Raising Crop Productivity in Africa through Intensification
Abstract
:1. Introduction
2. Constraints to Productivity of Crops Cultivated in Africa
2.1. Environmental Stresses
2.1.1. Biotic Stresses
2.1.2. Abiotic Stresses
2.2. Inefficient Use of Agricultural Resources and Inputs
2.3. Inadequate Investment in Agricultural Research and Development
3. Boosting Crop Productivity through Intensification
3.1. Sustainable Intensification
3.2. Green Revolution: A Missed Opportunity for Africa
3.3. Genetic Improvement to Enhance Productivity
3.3.1. Key Terms Related to Crop Productivity and Yield Potential
- Potential yield (Yp) refers to the yield of a cultivar when grown in environments to which it is adapted, with nutrients and water non-limiting and with pests, diseases, weeds, lodging, and other stresses effectively controlled [98]. Hence, it refers to the maximum yield under given area for a given cultivar. Potential yield is influenced by yield defining factors such as solar radiation, temperature, CO2 concentration, and genetic characteristics.
- Water-limited yield (Yw) is similar to Yp, but crop growth is also limited by water supply, and hence influenced by soil type and field topography.
- Farmers’ attainable yield is affected by yield limiting factors such as nutrient deficiencies and water stress.
- Average actual yield (Ya; also known as farmers’ average yield) is defined as the average yield achieved by farmers in a given region under the existing management practices (sowing date, cultivar maturity, and plant density) and soil properties. It takes into account yield reducing factors such as weeds and pests.
- Yield gap (Yg) is the difference between Yp (irrigated crops), or Yw (rainfed crops) and actual yield (Ya).
3.3.2. Yield Potential of Crops Cultivated in Africa
3.3.3. Narrowing the Yield Gap: Lessons from Other Regions
3.3.4. Plant Ideotypes with Desirable Agronomic Properties
- Rice: The “super” hybrid varieties developed in China produced superior yield due to improvement in both source and sink [112]. For instance, a rice line with submergence tolerance and best cooking quality (also called ideotype 1, ID1) exhibited a low-amylose content, a fragrance and a high alkali spreading value [113]. The best preferred rice plant also has the following properties: low tillering capacity (3–4 productive tillers), 200–250 grains per panicle, very sturdy stems, erect leaves, and high harvest index [114].
- Wheat: Berry et al. [111] indicated that the best ideotype of wheat plant is the one with the yield potential of 8 t·ha−1. Key parameters required to develop this type of wheat are shorter plant height, wider root plate, and appropriate stem strength especially at the bottom internode [111]. According to Tendon and Jain [114], the model plant designed for wheat has thick stems, fewer tillers, large heads, higher number of grains, and high harvest index.
3.4. Agronomic Improvement to Enhance Crop Productivity
3.4.1. Cropping Systems
3.4.2. Soil Management
3.4.3. Water Management
3.4.4. Crop Management
3.5. Enabling Environment
4. Successful Agricultural Innovations in Africa
4.1. Push-Pull Technology for Multitude of Benefits
4.2. NERICA (New Rice for Africa): High Yielding and Climate-Smart Crop
4.3. DTMA and WEMA: Drought Tolerant Maize for Moisture-Scarce Environment
4.4. Re-Greening the Sahel
5. The Way Forward
- Partnership (stakeholders, networking);
- Aim (goal and strategy);
- Sustainability;
- Technology (improved seed and agronomy);
- Enabler (policy, capacity, inputs and extension).
5.1. Partnership
- Stakeholders: (i) Public-private partnership (PPP) with grant, research and developmental institutions and/or individuals; (ii) collaborations among national, regional, and global institutions.
- Networking: Establish and/or strengthen the networks of African professionals for efficient utilization of resources including human expertise. For example, the Association of African Agricultural Professionals in the Diaspora (AAAPD) [184].
5.2. Aim
- Goal: (i) Demand-driven or problem-oriented research to address major constraints in the region, country, or specific locality; (ii) focus on innovative research.
- Strategy: Value-chain approach from research to development, marketing and to distribution.
5.3. Sustainability
- Sustainable in production and environment protection.
5.4. Technology
- Improved seeds: (i) Locally-adapted and consumer-preferred crops; (ii) improved crops responsive to input application (e.g., fertilizers); (iii) climate-smart or resilient crops to environmental stresses.
- Agronomy: (i) Optimum crop, soil and water management practices for each locality; (ii) promote technologies with high chance of acceptance by farmers.
5.5. Enablers
- Policy: Conducive policies that enhance productivity and facilitate marketing and distribution.
- Capacity: Skilled personnel and infrastructure in both research and development.
- Inputs: Timely availability and affordability of agricultural inputs.
- Extension: (i) Dissemination of improved technology through favorable extension system; (ii) encourage farmer-to-farmer extension system.
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). Trade Reforms and Food Security: Conceptualizing the Linkages; Food and Agriculture Organization (FAO): Rome, Italy, 2003; p. 296. [Google Scholar]
- Worldometers. Population. Available online: http://www.worldometers.info/population/ (accessed on 2 March 2017).
- FAOSTAT. FAO (Food and Agricultural Organization) Statistical Data. Available online: http://faostat3.fao.org/home/E (accessed on 18 April 2016).
- Fahey, J.W. Underexploited African Grain Crops: A nutritional Resource. Nutr. Rev. 1998, 56, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Raheem, D. The need for agro-allied industries to promote food security by value addition to indigenous African food crops. Outlook Agric. 2011, 40, 343–349. [Google Scholar] [CrossRef]
- Ejeta, G. African Green Revolution needn’t be a mirage. Science 2010, 327, 831–832. [Google Scholar] [CrossRef] [PubMed]
- Naylor, R.L.; Falcon, W.P.; Goodman, R.M.; Jahn, M.M.; Sengooba, T.; Tefera, H.; Nelson, R.J. Biotechnology in the developing world: A case for increased investments in orphan crops. Food Policy 2004, 29, 15–44. [Google Scholar] [CrossRef]
- Tadele, Z.; Assefa, K. Increasing Food Production in Africa by Boosting the Productivity of Understudied Crops. Agronomy 2012, 2, 240–283. [Google Scholar] [CrossRef] [Green Version]
- Central Statistical Agency (CSA). Agricultural Sample Survey for 2013/14, in Statistical Bulletin 532; Central Statistical Agency: Addis Ababa, Ethiopia, 2014.
- Field Evaluation of Bambara Groundnut; New Approaches to Plant Breeding of Orphan Crops in Africa; Tadele, Z.E. (Ed.) University of Bern, Stampfli: Bern, Switzerland, 2009; pp. 93–98.
