A.; Sawargaonkar, S.L.; Chitikineni, A.; Kimurto, P.K.; Janila, P.; et al. Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol. Adv. 2013, 3, 1120–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.; Chen, W.; Muehlbauer, F.J. Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to Ascochyta blight. Theor. Appl. Genet. 2004, 109, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Winter, P.; Benko-Iseppon, A.M.; Hüttel, B.; Ratnaparkhe, M.; Tullu, A.; Sonnante, G.; Pfaff, T.; Tekeoglu, M.; Santra, D.; Sant, V.J.; et al. A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum × C. reticulatum cross: localization of resistance genes for Fusarium wilt races 4 and 5. Theor. Appl. Genet. 2000, 101, 1155–1163. [Google Scholar] [CrossRef]
- Flandez-Galvez, H.; Ford, R.; Pang, E.C.K.; Taylor, P.W.J. An intraspecific linkage map of the chickpea (Cicer arietinum L.) genome based on sequence-tagged microsatellite site and resistance gene analog markers. Theor. Appl. Genet. 2003, 106, 1447–1456. [Google Scholar] [PubMed]
- Flandez-Galvez, H.; Ades, R.; Ford, R.; Pang, E.; Taylor, P. QTL analysis for ascochyta blight resistance in an intraspecific population of chickpea (Cicer arietinum L.). Theor. Appl. Genet. 2003, 107, 1257–1265. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.Y.; Ford, R.; Han, T.R.; Coram, T.E.; Pang, E.C.K.; Taylor, P.W.J. Approaching chickpea quantitative trait loci conditioning resistance to Ascochyta rabiei via comparative genomics. Australas. Plant Path. 2007, 36, 419–423. [Google Scholar] [CrossRef]
- Iruela, M.; Castro, P.; Rubio, J.; Cubero, J.I.; Jacinto, C.; Millan, T.; Gil, J. Validation of a QTL for resistance to Ascochyta blight linked to resistance to Fusarium wilt race 5 in chickpea (Cicer arietinum L.). Eur. J. Plant Pathol. 2007, 119, 29–37. [Google Scholar] [CrossRef]
- Hamwieh, A.; Imtiaz, M.; Hobson, K.; Kemal, S.A. Genetic diversity of microsatellite alleles located at quantitative resistance loci for Ascochyta blight resistance in a global collection of chickpea germplasm. Phytopathol. Mediterr. 2013, 52, 191–199. [Google Scholar]
- Madrid, E.; Chen, W.; Rajesh, P.N.; Castro, P.; Millan, T.; Gil, J. Allele-specific amplification for the detection of Ascochyta blight resistance in chickpea. Euphytica 2013, 189, 183–190. [Google Scholar] [CrossRef]
- Varshney, R.K.; Mir, R.R.; Bhatia, S.; Thudi, M.; Hu, Y.; Azam, S.; Zhang, Y.; Jaganathan, D.; You, F.M.; Gao, J.; et al. Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.). Funct. Integr. Genomics 2014, 14, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Tekeoglu, M.; Rajesh, P.N.; Muehlbauer, F.J. Integration of sequence tagged microsatellite sites to the chickpea genetic map. Theor. Appl. Genet. 2002, 105, 847–854. [Google Scholar] [PubMed]
