Microbial Biopesticides in Agroecosystems
Abstract
:1. Introduction
2. Entomopathogenic Microorganisms
2.1. Bacteria
2.2. Fungi
2.3. Baculoviruses
2.4. Nematodes
3. Benefits of Microbial Biopesticides and Market Scenario
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Biopesticides. Available online: www.epa.gov/pesticides/biopesticides (accessed on 30 August 2018).
- Price, P.W. Insect Ecology; John Wiley & Sons: New York, NY, USA, 1975; p. 514. [Google Scholar]
- Kenis, M.; Hurley, B.P.; Hajek, A.E.; Cock, M.J.W. Classical biological control of insect pests of trees: Facts and figures. Biol. Invasions 2017, 19, 3401–3417. [Google Scholar] [CrossRef]
- Kaya, H.K.; Vega, F.E. Scope and Basic Principles of Insect Pathology. In Insect Pathology, 2nd ed.; Vega, F., Kaya, H., Eds.; Academic Press: London, UK, 2012; pp. 1–12. [Google Scholar]
- Marrone, P.G. The market and potential for biopesticides. In Biopesticides: State of the Art and Future Opportunities; Gross, A.D., Coats, J.R., Duke, S.O., Seiber, J.N., Eds.; American Chemical Society: Washington, DC, USA, 2014; pp. 245–258. [Google Scholar]
- Villaverde, J.J.; Sevilla-Morán, B.; Sandín-España, P.; López-Goti, C.; Alonso-Prados, J.L. Biopesticides in the framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest Manag. Sci. 2014, 70, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Castagnola, A.; Stock, S.P. Common virulence factors and tissue targets of entomopathogenic bacterial for biological control of Lepidopteran pests. Insects 2014, 5, 139–166. [Google Scholar] [CrossRef] [PubMed]
- Ruiu, L. Insect Pathogenic Bacteria in Integrated Pest Management. Insects 2015, 6, 352–367. [Google Scholar] [CrossRef] [PubMed]
- Jurat-Fuentes, J.L.; Jackson, T.A. Bacterial Entomopathogens. In Insect Pathology, 2nd ed.; Vega, F., Kaya, H., Eds.; Academic Press: London, UK, 2012; pp. 265–349. [Google Scholar]
- Pigott, C.R.; Ellar, D.J. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Mol. Biol. Rev. 2007, 71, 255–281. [Google Scholar] [CrossRef] [PubMed]
- Bravo, A.; Gill, S.S.; Soberon, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 2007, 49, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Charles, J.F.; Silva-Filha, M.H.; Nielsen-LeRoux, C. Mode of action of Bacillus sphaericus on mosquito larvae: Incidence on resistance. In Entomopathogenic Bacteria: From Laboratory to Field Application; Charles, J.F., Delecluse, A., Nielsen-LeRoux, C., Eds.; Kluwer Academic Publishers: London, UK, 2000; pp. 237–252. [Google Scholar]
- Ruiu, L. Brevibacillus laterosporus, a Pathogen of Invertebrates and a Broad-Spectrum Antimicrobial Species. Insects 2013, 4, 476–492. [Google Scholar] [CrossRef] [PubMed]
- Marche, M.G.; Mura, M.E.; Falchi, G.; Ruiu, L. Spore surface proteins of Brevibacillus laterosporus are involved in insect pathogenesis. Sci. Rep. 2017, 7, 43805. [Google Scholar] [CrossRef] [PubMed]
- Marche, M.G.; Camiolo, S.; Porceddu, A.; Ruiu, L. Survey of Brevibacillus laterosporus insecticidal protein genes and virulence factors. J. Invertebr. Pathol. 2018, 155, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Ruiu, L.; Satta, A.; Floris, I. Comparative applications of azadirachtin- and Brevibacillus laterosporus-based formulations for house fly management experiments in dairy farms. J. Med. Entomol. 2011, 48, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Ruiu, L.; Satta, A.; Floris, I. Administration of Brevibacillus laterosporus spores as a poultry feed additive to inhibit house fly development in feces: A new eco-sustainable concept. Poultry Sci. 2014, 93, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Ffrench-Constant, R.; Waterfield, N. An ABC guide to the bacterial toxin complexes. Adv. Appl. Microbiol. 2006, 58, 169–183. [Google Scholar] [PubMed]
- Hurst, M.R.; Glare, T.R.; Jackson, T.A.; Ronson, C.W. Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. J. Bacteriol. 2000, 182, 5127–5138. [Google Scholar] [CrossRef] [PubMed]