- Tadele, Z. Drought Adaptation in Millets. In Abiotic and Biotic Stress in Plants: Recent Advances and Future Perspectives; Shanker, A., Shanker, C., Eds.; InTech: Rijeka, Croatia, 2016; pp. 639–662. [Google Scholar]
- Sanginga, N.; Lyasse, O.; Singh, B.B. Phosphorus use efficiency and nitrogen balance of cowpea breeding lines in a low P soil of the derived savanna zone in West Africa. Plant Soil 2000, 220, 119–128. [Google Scholar] [CrossRef]
- Ketema, S. Tef, Eragrostis tef (Zucc.) Trotter; Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute: Rome, Italy, 1997; p. 52. [Google Scholar]
- National Academy Press (NAP). Lost Crops of Africa; Volume I: Grains; National Academy Press: Washington, DC, USA, 1996. [Google Scholar]
- Chandrasekara, A.; Shahidi, F. Antiproliferative potential and DNA scission inhibitory activity of phenolics from whole millet grains. J. Funct. Foods 2011, 3, 159–170. [Google Scholar] [CrossRef]
- Spaenij-Dekking, L.; Kooy-Winkelaar, Y.; Koning, F. The Ethiopian cereal tef in celiac disease. N. Engl. J. Med. 2005, 353, 1748–1749. [Google Scholar] [CrossRef] [PubMed]
- Hopman, E.; Dekking, L.; Blokland, M.L.; Wuisman, M.; Zuijderduin, W.; Koning, F.; Schweizer, J. Tef in the diet of celiac patients in The Netherlands. Scandi. J. Gastroenterol. 2008, 43, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Lakew, B.; Eglinton, J.; Henry, R.J.; Baum, M.; Grando, S.; Ceccarelli, S. The potential contribution of wild barley (Hordeum vulgare ssp spontaneum) germplasm to drought tolerance of cultivated barley (H. vulgare ssp vulgare). Field Crops Res. 2011, 120, 161–168. [Google Scholar] [CrossRef]
- Chandrashekar, A. Finger Millet Eleusine coracana. Adv. Food Nutr. Res. 2010, 59, 215–262. [Google Scholar] [PubMed]
- International Plant Genetic Resources Institute (IPGRI). Promoting Fonio Production in West and Central Africa through Germplasm Management and Improvement of Post·Harvest Technology; Project Number: 2000.7860.0-001.00 2004; International Plant Genetic Resources Institute (IPGRI): Benin, Africa, 2004; p. 18. [Google Scholar]
- Rich, P.J.; Ejeta, G. Towards effective resistance to Striga in African maize. Plant Signal. Behav. 2008, 3, 618–621. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Rai, K.N.; Singh, P.; Ameta, V.L.; Gupta, S.K.; Jayalekha, A.K.; Mahala, R.S.; Pareek, S.; Swami, M.L.; Verma, Y.S. Seed set variability under high temperatures during flowering period in pearl millet (Pennisetum glaucum L. (R.) Br.). Field Crops Res. 2015, 171, 41–53. [Google Scholar] [CrossRef]
- Singh, R.P.; Hodson, D.P.; Huerta-Espino, J.; Jin, Y.; Bhavani, S.; Njau, P.; Herrera-Foessel, S.; Singh, P.K.; Singh, S.; Govindan, V. The Emergence of Ug99 Races of the Stem Rust Fungus is a Threat to World Wheat Production. Ann. Rev. Phytopathol. 2011, 49, 465–481. [Google Scholar] [CrossRef] [PubMed]
- National Academies Press (NAP) (Ed.) Lost Crops of Africa; Volume II: Vegetables; National Academies Press: Washington, DC, USA, 2006.
- Singh, P.; Nedumaran, S.; Boote, K.J.; Gaur, P.M.; Srinivas, K.; Bantilan, M.C.S. Climate change impacts and potential benefits of drought and heat tolerance in chickpea in South Asia and East Africa. Eur. J. Agron. 2014, 52, 123–137. [Google Scholar] [CrossRef] [Green Version]
- Abate, T.; Orr, A. Research and development for tropical legumes: Towards a knowledge-based strategy. J. SAT Agric. Res. 2012, 10, 1–12. [Google Scholar]
- Campell, C.G. Grass Pea (Lathyrus sativus L.); Promoting the Conservarion and Use of Underutilized and Neglected Crops 18; IPK: Rome, Italy; IPGRI: Gartersleben, Germany, 1997. [Google Scholar]
- Snapp, S.S.; Jones, R.B.; Minja, E.M.; Rusike, J.; Silim, S.N. Pigeon pea for africa: A versatile vegetable—And more. Hortscience 2003, 38, 1073–1079. [Google Scholar]
- Ceballos, H.; Iglesias, C.A.; Pérez, J.C.; Dixon, A.G. Cassava breeding: Opportunities and challenges. Plant Mol. Biol. 2004, 56, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Brandt, S.A. The “Tree Against Hunger”: Enset-Based Agricultural System in Ethiopia; American Association for the Advancement of Science: Washington, DC, USA, 1997; p. 56. [Google Scholar]
- Ayalew, T.; Struik, P.C.; Hirpa, A. Characterization of seed potato (Solanum tuberosum L.) storage, pre-planting treatment and marketing systems in Ethiopia: The case of West-Arsi Zone. Afr. J. Agric. Res. 2014, 9, 1218–1226. [Google Scholar]
- Dawson, I.; Jaenicke, H. Underutilised Plant Species: The Role of Biotechnology. Position Paper No. 1; Crops for the Future: Semenyih, Malaysia, 2006; p. 27. [Google Scholar]
- Kivuva, B.M.; Musembi, F.J.; Githiri, S.M.; Yencho, C.G.; Sibiya, J. Assessment of production constraints and farmers’ preferences for sweet potato genotypes. J. Plant Breed. Genet. 2014, 2, 15–29. [Google Scholar]
- Akwee, P.E.; Netondo, G.; Kataka, J.A.; Palapala, V.A. A critical review of the role of taro [Colocasia esculenta L. (Schott)] to food security: A comparative analysis of Kenya and Pacific Island taro germplasm. Sci. Agric. 2015, 9, 101–108. [Google Scholar]
- Williams, J.T.; Haq, N. Global Research on Underutilised Crops: An Assessment of Current Activities and Proposals for Enhanced Cooperation; International Centre for Underutilised Crops: Southampton, UK, 2000; p. 50. [Google Scholar]
- Severino, L.S.; Auld, D.L.; Baldanzi, M.; Cândido, M.J.D.; Chen, G.; Crosby, W.; Tan, D.; Xiaohua He, X.; Lakshmamma, P.; Lavanya, C.; et al. A Review on the Challenges for Increased Production of Castor. Agron. J. 2012, 104, 853–880. [Google Scholar] [CrossRef]
- Getinet, A.; Rakow, G.; Downey, R.K. Agronomic performance and seed quality of Ethiopian mustard in Saskatchewan. Can. J. Plant Sci. 1996, 76, 387–392. [Google Scholar] [CrossRef]
- Getinet, A.; Sharma, S.M. Niger, Guizotia abyssinica (L. f.) Cass; Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute: Rome, Italy, 1996. [Google Scholar]