- Iruela, M.; Rubio, J.; Barro, F.; Cubero, J.I.; Millan, T.; Gil, J. Detection of two quantitative trait loci for resistance to Ascochyta blight in an intra-specific cross of chickpea (Cicer arietinum L.): Development of SCAR markers associated with resistance. Theor. Appl. Genet. 2006, 112, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Lichtenzveig, J.; Bonfil, D.J.; Zhang, H.B.; Shtienberg, D.; Abbo, S. Mapping quantitative trait loci in chickpea associated with time to flowering and resistance to Didymella rabiei the causal agent of Ascochyta blight. Theor. Appl. Genet. 2006, 113, 1357–1369. [Google Scholar] [CrossRef] [PubMed]
- Tar'an, B.; Warkentin, T.D.; Tullu, A.; Vanderberg, A. Genetic mapping of Ascochyta blight resistance in chickpea (Cicer arietinum) using a simple sequence repeat linkage map. Genome 2007, 50, 26–34. [Google Scholar] [PubMed]
- Anbessa, Y.; Taran, B.; Warkentin, T.D.; Tullu, A.; Vandenberg, A. Genetic analyses and conservation of QTL for Ascochyta blight resistance in chickpea (Cicer arietinum L.). Theor. Appl. Genet. 2009, 4, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Kottapalli, P.; Gaur, P.M.; Katiyar, S.K.; Crouch, J.H.; Buhariwalla, H.K.; Pande, S.; Gali, K.K. Mapping and validation of QTLs for resistance to an Indian isolate of Ascochyta blight pathogen in chickpea. Euphytica 2009, 165, 79–88. [Google Scholar] [CrossRef]
- Sabbavarapu, M.M.; Sharma, M.; Chamarthi, S.K.; Swapna, N.; Rathore, A.; Thudi, M.; Gaur, P.M.; Pande, S.; Singh, S.; Kaur, L.; et al. Molecular mapping of QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 2013, 93, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Stephens, A.; Lombardi, M.; Cogan, N.O.I.; Forster, J.W.; Hobson, K.; Materne, M.; Kaur, S. Genetic marker discovery, interspecific linkage map construction and quantitative trait locus analysis of ascochyta blight resistance in chickpea (Cicer arietinum L.). Mol. Breed. 2014, 33, 297–313. [Google Scholar] [CrossRef]
- Santra, D.K.; Tekeoglu, M.; Ratnaparkhe, M.; Kaiser, W.J.; Muehlbauer, F.J. Identification and mapping of QTLs conferring resistance to ascochyta blight in chickpea. Crop Sci. 2000, 40, 1606–1612. [Google Scholar] [CrossRef]
- Cobos, M.J.; Rubio, J.; Strange, R.N.; Moreno, M.T.; Gil, J.; Millan, T. A new QTL for Ascochyta blight resistance in an RIL population derived from an interspecific cross in chickpea. Euphytica 2006, 149, 105–111. [Google Scholar] [CrossRef]
- Kanouni, H.; Taleei, A.; Peyghambari, S.A.; Okhovat, S.M.; Baum, M.; Abang, M. QTL analysis for ascochyta blight resistance in chickpea (Cicer arietinum L.) using microsatellite markers. J. Agric. Res. 2009, 25, 109–127. [Google Scholar]
- Aryamanesh, N.; Nelson, M.N.; Yan, G.; Clarke, H.J.; Siddique, K.H.M. Mapping a major gene for growth habit and QTLs for Ascochyta blight resistance and flowering time in a population between chickpea and Cicer reticulatum. Euphytica 2010, 173, 307–319. [Google Scholar] [CrossRef]
- Castro, P.; Rubio, J.; Madrid, E.; Fernández-Romero, M.D.; Millán, T.; Gil, J. Efficiency of marker-assisted selection for ascochyta blight in chickpea. J. Agric. Sci. 2015, 153, 56–67. [Google Scholar] [CrossRef]
- Gupta, P.K.; Varshney, R.K. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 2000, 113, 163–185. [Google Scholar] [CrossRef]
