Remote Detection of Growth Dynamics in Red Lettuce Using a Novel Chlorophyll a Fluorometer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Cultivation
2.2. Plant Growth Kinetics
2.3. Plant Pigment Analyses
2.4. Fluorescence Undergraduate Sensing System: FUSSY
2.4.1. Excitation LED Module
2.4.2. Photodiode Module
2.4.3. Microcontroller Boards
2.4.4. Control System and Power Supply
2.5. Data Processing, Statistical Analysis, and Modeling
3. Results
3.1. Correlations between ChlF and Other Measured Quantities
3.2. Leaf Chlorophyll, Carotenoid, and Anthocyanin Concentrations
3.3. Polynomial Regression Modeling
3.4. Analysis of Variance of ChlF
3.5. Comparison of Observed and Predicted Growth Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Beddington, J.R.; Asaduzzaman, M.; Clark, M.E.; Fernández Bremauntz, A.; Guillou, M.D.; Howlett, D.J.B.; Jahn, M.M.; Lin, E.; Mamo, T.; Negra, C.; et al. Agriculture: What next for agriculture after Durban? Science 2012, 335, 289–290. [Google Scholar] [CrossRef] [PubMed]
- Supit, I.; van Diepen, C.A.; De Wit, A.J.W.; Wolf, J.; Kabat, P.; Baruth, B.; Ludwig, F. Assessing climate change effects on European crop yields using the Crop Growth Monitoring System and a weather generator. Agric. For. Meteorol. 2012, 164, 96–111. [Google Scholar] [CrossRef]
- Ehret, D.; Lau, A.; Bittman, S.; Lin, W.; Shelford, T.; Ehret, D.; Lau, A.; Bittman, S.; Lin, W.; Shelford, T. Automated monitoring of greenhouse crops. Agronomie 2001, 21, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Harbick, K.; Albright, L.D. Comparison of energy consumption: Greenhouses and plant factories. Acta Hortic. 2016, 1134, 285–292. [Google Scholar] [CrossRef]
- Albright, L.D.; Both, A.-J.; Chiu, A.J. Controlling greenhouse light to a consistent daily integral. Trans. ASAE 2000, 43, 421–431. [Google Scholar] [CrossRef]
- Harbick, K.; Albright, L.D.; Mattson, N.S. Electrical savings comparison of supplemental lighting control systems in greenhouse environments. In Proceedings of the 2016 ASABE Annual International Meeting, Orlando, FL, USA, 17–20 July 2016; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2016; p. 1. [Google Scholar]
- Pocock, T. Light-emitting diodes and the modulation of specialty crops: Light sensing and signaling networks in plants. Hortic. Sci. 2015, 50, 1281–1284. [Google Scholar]
- Hunt, R. Basic Growth Analysis. Plant Growth Analysis for Beginners; Unwin Hyman: London, UK, 1990. [Google Scholar]
- Gillner, S.; Rüger, N.; Roloff, A.; Berger, U. Low relative growth rates predict future mortality of common beech (Fagus sylvatica L.). For. Ecol. Manag. 2013, 302, 372–378. [Google Scholar] [CrossRef]
- Qiu, R.; Wei, S.; Zhang, M.; Li, H.; Sun, H.; Liu, G.; Li, M. Sensors for measuring plant phenotyping: A review. Int. J. Agric. Biol. Eng. 2018, 11, 1–17. [Google Scholar] [CrossRef]
- Hoffmann, W.A.; Poorter, H. Avoiding bias in calculations of relative growth rate. Ann. Bot. 2002, 90, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Tessmer, O.L.; Jiao, Y.; Cruz, J.A.; Kramer, D.M.; Chen, J. Functional approach to high-throughput plant growth analysis. BMC Syst. Biol. 2013, 7, S17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, A.N.; Misra, M.; Singh, R. Chlorophyll fluorescence in plant biology. In Biophysics; Misra, A.N., Ed.; InTech Open: London, UK, 2012; ISBN 9789537619992. [Google Scholar]
- Kalaji, H.M.; Schansker, G.; Brestic, M.; Bussotti, F.; Calatayud, A.; Ferroni, L.; Goltsev, V.; Guidi, L.; Jajoo, A.; Li, P.; et al. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res. 2017, 132, 13–66. [Google Scholar] [CrossRef] [PubMed]