- Fungo, R. Opportunities for banana (Musa) in alleviating micronutrient deficiency in the Great Lakes Region of East Africa. Ann. Nutr. Metab. 2009, 55, 243. [Google Scholar]
- Heslop-Harrison, J.S.; Schwarzacher, T. Domestication, genomics and the future for banana. Ann. Bot. 2007, 100, 1073–1084. [Google Scholar] [CrossRef] [PubMed]
- Ngereza, A.J.; Elke Pawelzik, E. Constraints and opportunities of organic fruit production in Tanzania. Int. J. Agric. Policy Res. 2016, 4, 67–78. [Google Scholar]
- Prakash, J.; Singh, N.P.; Sankaran, M. Influence of Nutrition and VAM Fungi on Plant Growth Parameter, Physio-Chemical Composition of Fruit and Yield of Papaya (Carica papaya L.) cv. Pusa Delicious; International Society for Horticultural Science: Orlando, FL, USA, 2010. [Google Scholar]
- Waddington, S.R.; Li, X.; Dixon, J.; Hyman, G.; de Vicente, M.C. Getting the focus right: Production constraints for six major food crops in Asian and African farming systems. Food Secur. 2010, 2, 27–48. [Google Scholar] [CrossRef]
- Reynolds, T.W.; Waddington, S.R.; Anderson, C.L.; Chew, A.; True, Z.; Cullen, A. Environmental impacts and constraints associated with the production of major food crops in Sub-Saharan Africa and South Asia. Food Secur. 2015, 7, 795–822. [Google Scholar] [CrossRef]
- Goldman, A. Pest and disease hazards and sustainability in African agriculture. Exp. Agric. 1996, 32, 199–211. [Google Scholar] [CrossRef]
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Biber-Freudenberger, L.; Ziemacki, J.; Tonnang, H.E.Z.; Borgemeister, C. Future Risks of Pest Species under Changing Climatic Conditions. PLoS ONE 2016, 11, e0153237. [Google Scholar] [CrossRef] [PubMed]
- Okalebo, J.R.; Othieno, C.O.; Woomer, P.L.; Karanja, N.K.; Semoka, J.R.M.; Bekunda, M.A.; Mugendi, D.N.; Muasya, R.M.; Bationo, A.; Mukhwana, E.J. Available technologies to replenish soil fertility in East Africa. Nutr. Cycl. Agroecosyst. 2006, 76, 153–170. [Google Scholar] [CrossRef]
- Abraha, M.T.; Hussein, S.; Laing, M.; Assefa, K. Genetic management of drought in tef: Current status and future research directions. Glob. J. Crop Soil Sci. Plant Breed. 2015, 3, 156–161. [Google Scholar]
- Mahalakshmi, V.; Bidinger, F.R.; Raju, D.S. Effect of Timing of Water Deficit on Pearl-Millet (Pennisetum-Americanum). Field Crops Res. 1987, 15, 327–339. [Google Scholar] [CrossRef]
- Fauchereau, N.; Trzaska, S.; Rouault, M.; Richard, Y. Rainfall variability and changes in Southern Africa during the 20th century in the global warming context. Nat. Hazards 2003, 29, 139–154. [Google Scholar] [CrossRef]
- Virmani, S.M. Agroclimatology of the Vertisols and vertic soil areas of Africa. In Management of Vertisols in sub-Saharan Africa; Jutzi, S.C., Ed.; International Livestock Center for Africa (ILCA): Addis Ababa, Ethiopia, 1988. [Google Scholar]
- Parent, C.; Capelli, N.; Berger, A.; Crèvecoeur, M.; Dat, J.F. An Overview of Plant Responses to Soil Waterlogging. Plant Stress 2008, 2, 20–27. [Google Scholar]
- DAFWA. Effects of Soil Acidity. Available online: Https://www.agric.wa.gov.au/soil-acidity/effects-soil-acidity (accessed on 9 May 2016).
- Gale, M. Applications of Molecular Biology and Genomics to Genetic Enhancement of Crop Tolerance to Abiotic Stress: A Discussion Document; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003; p. 56. [Google Scholar]
- Goussard, J.J.; Labrousse, R. Ecosystems: Reconciling Conservation, Production, and Sustainable Management. In Challenges in African Agriculture; Deveze, J.C., Ed.; World Bank Group: Washington, DC, USA, 2011; pp. 59–84. [Google Scholar]
- FAO. Salt-Affected Soils. Available online: http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/ (accessed on 9 May 2016).
- Asfaw, K.G.; Danno, F.I. Effects of salinity on yield and yield components of tef [Eragrostis tef (Zucc.) Trotter] accessions and varieties. Curr. Res. J. Biol. Sci. 2011, 3, 289–299. [Google Scholar]
- Schlenker, W.; Roberts, M. Estimating the Impact of Climate Change on Crop Yields: The Importance of Nonlinear Temperature Effects; NBER Working Paper No. 13799, JEL No. C23,Q54; National Bureau of Economic Research: Cambridge, MA, USA, 2008. [Google Scholar]
- Bita, C.E.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynas, M. Six Degrees: Our Future on a Hotter Planet; Harper Perennial: San Francisco, CA, USA, 2008; p. 288. [Google Scholar]
- CGIAR DIIVA Project. Available online: http://www.asti.cgiar.org/diiva (accessed on 26 June 2014).
- Sahrawat, K.L. Macro- and micronutrients removed by upland and lowland rice cultivars in West Africa. Commun. Soil Sci. Plant Anal. 2000, 31, 717–723. [Google Scholar] [CrossRef]
- NEPAD. Comprehensive Africa Agriculture Development Programme (CAADP); NEPAD (New Partnership for Africa’s Development): Midrand, South Africa, 2003; p. 116. [Google Scholar]
- Alliance for a Green Revolution in Africa (AGRA). Africa Agriculture Status Report 2016: Progress towards Agricultural Transformation in Africa; Alliance for a Green Revolution in Africa (AGRA): Nairobi, Kenya, 2016; p. 300. [Google Scholar]
- ECA. Agricultural Input Business Development in Africa: Opportunities, Issues and Challenges. Available online: http://www.uneca.org/sa/publications/SRO-SA-AGRI-IPUTS-BUSINESS-OPPORTUNITIES.pdf (accessed on 7 September 2012).
- Denning, G.; Kabambe, P.; Sanchez, P.; Malik, A.; Flor, R.; Harawa, R.; Nkhoma, P.; Zamba, C.; Banda, C.; Magombo, C.; et al. Input Subsidies to Improve Smallholder Maize Productivity in Malawi: Toward an African Green Revolution. PLoS Biol. 2009, 7, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Montpellier-Panel, Sustainable Intensification: A New Paradigm for African Agriculture; Montpellier Panel Report; Agriculture for Impact: London, UK, 2013; p. 36.