- Landsberg, M.J.; Jones, S.A.; Rothnagel, R.; Busby, J.N.; Marshall, S.D.G.; Simpson, R.M.; Lott, J.S.; Hankamer, B.; Hurst, M.R.H. 3D structure of the Yersinia entomophaga toxin complex and implications for insecticidal activity. Proc. Natl. Acad. Sci. USA 2011, 108, 20544–20549. [Google Scholar] [CrossRef] [PubMed]
- Vodovar, N.; Vallenet, D.; Cruveiller, S.; Rouy, Z.; Barbe, V.; Acosta, C.; Cattolico, L.; Jubin, C.; Lajus, A.; Segurens, B.; et al. Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat. Biotechnol. 2006, 24, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Cordova-Kreylos, A.L.; Fernandez, L.E.; Koivunen, M.; Yang, A.; Flor-Weiler, L.; Marrone, P.G. Isolation and characterization of Burkholderia rinojensis sp. nov., a non-Burkholderia cepacia complex soil bacterium with insecticidal and miticidal activities. Appl. Environ. Microbiol. 2013, 79, 7669–7678. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.A.W.; Gundersen-Rindal, D.; Blackburn, M.; Buyer, J. Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. Int. J. Syst. Evolut. Microbiol. 2007, 57, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Copping, G.L.; Menn, J.J. Biopesticides: A review of their action, applications and efficacy. Pest Manag. Sci. 2000, 56, 651–676. [Google Scholar] [CrossRef]
- Kirst, H.A. The spinosyn family of insecticides: Realizing the potential of natural products research. J. Antibiot. 2010, 63, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Vega, F.E.; Meyling, N.V.; Luangsa-ard, J.J.; Blackwell, M. Fungal Entomopathogens. In Insect Pathology, 2nd ed.; Vega, F., Kaya, H., Eds.; Academic Press: London, UK, 2012; pp. 171–220. [Google Scholar]
- Zimmermann, G. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci. Technol. 2007, 17, 553–596. [Google Scholar] [CrossRef]
- McKinnon, A.C.; Saari, S.; Moran-Diez, M.E.; Meyling, N.V.; Raad, M.; Glare, T.R. Beauveria bassiana as an endophyte: A critical review on associated methodology and biocontrol potential. BioControl 2017, 62, 1–17. [Google Scholar] [CrossRef]
- Zimmermann, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci. Technol. 2007, 17, 879–920. [Google Scholar] [CrossRef]
- Schrank, A.; Vainstein, M.H. Metarhizium anisopliae enzymes and toxins. Toxicon 2010, 56, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Koike, M.; Hiyama, N.; Nagao, H. Genetic, morphological, and virulence characterization of the entomopathogenic fungus Verticillium lecanii. J. Invertebr. Pathol. 2003, 82, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.J.; Goettel, M.S.; Gillespie, D.R. Evaluation of Lecanicillium longisporum, Vertalec® for simultaneous suppression of cotton aphid, Aphis gossypii, and cucumber powdery mildew, Sphaerotheca fuliginea, on potted cucumbers. Biol. Control 2008, 45, 404–409. [Google Scholar] [CrossRef]
- Kaya, H.K.; Koppenhöfer, A.M. Effects of microbial and other antagonistic organism and competition on entomopathogenic nematodes. Biocontrol Sci. Technol. 1996, 6, 357–371. [Google Scholar] [CrossRef]
- Zimmermann, G. The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): Biology, ecology and use in biological control. Biocontrol Sci. Technol. 2008, 18, 865–901. [Google Scholar] [CrossRef]
- Sawyer, A.J.; Griggs, M.H.; Wayne, R. Dimensions, density, and settling velocity of entomophthoralean conidia: Implications for aerial dissemination of spores. J. Invertebr. Pathol. 1994, 63, 43–55. [Google Scholar] [CrossRef]
- Vidal, S.; Jaber, L.R. Entomopathogenic fungi as endophytes: Plant-endophyte-herbivore interactions and prospects for use in biological control. Curr. Sci. 2015, 109, 46–54. [Google Scholar]
- Clem, R.J.; Passarelli, A.L. Baculoviruses: Sophisticated Pathogens of Insects. PLoS Pathog. 2013, 9, e1003729. [Google Scholar] [CrossRef] [PubMed]
- Haase, S.; Sciocco-Cap, A.; Romanowski, V. Baculovirus Insecticides in Latin America: Historical Overview, Current Status and Future Perspectives. Viruses 2015, 7, 2230–2267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohrmann, G.F. Baculovirus Molecular Biology, 2nd ed.; National Library of Medicine (US), National Center for Biotechnology Information: Bethesda, MD, USA, 2011. Available online: http://www.ncbi.nlm.nih.gov/books/NBK49500/ (accessed on 29 August 2018).