- Strasser, R.J.; Srivastava, A.; Tsimilli-Michael, M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. Probing Photosynth. Mech. Regul. Adapt. 2000, 25, 443–480. [Google Scholar]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Jaramillo, A.A.; Duarte-Galvan, C.; Contreras-Medina, L.M.; Torres-Pacheco, I.; Romero-Troncoso, R.D.; Guevara-Gonzalez, R.G.; Millan-Almaraz, J.R. Instrumentation in developing chlorophyll fluorescence biosensing: A review. Sensors 2012, 12, 11853–11869. [Google Scholar] [CrossRef] [PubMed]
- Govindjee, G. Chlorophyll a fluorescence: A bit of basics and history. In Chlorophyll A Fluorescence A Signature of Photosynthesis; Springer: New York, NY, USA, 2004; pp. 1–42. [Google Scholar]
- Magney, T.S.; Frankenberg, C.; Fisher, J.B.; Sun, Y.; North, G.B.; Davis, T.S.; Kornfeld, A.; Siebke, K. Connecting active to passive fluorescence with photosynthesis: A method for evaluating remote sensing measurements of Chl fluorescence. New Phytol. 2017, 215, 1594–1608. [Google Scholar] [CrossRef] [PubMed]
- Ahlman, L.; Bånkestad, D.; Wik, T. Using chlorophyll a fluorescence gains to optimize LED light spectrum for short term photosynthesis. Comput. Electron. Agric. 2017, 142, 224–234. [Google Scholar] [CrossRef]
- Bånkestad, D.; Wik, T. Growth tracking of basil by proximal remote sensing of chlorophyll fluorescence in growth chamber and greenhouse environments. Comput. Electron. Agric. 2016, 128, 77–86. [Google Scholar] [CrossRef]
- Van Iersel, M.W.; Weaver, G.; Martin, M.T.; Ferrarezi, R.S.; Mattos, E.; Haidekker, M. A chlorophyll fluorescence-based biofeedback system to control photosynthetic lighting in controlled environment agriculture. J. Am. Soc. Hortic. Sci. 2016, 141, 169–176. [Google Scholar]
- Kliewer, W.M.; Dokoozlian, N.K. Leaf area/crop weight ratios of grapevines: Influence on fruit composition and wine quality. Am. J. Enol. Vitic. 2005, 56, 170–181. [Google Scholar]
- Machado, S.; Bynum, E.D.; Archer, T.L.; Lascano, R.J.; Wilson, L.T.; Bordovsky, J.; Segarra, E.; Bronson, K.; Nesmith, D.M.; Xu, W. Spatial and temporal variability of corn growth and grain yield: Implications for site-specific farming. Crop Sci. 2002, 42, 1564–1576. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Circ. Calif. Agric. Exp. Stn. 1950, 347, 32. [Google Scholar]
- Easlon, H.M.; Bloom, A.J. Easy leaf area: Automated digital image analysis for rapid and accurate measurement of leaf area. Appl. Plant Sci. 2014, 2, 1400033. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.K.; Buschmann, C. Extraction of phtosynthetic tissues: Chlorophylls and carotenoids. Curr. Protoc. Food Anal. Chem. 2001. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by uv-vis spectroscopy. Handb. Food Anal. Chem. 2005, 2, 171–178. [Google Scholar] [CrossRef]
- Carvalho, S.D.; Folta, K.M. Sequential light programs shape kale (Brassica napus) sprout appearance and alter metabolic and nutrient content. Hortic. Res. 2014, 1, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Pocock, T. Advanced lighting technology in controlled environment agriculture. Light. Res. Technol. 2016, 48, 83–94. [Google Scholar] [CrossRef]
- Kuhn, A.M.; Wing, J.; Weston, S.; Williams, A. The Caret Package. Available online: http://topepo.github.io/caret/index.html (accessed on 26 May 2018).
- Kuhn, M. Caret: Classification and Regression Training; Version 6.0–7.6, Version R Package. Available online: http://adsabs.harvard.edu/abs/2015ascl.soft05003K (accessed on 3 May 2015).
- Hastie, T.; Tibshirani, R.; Friedman, J. The elements of statistical learning. Math. Intell. 2001, 27, 83–85. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Harrell, F.E., Jr. Hmisc: Harrell Miscellaneous. Available online: http://biostat.mc.vanderbilt.edu/Hmisc, https://github.com/harrelfe/Hmisc (accessed on 3 January 2018).