- Kassie, M.; Teklewold, H.; Jaleta, M.; Marenya, P.; Erenstein, O. Understanding the adoption of a portfolio of sustainable intensification practices in eastern and southern Africa. Land Use Policy 2015, 42, 400–411. [Google Scholar] [CrossRef]
- Pretty, J.; Bharucha, Z.P. Sustainable intensification in agricultural systems. Ann. Bot. 2014, 114, 1571–1596. [Google Scholar] [CrossRef] [PubMed]
- Lampkin, N.H.; Pearce, B.D.; Leake, A.R.; Creissen, H.; Gerrard, C.L.; Girling, R.; Lloyd, S.; Padel, S.; Smith, J.; Smith, L.G.; et al. The Role of Agroecology in Sustainable Intensification: Report for the Land Use Policy Group; Organic Research Centre, Elm Farm and Game & Wildlife Conservation Trust: Norwich, UK, 2015. [Google Scholar]
- SRI. The System of Crop Intensification: Agroecological Innovations for Improving Agricultural Production, Food Secur. and Resilience to Climate Change; SRI International Network and Resources Center (SRI-Rice), Cornell University: Ithaca, NY, USA; The Technical Centre for Agricultural and Rural Cooperation (CTA): Wageningen, The Netherlands, 2014. [Google Scholar]
- Wu, W.; Ma, B.L.; Uphoff, N. A review of the system of rice intensification in China. Plant Soil 2015, 393, 361–381. [Google Scholar] [CrossRef]
- Stoop, W.A.; Uphoff, N.; Kassam, A. A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: Opportunities for improving farming systems for resource-poor farmers. Agric. Syst. 2002, 71, 249–274. [Google Scholar] [CrossRef]
- Sheehy, J.E.; Penga, S.; Dobermannb, A.; Mitchellc, P.L.; Ferrera, A.; Yangd, J.; Zoue, Y.; Zhongf, X.; Huange, J. Fantastic yields in the system of rice intensification: Fact or fallacy? Field Crops Res. 2004, 88, 1–8. [Google Scholar] [CrossRef]
- McDonald, A.J.; Hobbs, P.R.; Riha, S.J. Does the system of rice intensification outperform conventional best management? A synopsis of the empirical record. Field Crops Res. 2006, 96, 31–36. [Google Scholar] [CrossRef]
- Dobermann, A. A critical assessment of the system of rice intensification (SRI). Agric. Syst. 2004, 79, 261–281. [Google Scholar] [CrossRef]
- Surridge, C. Rice cultivation: Feast or famine? Nature 2004, 428, 360–361. [Google Scholar] [CrossRef] [PubMed]
- Hengsdijk, H.; Bindraban, P. Rice: Location is vital in crop management. Nature 2004, 429, 803. [Google Scholar] [CrossRef] [PubMed]
- Satyanarayana, A. Rice, research and real life in the field—In the spirit of science, we should ask why studies don’t reflect farmers’ experiences. Nature 2004, 429, 803. [Google Scholar] [CrossRef] [PubMed]
- Glover, D. The System of Rice Intensification: Time for an empirical turn. NJAS-Wagening. J. Life Sci. 2011, 57, 217–224. [Google Scholar] [CrossRef]
- Uphoff, N. Comment to “The System of Rice Intensification: Time for an empirical turn”, [NJAS—Wageningen Journal of Life Sciences 57 (2011) 217–224]. NJAS-Wagening. J. Life Sci. 2012, 59, 53–60. [Google Scholar] [CrossRef]
- Glover, D. Reply to Comment to: ‘The System of Rice Intensification: Time for an empirical turn’. NJAS-Wagening. J. Life Sci. 2012, 59, 61–62. [Google Scholar] [CrossRef]
- Abraham, B.; Araya, H.; Berhe, T.; Edwards, S.; Gujja, B.; Khadka, R.B.; Koma, Y.S.; Sen, D.; Sharif, A.; Styger, E.; et al. The system of crop intensification: Reports from the field on improving agricultural production, Food Secur. and resilience to climate change for multiple crops. Agric. Food Secur. 2014, 3, 4. [Google Scholar] [CrossRef]
- Berhe, T.; Gebresadik, Z.; Edwards, S.; Araya, H. Boosting tef productivity using improved agronomic practices and approriate fertilizer. In Achievements and Prospects of Tef Improvement; Assefa, K., Chanyalew, S., Tadele, Z., Eds.; Ethiopian Institute of Agricultural Research: Addis Ababa, Ethiopia; Institute of Plant Sciences, University of Bern: Bern, Switzerland; Stämpfli AG: Bern, Switzerland, 2013; pp. 133–140. [Google Scholar]
- Pretty, J.; Toulmin, C.; Williams, S. Sustainable intensification in African agriculture. Int. J. Agric. Sustain. 2011, 9, 5–24. [Google Scholar] [CrossRef]
- Kuyper, T.W.; Struik, P.C. Epilogue: Global Food Secur. rhetoric, and the sustainable intensification debate. Curr. Opin. Environ. Sustain. 2014, 8, 71–79. [Google Scholar] [CrossRef]
- Jirström, M. The state and Green Revolutions in East Asia. In The African Food Crisis: Lessons from the Asian Green Revolution; Djurfeldt, G., Holmen, H., Jirstrom, M., Larsson, R., Eds.; CABI: Wallingford, UK, 2005. [Google Scholar]
- Djurfeldt, G.; Jirström, M. The puzzle of the policy shift—The early Green Revolution in India, Indonesia and the Philippines. In The African Food Crisis: Lessons from the Asian Green Revolution; Djurfeldt, G., Holmen, H., Jirstrom, M., Larsson, R., Eds.; CABI: Wallingford, UK, 2005. [Google Scholar]
- International Food Policy Research Institute (IFPRI). Green Revolution: Curse or Blessing? International Food Policy Research Institute: Washington, DC, USA, 2002; p. 4. [Google Scholar]
- Otsuka, K.; Yamano, T. Green Revolution and regional inequality: Implications of Asian experience for Africa. In The African Food Crisis: Lessons from the Asian Green Revolution; Djurfeldt, G., Holmen, H., Jirstrom, M., Larsson, R., Eds.; CABI: Wallingford, UK, 2005. [Google Scholar]
- Conway, G. Agenda for a doubly green revolution. Food Technol. 1999, 53, 146. [Google Scholar]
- Kesavan, P.C.; Swaminathan, M.S. From green revolution to evergreen revolution: Pathways and terminologies. Curr. Sci. 2006, 91, 145–146. [Google Scholar]
- Thompson, C.B. Africa: Green Revolution or Rainbow Evolution? Rev. Afr. Political Econ. 2007, 34, 562–565. [Google Scholar]
- AGRA. Alliance for a Green Revolution in Africa. Available online: http://agra-alliance.org/ (accessed on 23 June 2014).