- Varshney, R.K.; Nayak, S.N.; May, G.D.; Jackson, S.A. Next generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol. 2009, 27, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Taran, B.; Warkentin, T.D.; Vandenberg, A. Fast track genetic improvement of Ascochyta blight resistance and double podding in chickpea by marker-assisted backcrossing. Theor. Appl. Genet. 2013, 126, 1639–1647. [Google Scholar] [CrossRef] [PubMed]
- Collard, B.C.Y.; Pang, E.C.K.; Ades, P.K.; Taylor, P.W.J. Preliminary investigations of QTL associated with seedlings resistance to Ascochyta blight from Cicer echinospermum, a wild relative of chick pea. Theor. Appl. Genet. 2003, 107, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Mohan, S.M.; Gaur, P.M.; Chamarthi, S.K.; Singh, V.K.; Srinivasan, S.; Swapna, N.; Sharma, M.; Singh, S.; Kaur, L.; et al. Marker-Assisted Backcrossing to Introgress Resistance to Fusarium Wilt Race 1 and Ascochyta Blight in C 214, an Elite Cultivar of Chickpea. Plant Genome 2014, 7. [Google Scholar] [CrossRef]
- Bouchez, A.; Hospital, F.; Causse, M.; Gallais, A.; Charcosset, A. Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics 2002, 162, 1945–1959. [Google Scholar] [PubMed]
- Lecomte, L.; Duffé, P.; Buret, M.; Servin, B.; Hospital, F.; Causse, M. Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor. Appl. Genet. 2004, 109, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Ribaut, J.M.; Hoisington, D. Marker-assisted selection: new tools and strategies. Trends Plant Sci. 1998, 3, 236–239. [Google Scholar] [CrossRef]
- Young, N.D. A cautiously optimistic vision for marker-assisted breeding. Mol. Breeding 1999, 5, 505–510. [Google Scholar] [CrossRef]
- Bouhadida, M.; Benjannet, R.; Madrid, E.; Amri, M.; Kharrat, M. Efficiency of marker-assisted selection in detection of ascochyta blight resistance in Tunisian chickpea breeding lines. Phytopathol. Mediterr. 2013, 52, 202–211. [Google Scholar]
Wild Cicer Species | Accessions Screened | Reaction to Ascochyta Blight Infection * | |||
---|---|---|---|---|---|
R | MR | S | HS | ||
C. bijugam | 30 | - | 7 | 20 | 3 |
C. cuneatum | 3 | - | 1 | 2 | - |
C. echinospermum | 4 | - | - | 3 | 1 |
C. judiacum | 47 | 5 ** | 34 | 8 | - |
C. pinnatifidum | 27 | - | 13 | 13 | 1 |
C. reticulatum | 31 | - | - | 15 | 16 |
C. yamashitae | 6 | - | - | - | 6 |
Resistance Source | Remarks | Country Reported | Year | References |
---|---|---|---|---|
FLIP94-90C, FLIP95-68C, FLIP95-47C, FLIP97-132C, FLIP97-227C, FLIP98-224C and FLIP98-231C | - | Pakistan | 2002 | [59] |
HOO-108 and GL92024 | - | India | 2003 | [60] |
PI 559361, PI 559363 and W6 22589 | Showed a high level of resistance to two pathotypes | USA | 2004 | [61] |
FLIP98-229C, FLIP82-150C, NCS 950204, NCS 950219, NSC 9903, PaidarxParbat, FLIP 00-20C, FLIP 02-18C, FLIP 02-44C, FLIP 97-120C, FLIP 02-39C and FLIP 97-102C | Showed resistance in both green house and field | Pakistan | 2005 | [62] |
MCC 54, MCC 523, MCC 496, MCC 133, MCC 299, MCC528, MCC 3.11 and MCC 142 | Two desi accessions and six Kabuli accessions were resistant against six pathotypes | Iran | 2006 | [63] |