- Haynes, W. Student’s t-Test. In Encyclopedia of Systems Biology; Dubitzky, W., Wolkenhauer, O., Cho, K.-H., Yokota, H., Eds.; Springer: New York, NY, USA, 2013; pp. 2023–2025. ISBN 978-1-4419-9863-7. [Google Scholar]
- Lindeman, R.H.; Merenda, P.F.; Gold, R.Z. Introduction to Bivariate and Multivariate Analysis; Foresman and Co.: London, UK, 1980. [Google Scholar]
- Kruskal, W. Relative Importance by Averaging Over Orderings; Taylor & Francis, Ltd.: Abingdon, UK, 2017; Volume 41, pp. 6–10. [Google Scholar]
- Grömping, U. R package relaimpo: Relative importance for linear regression. J. Stat. Softw. 2006, 17, 139–147. [Google Scholar] [CrossRef]
- Bi, J. A review of statistical methods for determination of relative importance of correlated predictors and identification of drivers of consumer liking. J. Sens. Stud. 2012, 27, 87–101. [Google Scholar] [CrossRef]
- Krause, G.H.; Weis, E. Chlorophyll fluorescence and photosynthesis: The basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1991, 42, 313–349. [Google Scholar] [CrossRef]
- Pedrós, R.; Moya, I.; Goulas, Y.; Jacquemoud, S. Chlorophyll fluorescence emission spectrum inside a leaf. Photochem. Photobiol. Sci. 2008, 7, 498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, M.C. Regression analysis of log-transformed data-statistical bias and its correction (short communication). Environ. Toxicol. Chem. 1993, 12, 1129–1133. [Google Scholar] [CrossRef]
- Shipley, B. Net assimilation rate, specific leaf area and leaf mass ratio: Which is most closely correlated with relative growth rate? A meta-analysis. Funct. Ecol. 2006, 20, 565–574. [Google Scholar] [CrossRef]
- Kozai, T.; Niu, G.; Takagaki, M. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Elsevier: London, UK, 2015. [Google Scholar]
- Pocock, T. Influence of light-emitting diodes (LEDs) on light sensing and signaling networks in plants. In Light Emitting Diodes for Agriculture; Springer: Berlin, Germany, 2017; pp. 37–58. [Google Scholar]
- Pinho, P.; Hytönen, T.; Rantanen, M.; Elomaa, P.; Halonen, L. Dynamic control of supplemental lighting intensity in a greenhouse environment. Light. Res. Technol. 2013, 45, 295–304. [Google Scholar] [CrossRef]
- Fukuda, N. Advanced Light Control Technologies in Protected Horticulture: A review of morphological and physiological responses in plants to light quality and its application. J. Dev. Sustain. Agric. 2013, 40, 32–40. [Google Scholar] [CrossRef]
- Ouzounis, T.; Rosenqvist, E.; Ottosen, C.O. Spectral effects of artificial light on plant physiology and secondary metabolism: A review. Hortic. Sci. 2015, 50, 1128–1135. [Google Scholar]
Pearson Correlation Coefficient (r) | Pearson Correlation Coefficient p-Value | |||||||
---|---|---|---|---|---|---|---|---|
ChlF | FW | DW | PA | ChlF | FW | DW | PA | |
ChlF | 1 | 0.921 | 0.934 | 0.947 | NA | 5.697 × 10−5 | 2.677 × 10−5 | 1.024 × 10−5 |
FW | 0.921 | 1 | 0.995 | 0.996 | 5.697 × 10−5 | NA | 1.943 × 10−10 | 6.773 × 10−11 |
DW | 0.934 | 0.995 | 1 | 0.998 | 2.677 × 10−5 | 1.943 × 10−10 | NA | 5.366 × 10−12 |
PA | 0.947 | 0.996 | 0.998 | 1 | 1.024 × 10−5 | 6.773 × 10−11 | 5.366 × 10−12 | NA |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urschel, M.R.; Pocock, T. Remote Detection of Growth Dynamics in Red Lettuce Using a Novel Chlorophyll a Fluorometer. Agronomy 2018, 8, 227. https://doi.org/10.3390/agronomy8100227
Urschel MR, Pocock T. Remote Detection of Growth Dynamics in Red Lettuce Using a Novel Chlorophyll a Fluorometer. Agronomy. 2018; 8(10):227. https://doi.org/10.3390/agronomy8100227
Chicago/Turabian StyleUrschel, Matthew R., and Tessa Pocock. 2018. "Remote Detection of Growth Dynamics in Red Lettuce Using a Novel Chlorophyll a Fluorometer" Agronomy 8, no. 10: 227. https://doi.org/10.3390/agronomy8100227
APA StyleUrschel, M. R., & Pocock, T. (2018). Remote Detection of Growth Dynamics in Red Lettuce Using a Novel Chlorophyll a Fluorometer. Agronomy, 8(10), 227. https://doi.org/10.3390/agronomy8100227