- Lobell, D.B.; Cassman, K.G.; Field, C.B. Crop Yield Gaps: Their Importance, Magnitudes, and Causes. Ann. Rev. Environ. Resour. 2009, 34, 179–204. [Google Scholar] [CrossRef]
- Amadou, H.I.; Bebeli, P.J.; Kaltsikes, P.J. Genetic diversity in Bambara groundnut (Vigna subterranea L.) germplasm revealed by RAPD markers. Genome 2001, 44, 995–999. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.T.; Fischer, R.A. Yield potential: Its definition, measurement, and significance. Crop Sci. 1999, 39, 1544–1551. [Google Scholar] [CrossRef]
- Tadele, Z. Role of crop research and development in food security of Africa. Int. J. Plant Biol. Rese. 2014, 2, 1019. [Google Scholar]
- Fermont, A.M.; van Asten, P.J.A.; Tittonell, P.; van Wijk, M.T.; Giller, K.E. Closing the cassava yield gap: An analysis from smallholder farms in East Africa. Field Crops Res. 2009, 112, 24–36. [Google Scholar] [CrossRef]
- Anderson, W.K. Closing the gap between actual and potential yield of rainfed wheat. The impacts of environment, management and cultivar. Field Crops Res. 2010, 116, 14–22. [Google Scholar] [CrossRef]
- Neumann, K.; Verburg, P.H.; Stehfest, E.; Müller, C. The yield gap of global grain production: A spatial analysis. Agric. Syst. 2010, 103, 316–326. [Google Scholar] [CrossRef]
- Licker, R.; Johnston, M.; Foley, J.A.; Barford, C.; Kucharik, C.J.; Monfreda, C.; Ramankutty, N. Mind the gap: How do climate and agricultural management explain the ‘yield gap’ of croplands around the world? Glob. Ecol. Biogeogr. 2010, 19, 769–782. [Google Scholar] [CrossRef]
- Liang, W.L.; Carberry, P.; Wang, G.Y.; Lü, R.H.; Lü, H.Z.; Xia, A.P. Quantifying the yield gap in wheat-maize cropping systems of the Hebei Plain, China. Field Crops Res. 2011, 124, 180–185. [Google Scholar] [CrossRef]
- Laborte, A.G.; Smaling, E.M.A.; Moya, P.F.; Boling, A.A.; Van Ittersum, M.K. Rice yields and yield gaps in Southeast Asia: Past trends and future outlook. Eur. J. Agron. 2012, 36, 9–20. [Google Scholar] [CrossRef]
- Abeledo, L.G.; Savin, R.; Slafer, G.A. Wheat productivity in the Mediterranean Ebro Valley: Analyzing the gap between attainable and potential yield with a simulation model. Eur. J. Agron. 2008, 28, 541–550. [Google Scholar] [CrossRef]
- Jeon, J.S.; Jung, K.H.J.; Kim, H.B.; Suh, J.P.; Khush, G.S. Genetic and Molecular Insights into the Enhancement of Rice Yield Potential. J. Plant Biol. 2011, 54, 1–9. [Google Scholar] [CrossRef]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Donald, C.M. Breeding of Crop Ideotypes. Euphytica 1968, 17, 385–403. [Google Scholar] [CrossRef]
- Peng, S.B.; Khusha, G.S.; Virka, P.; Tangb, Q.; Zoub, Y. Progress in ideotype breeding to increase rice yield potential. Field Crops Res. 2008, 108, 32–38. [Google Scholar] [CrossRef]
- Berry, P.M.; Sylvester-Bradley, R.; Berry, S. Ideotype design for lodging-resistant wheat. Euphytica 2007, 154, 165–179. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Tang, Q.; Zou, Y.; Li, D.; Qin, J.; Yang, S.; Chen, L.; Xia, B.; Peng, S. Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crops Res. 2009, 114, 91–98. [Google Scholar] [CrossRef]
- Jantaboon, J.; Siangliwa, M.; Im-markb, S.; Jamboonsria, W.; Vanavichitc, A.; Toojindaa, T. Ideotype breeding for submergence tolerance and cooking quality by marker-assisted selection in rice. Field Crops Res. 2011, 123, 206–213. [Google Scholar] [CrossRef]
- Tandon, J.P.; Jain, H.K. Plant ideotype: The concept and application. In Plant Breeding: Mendelian to Molecular Approaches; Jain, H.K., Kharkwal, M.C., Eds.; Narosa Pubishing House: New Delhi, India, 2004; pp. 585–600. [Google Scholar]
- Rasmusson, D.C. A Plant Breeders Experience with Ideotype Breeding. Field Crops Res. 1991, 26, 191–200. [Google Scholar] [CrossRef]
- Mi, G.H.; Chen, F.J.; Wu, Q.P.; Lai, N.W.; Yuan, L.X.; Zhang, F.S. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Sci. China-Life Sci. 2010, 53, 1369–1373. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, M.; Foulkes, M.J.; Slafer, G.A.; Berry, P.; Parry, M.A.; Snape, J.W.; Angus, W.J. Raising yield potential in wheat. J. Exp. Bot. 2009, 60, 1899–1918. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, M.; Bonnett, D.; Chapman, S.C.; Furbank, R.T.; Manès, Y.; Mather, D.E.; Parry, M.A. Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. J. Exp. Bot. 2011, 62, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Parry, M.A.J.; Reynolds, M.; Salvucci, M.E.; Raines, C.; Andralojc, P.J.; Zhu, X.G.; Price, G.D.; Condon, A.G.; Furbank, R.T. Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J. Exp. Bot. 2011, 62, 453–467. [Google Scholar] [CrossRef] [PubMed]
- Foulkes, M.J.; Foulkes, M.J.; Slafer, G.A.; Davies, W.J.; Berry, P.M.; Sylvester-Bradley, R.; Martre, P.; Calderini, D.F.; Griffiths, S.; Reynolds, M.P. Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J. Exp. Bot. 2011, 62, 469–486. [Google Scholar] [CrossRef] [PubMed]
- Qi, R.; Ma, Y.; Hu, B.; de Reffye, P.; Cournède, P.H. Optimization of source-sink dynamics in plant growth for ideotype breeding: A case study on maize. Comput. Electron. Agric. 2010, 71, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Blum, A. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res. 2009, 112, 119–123. [Google Scholar] [CrossRef]
- Araus, J.L.; Slafer, G.A.; Reynolds, M.P.; Royo, C. Plant breeding and drought in C3 cereals: What should we breed for? Ann. Bot. 2002, 89, 925–940. [Google Scholar] [CrossRef] [PubMed]
- Chivenge, P.; Mabhaudhi, T.; Modi, A.T.; Mafongoya, P. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa. Int. J. Environ. Res. Public Health 2015, 12, 5685–5711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makela, P.; Muurinen, S.; Peltonen-Sainio, P. Spring Cereals: From Dynamic Ideotypes to Cultivars in Northern Latitudes. Agric. Food Sci. 2008, 17, 289–306. [Google Scholar] [CrossRef]
- Mock, J.J.; Pearce, R.B. Ideotype of Maize. Euphytica 1975, 24, 613–623. [Google Scholar] [CrossRef]
- Reddy, P.S.; Patil, J.V.; Nirmal, S.V.; Gadakh, S.R. Improving post-rainy season sorghum productivity in medium soils: Does ideotype breeding hold a clue? Curr. Sci. 2012, 102, 904–908. [Google Scholar]
- Nadarajan, N. Research Priorities -Feasibility of Plant Ideotypes for Ease of Operations vis-à-vis Yield Improvement. Available online: http://www.google.ch/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDAQFjAA&url=http%3A%2F%2Fnfsm.gov.in%2FPresentations%2FBrainStorming%2FIIPR.ppt&ei=q6gUU7jNF8mZtAbezYHABQ&usg=AFQjCNFvgMOE83I8yBadVC_Pe2a-65yw6w&sig2=Pxd86N7X0dccH6phfMIrHQ&bvm=bv.61965928,d.Yms (accessed on 16 February 2017).