RIL58-ILC72/Cr5 | - | Spain | 2006 | [64] |
03039, 03041, 03053, 03115, 03131, 03133, 03143, 03159, 93A-086, 93A-111 and 93A-3354 | Germplasm lines | Pakistan | 2007 | [65] |
FLIP 98-133C and FLIP 98-136C | Showed strong resistance to AB on leaves, stems and pods, in addition to having high yield | Canada | 2009 | [66] |
53628, 53225, 53227, 53230, 53231, 53233, 53235, ,53244, 53380,53436, 53643, 54247, 53045, 53217, 53218, 53323, 53651, 53398 | Germplasm lines with disease score 1 to 3 at seedling stage | Pakistan | 2010 | [67] |
FLIP 97-121C | Disease rating ranged from 2 to 3.5. | India | 2012 | [68] |
Ambar | Desi chickpea variety that combines early flowering, competitive yield | Australia | 2012 | http://www.heritageseeds.com.au; |
EC 516934, ICCV 04537, ICCV 98818, EC 516850 and EC 516971 | Mean disease severity ≤3.0 on the 1–9 scale and the reactions were consistent in multi-environments | India | 2013 | [69] |
FLIP 4107, FLIP 1025 and FLIP 10511 | Exhibited highly resistant response against three pathotypes | Algeria | 2013 | [70] |
ICC7052, ICC4463, ICC4363, ICC2884, ICC7150, ICC15294 and ICC11627 | - | Kenya | 2013 | [71] |
K-60013, K-98008, D-97092, K-96001, K-96022, D-91055, D-90272, D- 96050, D-Pb2008 and D-Pu502-362 | - | Pakistan | 2013 | [72] |
10A and 28B | - | Turkey | 2014 | [73] |
ILC72, ILC182, ILC187, ILC200 and ILC202 | Exhibited highly resistant response against three pathotypes | Algeria | 2015 | [74] |
Marker/QTL | Linkage group | Phenotypic variation (%) | References |
---|---|---|---|
UBC733b, UBC181a, Dia4 | LG1, LG6 | 50.3 and 45 | [103] |
TS45, TA146, TA130 | LG1, LG2, LG3 | 76 | [89] |
Ta20, TA72, ar1 | LG2, LG4 | 35.9 | [10] |
GA16, GA24, GAA47, Ta46 | LG2, LG4, LG6 | 69.2 | [86] |
H3C041, TA2 | LG4 | 14.4 | [97] |
H1A12/H1H13, H1G20 | LG4 | 42 | [97] |
H1C092, TA3/H3C11a | LG8 | 16 | [97] |
OPAI09746, UBC881621 | LG2 | 28.0 | [104] |
TA194 | LG4 | 55.0 | [96] |
TA64, TS54, TA176 | LG3, LG4, LG6 | 56 | [98] |
TR19, TS54 | LG2, LG4 | 48 | [99] |
TA132, TS45 | LG4, LG8 | 38 | [99] |
TA64 | LG3 | 14 | [99] |
TA125, TA72, GA26 | LG3, LG4, LG6 | 46.5 | [105] |
TA34, TA142 | LG3 | 49 | [106] |
STMS11, TAA170 | LG4 | 49 | [106] |
H3D09, H1A12 | LG4 | 49 | [106] |
STMS11, Ta106, CaM0244 | LG4, LG5, LG6 | 41.6 | [101] |
SNP_40000185 | LG4 | 45 | [102] |
TA146, TA72 | LG4 | 59 | [102] |
CaETR, GAA47 | LG4 | 34 | [107] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, M.; Ghosh, R. An Update on Genetic Resistance of Chickpea to Ascochyta Blight. Agronomy 2016, 6, 18. https://doi.org/10.3390/agronomy6010018
Sharma M, Ghosh R. An Update on Genetic Resistance of Chickpea to Ascochyta Blight. Agronomy. 2016; 6(1):18. https://doi.org/10.3390/agronomy6010018
Chicago/Turabian StyleSharma, Mamta, and Raju Ghosh. 2016. "An Update on Genetic Resistance of Chickpea to Ascochyta Blight" Agronomy 6, no. 1: 18. https://doi.org/10.3390/agronomy6010018
APA StyleSharma, M., & Ghosh, R. (2016). An Update on Genetic Resistance of Chickpea to Ascochyta Blight. Agronomy, 6(1), 18. https://doi.org/10.3390/agronomy6010018