- Shete, M.; Rutten, M.; Schoneveld, G.C.; Zewude, E. Land-use changes by large-scale plantations and their effects on soil organic carbon, micronutrients and bulk density: Empirical evidence from Ethiopia. Agric. Hum. Values 2016, 33, 689–704. [Google Scholar] [CrossRef]
- Rossel, R.A.V.; Bouma, J. Soil sensing: A new paradigm for agriculture. Agric. Syst. 2016, 148, 71–74. [Google Scholar] [CrossRef]
- Giller, K.E.; Andersson, J.A.; Corbeels, M.; Kirkegaard, J.; Mortensen, D.; Erenstein, O.; Vanlauwe, B. Beyond conservation agriculture. Front. Plant Sci. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giller, K.E.; Witter, E.; Marc Corbeels, M.; Tittonell, P. Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Res. 2009, 114, 23–34. [Google Scholar] [CrossRef]
- Corbeels, M.; Sakyi, R.K.; Kühne, R.F.; Whitbread, A. Meta-Analysis of Crop Responses to Conservation Agriculture in Sub-Saharan Africa; CCAFS Report No. 12; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2014. [Google Scholar]
- TerAvest, D.; Carpenter-Boggs, L.; Thierfelder, C.; Reganold, J.P. Crop production and soil water management in conservation agriculture, no-till, and conventional tillage systems in Malawi. Agric. Ecosyst. Environ. 2015, 212, 285–296. [Google Scholar] [CrossRef]
- Marongwe, L.S.; Kwazira, K.; Jenrich, M.; Thierfelder, C.; Kassam, A.; Friedrich, T. An African success: The case of conservation agriculture in Zimbabwe. Int. J. Agric. Sustain. 2011, 9, 153–161. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Scaling-up Conservation Agriculture in Africa: Strategy and Approaches; Thiombiano, L., Meshack, M., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2009. [Google Scholar]
- Mungai, L.M.; Snapp, S.; Messina, J.P.; Chikowo, R.; Smith, A.; Anders, E.; Richardson, R.B.; Li, G. Smallholder Farms and the Potential for Sustainable Intensification. Front. Plant Sci. 2016, 7, 1720. [Google Scholar] [CrossRef] [PubMed]
- Gemenet, D.C.; Leiser, W.L.; Beggi, F.; Herrmann, L.H.; Vadez, V.; Rattunde, H.F.; Weltzien, E.; Hash, C.T.; Buerkert, A.; Haussmann, B.I. Overcoming Phosphorus Deficiency in West African Pearl Millet and Sorghum Production Systems: Promising Options for Crop Improvement. Front. Plant Sci. 2016, 7, 1389. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Fukuda, M.; Issaka, R.N.; Dzomeku, I.K.; Buri, M.M.; Avornyo, V.K.; Adjei, E.O.; Awuni, J.O.; Tobita, S. Residual effects of direct application of Burkina Faso phosphate rock on rice cultivation in Ghana. Nutr. Cycl. Agroecosyst. 2016, 106, 47–59. [Google Scholar] [CrossRef]
- Zhang, A.F.; Bian, R.; Pan, G.; Cui, L.; Hussain, Q.; Li, L.; Zheng, J.; Zheng, J.; Zhang, X.; Han, X.; et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- IBI. Biochar in Emerging and Developing Economies. Available online: http://www.biochar-international.org/developingeconomies (accessed on 9 January 2017).
- B4SS. The Biochar for Sustainable Soils (B4SS) Project. Available online: http://biochar.international/ (accessed on 9 January 2017).
- Konz, J.; Brett Cohen, B.; van der Merwe, A.B. Assessment of the Potential to Produce Biochar and Its Application to South African Soils as a Mitigation Measure; Environmental Affairs Department: Republic of South Africa: Pretoria, South Africa, 2015. [Google Scholar]
- Solomon, D.; Lehmann, J.; Fraser, J.A.; Leach, M.; Amanor, K.; Frausin, V.; Kristiansen, S.; Millimouno, D.; Fairhead, J. Indigenous African soil enrichment as a climate-smart sustainable agriculture alternative. Front. Ecol. Environ. 2016, 14, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Vanlauwe, B.; Descheemaeker, K.; Giller, K.E.; Huising, J.; Merckx, R.; Nziguheba, G.; Wendt, J.; Zingore, S. Integrated Soil Fertility Management in Sub-Saharan Africa: Unravelling local adaptation. Soil 2015, 1, 491–508. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Zingore, S. Integrated soil fertility management: Operational definition and consequences for implementation and dissemination. Better Crops 2010, 95, 4–7. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Pypers, P.; Birachi, E.; Nyagaya, M.; Van Schagen, B.; Huising, J.; Ouma, E.; Blomme, G.; Van Asten, P. Integrated soil fertility management in Central Africa: Experiences of the consortium for improving agriculture based livelihoods in Central Africa (CIALCA). In Eco-Efficiency: From Vision to Reality; Hershey, C.H., Ed.; CIAT: Cali, Colomibia, 2012; pp. 1–17. [Google Scholar]
- Lambrecht, I.; Vanlauwe, B.; Maertens, M. Integrated soil fertility management: From concept to practice in Eastern DR Congo. Int. J. Agric. Sustain. 2016, 14, 100–118. [Google Scholar] [CrossRef]
- Adimassu, Z.; Langan, S.; Johnston, R. Understanding determinants of farmers’ investments in sustainable land management practices in Ethiopia: Review and synthesis. Environ. Dev. Sustain. 2016, 18, 1005–1023. [Google Scholar] [CrossRef]
- Jutzi, S. Deep black clay soils (Vertisols): Management options for the Ethiopian highlands. Mt. Res. Dev. 1988, 8, 153–156. [Google Scholar] [CrossRef]
- Mo, F.; Wang, J.Y.; Xiong, Y.C.; Nguluu, S.N.; Li, F.M. Ridge-furrow mulching system in semiarid Kenya: A promising solution to improve soil water availability and maize productivity. Eur. J. Agron. 2016, 80, 124–136. [Google Scholar] [CrossRef]
- Wang, J.Y.; Fei, M.; Nguluu, S.N.; Zhou, H.; Ren, H.X.; Zhang, J.; Kariuki, C.W.; Gicheru, P.; Kavaji, L.; Xiong, Y.C.; et al. Exploring micro-field water-harvesting farming system in dryland wheat (Triticum aestivum L.): An innovative management for semiarid Kenya. Field Crops Res. 2016, 196, 207–218. [Google Scholar] [CrossRef]
- Bussmann, A.; Elagib, N.A.; Fayyad, M.; Ribbe, L. Sowing date determinants for Sahelian rainfed agriculture in the context of agricultural policies and water management. Land Use Policy 2016, 52, 316–328. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Mboh, C.M.; Gaiser, T.; Webber, H.; Ewert, F. Effect of sowing date distributions on simulation of maize yields at regional scale—A case study in Central Ghana, West Africa. Agric. Syst. 2016, 147, 10–23. [Google Scholar] [CrossRef]
- Rodenburg, J.; Bourgeois, T.L.; Grard, P.; Carara, A.; Irakiza, R.; Makokha, D.W.; Kabanyoro, R.; Dzomeku, I.; Chiconela, T.; Malombe, I.; et al. Electronic support tools for identification and management of rice weeds in Africa for better-informed agricultural change agents. Cah. Agric. 2016, 25, 15006. [Google Scholar] [CrossRef] [Green Version]
- Orr, A. Integrated pest management for resource-poor African farmers: Is the emperor naked? World Dev. 2003, 31, 831–845. [Google Scholar] [CrossRef]
- Brevault, T.; Renou, A.; Vayssières, F.F.; Amadji, G.; Assogba-Komlan, F.; Diallo, M.D.; De Bon, H.; Diarra, K.; Hamadoun, A.; Huat, J.; et al. DIVECOSYS: Bringing together researchers to design ecologically-based pest management for small-scale farming systems in West Africa. Crop Prot. 2014, 66, 53–60. [Google Scholar] [CrossRef]
- Kyomugisha, E. Land Tenure and Agricultural Productivity in Uganda; IFPRI Brief No 5; International Food Policy Research Institute IFPRI: Washington, DC, USA, 2008; p. 3. [Google Scholar]
- ACRE. Agriculture and Climate Risk Enterprise Ltd. (ACRE). Available online: http://acreafrica.com/ (accessed on 10 January 2017).
- Schut, M.; van Asten, P.; Okafor, C.; Hicintuka, C.; Mapatano, S.; Nabahungu, N.L.; Kagabo, D.; Muchunguzi, P.; Njukwe, E.; Dontsop-Nguezet, P.M.; et al. Sustainable intensification of agricultural systems in the Central African Highlands: The need for institutional innovation. Agric. Syst. 2016, 145, 165–176. [Google Scholar] [CrossRef]
- Hounkonnou, D.; Kossou, D.; Kuyper, T.W.; Leeuwis, C.; Nederlof, E.S.; Röling, N.; Sakyi-Dawson, O.; Traoré, M.; van Huis, A. An innovation systems approach to institutional change: Smallholder development in West Africa. Agric. Syst. 2012, 108, 74–83. [Google Scholar] [CrossRef]
- Juma, C.; Tabo, R.; Wilson, K.; Conway, G. Innovation for Sustainable Intensification in Africa; The Montpellier Panel; Agriculture for Impact, Imperial College: London, UK, 2013. [Google Scholar]
- Cook, S.M.; Khan, Z.R.; Pickett, J.A. The use of push-pull strategies in integrated pest management. Ann. Rev. Entomol. 2007, 52, 375–400. [Google Scholar] [CrossRef] [PubMed]
- Hassanali, A.; Herren, H.; Khan, Z.R.; Pickett, J.A.; Woodcock, C.M. Integrated pest management: The push-pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philos. Trans. R. Soc. B-Biol. Sci. 2008, 363, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Midega, C.A.O.; Bruce, T.J.A.; Pickett, J.A.; Pittchar, J.O.; Murage, A.; Khan, Z.R. Climate-adapted Companion Cropping Increases Agricultural Productivity in East Africa. Field Crops Res. 2015, 180, 118–125. [Google Scholar] [CrossRef]
- Murage, A.W.; Midega, C.A.O.; Pittchar, J.O.; Pickett, J.A.; Khan, Z.R. Determinants of adoption of climate-smart push-pull technology for enhanced food security through integrated pest management in eastern Africa. Food Secur. 2015, 7, 709–724. [Google Scholar] [CrossRef]
- The International Centre of Insect Physiology and Ecology (ICPIE). The ‘Push–Pull’ Farming System: Climate-smart, Sustainable Agriculture for Africa; The International Centre of Insect Physiology and Ecology (ICPIE): Nairobi, Kenya, 2015. [Google Scholar]
- Balasubramanian, V.; Sie, M.; Hijmans, R.J.; Otsuka, K. Increasing rice production in Sub-Saharan Africa: Challenges and opportunities. Adv. Agron. 2007, 94, 55–133. [Google Scholar]
- Sarla, N.; Swamy, B.P.M. Oryza glaberrima: A source for the improvement of Oryza sativa. Curr. Sci. 2005, 89, 955–963. [Google Scholar]
- Atera, E.A.; Itoh, K.; Azuma, T.; Ishii, T. Response of NERICA Rice to Striga hermonthica Infections in Western Kenya. Int. J. Agric. Biol. 2012, 14, 271–275. [Google Scholar]
- Sekiya, N.; Khatib, K.J.; Makame, S.M.; Tomitaka, M.; Oizumi, N.; Araki, H. Performance of a Number of NERICA Cultivars in Zanzibar, Tanzania: Yield, Yield Components and Grain Quality. Plant Prod. Sci. 2013, 16, 141–153. [Google Scholar] [CrossRef]
- Bahuguna, R.N.; Jha, J.; Pal, M.; Shah, D.; Lawas, L.M.; Khetarpal, S.; Jagadish, K.S. Physiological and biochemical characterization of NERICA-L-44: A novel source of heat tolerance at the vegetative and reproductive stages in rice. Physiol. Plant. 2015, 154, 543–559. [Google Scholar] [CrossRef] [PubMed]
- Kijima, Y.; Otsuka, K.; Sserunkuuma, D. Assessing the impact of NERICA on income and poverty in central and western Uganda. Agric. Econ. 2008, 38, 327–337. [Google Scholar] [CrossRef]
- Kijima, Y.; Sserunkuuma, D.; Otsuka, K. How revolutionary is the “NERICA revolution”? Evidence from Uganda. Dev. Econ. 2006, 44, 252–267. [Google Scholar] [CrossRef]
- Oikeh, S.; Diatta, S.; Tsuboi, T. Soil fertilization and NERICA rice nutrition (Module 7). In NERICA: The New Rice for Africa—A Compendium; Somado, E.A., Guei, R.G., Keya, S.O., Eds.; Africa Rice Center (WARDA): Contonou, Benin; FAO: Rome, Italy, 2008; pp. 75–82. [Google Scholar]
- Oikeh, S.; Diatta, S.; Tsuboi, T.; Berhe, T. NERICA rice crop management (Module 6). In NERICA: The New Rice for Africa—A Compendium; Somado, E.A., Guei, R.G., Keya, S.O., Eds.; Africa Rice Center (WARDA): Contonou, Benin; FAO: Rome, Italy, 2008; pp. 65–74. [Google Scholar]
- Fisher, M.; Abate, T.; Lunduka, R.W.; Asnake, W.; Alemayehu, Y.; Madulu, R.B. Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: Determinants of adoption in eastern and southern Africa. Clim. Chang. 2015, 133, 283–299. [Google Scholar] [CrossRef]
- CIMMYT. DTMA (Drought Tolerant Maize). Available online: http://dtma.cimmyt.org/ (accessed on 14 November 2016).
- AATF. Water Efficient Maize for Africa (WEMA). Available online: http://wema.aatf-africa.org/about-wema-project (accessed on 14 Novemeber 2016).
- Reij, C. Regreening the Sahel: The success of natural tree regeneration. Farming Matters 2009, 25, 32–34. [Google Scholar]
- Sparacino, C. Regreening the Sahel: Developing agriculture in the context of climate change in Burkina Faso. In Information Sheet West and Central Africa; International Fund for Agricultural Development (IFAD): Rome, Italy, 2011. [Google Scholar]
- Weston, P.; Hong, R.; Kaboré, C.; Kull, C.A. Farmer-Managed Natural Regeneration Enhances Rural Livelihoods in Dryland West Africa. Environ. Manag. 2015, 55, 1402–1417. [Google Scholar] [CrossRef] [PubMed]
- Montpellier-Panel. Agriculture for Impact: Growing Opportunities for Africa’s development. Available online: http://ag4impact.org/montpellier-panel/ (accessed on 16 November 2016).
- AAAPD. Association of African Agricultural Professionals in the Diaspora. Available online: http://www.future-agricultures.org/other-news/7354-association-of-african-agricultural-professionals-in-the-diaspora-#.U6hNDrHNlzV (accessed on 23 June 2014).
Crop (Scientific Name) | Desirable Properties * | Undesirable Properties ** | Reference | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | A | B | C | D | E | F | G | H | ||
Cereals | |||||||||||||||||
Barely (Hordeum vulgare) | x | x | x | [18] | |||||||||||||
Finger millet (Eleusine coracana) | x | x | x | x | x | x | [19] | ||||||||||
Fonio (Digitaria exilis) | x | x | x | x | [14,20] | ||||||||||||
Maize (Zea mays) | x | x | x | x | x | x | x | [21] | |||||||||
Pearl millet (Pennisetum glaucum) | x | x | x | x | x | [22] | |||||||||||
Rice (Oryza sativa) | x | x | x | x | [21] | ||||||||||||
Sorghum (Sorghum bicolor) | x | x | x | x | x | [21] | |||||||||||
Tef (Eragrostis tef) | x | x | x | x | x | [13,16] | |||||||||||
Wheat (Triticum aestivum) | x | x | x | x | [23] | ||||||||||||
Food legumes | |||||||||||||||||
Bambara groundnut (Vigna subterranea) | x | x | x | x | [24] | ||||||||||||
Chick pea (Cicer arietinum) | x | x | x | [25] | |||||||||||||
Common bean (Phaseolus vulgaris) | x | x | [26] | ||||||||||||||
Cowpea (Vigna unguiculata) | x | x | x | x | x | [12,26] | |||||||||||
Grass pea (Lathyrus sativus) | x | x | x | x | [27] | ||||||||||||
Groundnut (Arachis hypogaea) | x | [26] | |||||||||||||||
Pigeon pea (Cajanus cajan) | x | x | x | [28] | |||||||||||||
Roots and tubers | |||||||||||||||||
Cassava (Manihot esculentum) | x | x | x | x | x | x | [29] | ||||||||||
Enset (Ensete ventricosum) | x | x | x | x | [30] | ||||||||||||
Potato (Solanum tuberosum) | x | x | x | [31] | |||||||||||||
Sweet potato (Ipomoea batatas) | x | x | x | x | [32,33] | ||||||||||||
Taro (Colocasia esculenta) | x | x | x | x | [34] | ||||||||||||
Yam (Dioscorea spp) | x | x | x | x | x | [35] | |||||||||||
Oil seeds | |||||||||||||||||
Castor seed (Ricinus communis) | x | x | x | x | x | x | [36] | ||||||||||
Mustard (Brassica carinata) | x | x | [37] | ||||||||||||||
Noug (Guizotia abyssinica) | x | x | [38] | ||||||||||||||
Sesame (Sesamum indicum) | x | x | x | x | x | [32] | |||||||||||
Fruits | |||||||||||||||||
Banana/plantain (Musa spp.) | x | x | x | x | [39,40] | ||||||||||||
Mango (Mangifera indica) | x | x | x | [41] | |||||||||||||
Papaya (Carica papaya) | x | x | x | x | [42] |
Crop Type | Ideal or Preferred Phenotypes | Reference |
---|---|---|
Cereals (general) |
| [125] |
Maize |
| [126] |
Sorghum |
| [127] |
Rice |
| [110] |
Wheat |
| [111] |
Food legumes (general) |
| [128] |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadele, Z. Raising Crop Productivity in Africa through Intensification. Agronomy 2017, 7, 22. https://doi.org/10.3390/agronomy7010022
Tadele Z. Raising Crop Productivity in Africa through Intensification. Agronomy. 2017; 7(1):22. https://doi.org/10.3390/agronomy7010022
Chicago/Turabian StyleTadele, Zerihun. 2017. "Raising Crop Productivity in Africa through Intensification" Agronomy 7, no. 1: 22. https://doi.org/10.3390/agronomy7010022
APA StyleTadele, Z. (2017). Raising Crop Productivity in Africa through Intensification. Agronomy, 7(1), 22. https://doi.org/10.3390/agronomy7010022