- Williams, T.; Virto, C.; Murillo, R.; Caballero, P. Covert infection of insects by baculoviruses. Front. Microbiol. 2017, 8, 1337. [Google Scholar] [CrossRef] [PubMed]
- Katsuma, S.; Koyano, Y.; Kang, W.; Kokusho, R.; Kamita, S.G.; Shimada, T. The baculovirus uses a captured host phosphatase to induce enhanced locomotory activity in host caterpillars. PLoS Pathog. 2012, 8, e1002644. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.; Hoover, K. Baculoviruses and Other Occluded Insect Viruses. In Insect Pathology, 2nd ed.; Vega, F., Kaya, H., Eds.; Academic Press: London, UK, 2012; pp. 73–131. [Google Scholar]
- Sun, X. History and Current Status of Development and Use of Viral Insecticides in China. Viruses 2015, 7, 306–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, E.E.; Clarke, D.J. Nematode Parasites and Entomopathogens. In Insect Pathology, 2nd ed.; Vega, F., Kaya, H., Eds.; Academic Press: London, UK, 2012; pp. 395–424. [Google Scholar]
- Poinar, G.O. Biology and taxonomy of Steinernematidae and Heterorhabditidae. In Entomopathogenic Nematodes in Biological Control; Gaugler, R., Kaya, H.K., Eds.; CRC Press: Boca Raton, FL, USA, 1990; pp. 23–62. [Google Scholar]
- Ffrench-Constant, R.H.; Dowling, A.; Waterfield, N.R. Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 2007, 49, 436–451. [Google Scholar] [CrossRef] [PubMed]
- Shapiro-Ilan, D.I.; Han, R.; Dolinksi, C. Entomopathogenic nematode production and application technology. J. Nematol. 2012, 44, 206–217. [Google Scholar] [PubMed]
- Musser, F.R.; Nyrop, J.P.; Shelton, A.M. Integrating biological and chemical controls in decision making: European corn borer (Lepidoptera: Crambidae) control in sweet corn as an example. J. Econ. Entomol. 2006, 99, 1538–1549. [Google Scholar] [CrossRef] [PubMed]
- Satinder, K.B.; Verma, M.; Tyagi, R.D.; Valéro, J.R. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem. 2006, 41, 323–342. [Google Scholar]
- Lacey, L.A.; Frutos, R.; Kaya, H.K.; Vail, P. Insect pathogens as biological control agents: Do they have a future? Biol. Control 2001, 21, 230–248. [Google Scholar] [CrossRef]
- Glare, T.; Caradus, J.; Gelernter, W.; Jackson, T.; Keyhani, N.; Kohl, J.; Marrone, P.; Morin, L.; Stewart, A. Have biopesticides come of age? Trends Biotechnol. 2012, 30, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Global Markets for Biopesticides (CHM029F). BCC Research. Available online: https://www.bccresearch.com/pressroom/chm/market-forecasts:-modest-growth-for-synthetic-pesticides-big-growth-for-biopesticides (accessed on 30 August 2018).
- Abdelfattah, A.; Malacrinò, A.; Wisniewski, M.; Cacciola, S.O.; Schena, L. Metabarcoding: A powerful tool to investigate microbial communities and shape future plant protection strategies. Biol. Control 2018, 120, 1–10. [Google Scholar] [CrossRef]
- Malacrinò, A.; Campolo, O.; Medina, R.F.; Palmeri, V. Instar- and host-associated differentiation of bacterial communities in the Mediterranean fruit fly Ceratitis capitata. PLoS ONE 2018, 13, e0194131. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.E.; Orrell, P.; Malacrinò, A.; Pozo, M.J. Fungal-Mediated Above–Belowground Interactions: The Community Approach, Stability, Evolution, Mechanisms, and Applications. In Aboveground–Belowground Community Ecology. Ecological Studies (Analysis and Synthesis); Ohgushi, T., Wurst, S., Johnson, S., Eds.; Springer: Cham, Switzerland, 2018; Volume 234, pp. 85–116. [Google Scholar]
Active Substances | Commercial Names 1 | Main Targets |
---|---|---|
Bacillus thuringiensis aizawai | Able-WG, Agree-WP, Florbac, XenTari | Armyworms, diamondback moth |
Bacillus thuringiensis kurstaki | Biobit, Cordalene, Costar-WG, Crymax-WDG, Deliver, Dipel, Foray, Javelin-WG, Lepinox Plus, Lipel, Rapax | Lepidoptera |
Bacillus thuringiensis israelensis | Teknar, VectoBac, Vectobar | Mosquitoes and Black flies |
Bacillus thuringiensis tenebrionis | Novodor, Trident | Colorado potato beetle |
Bacillus thuringiensis sphaericus | VectoLex, VectoMax | Mosquitoes |
Burkholderia spp. | Majestene, Venerate | Chewing and sucking insects and mites; nematodes |
Saccharopolyspora spinosa | Tracer™ 120, Conserve | Insects |
Chromobacterium subtsugae | Grandevo | Chewing and sucking insects and mites |
Bacillus firmus | Bionemagon | Nematodes |
Active Substances | Commercial Names 1 | Main Targets |
---|---|---|
Beauveria bassiana | Bio-Power, Biorin/Kargar, Botanigard, Daman, Naturalis, Nagestra, Beauvitech-WP, Bb-Protec, Racer, Mycotrol | Wide range of insects and mites |
Beauveria brongniartii | Bas-Eco | Helicoverpa armigera, Berry borer, Root grubs |
Hirsutella thompsonii | No-Mite | Spider mites |
Isaria fumosorosea | Nofly | Whitefly |
Metarhizium anisopliae | Biomet/Ankush, Bio-Magic, Devastra, Kalichakra, Novacrid, Met52/BIO1020 granular, Pacer | beetles and caterpillar pests; grasshoppers, termites |
Metarhizium brunneum | Attracap | Agriotes spp. |
Paecilomyces lilacinus | Bio-Nematon, MeloCon, Mytech-WP, Paecilo | Plant pathogenic nematodes |
Paecilomyces fumosoroseus | Bioact WG, No-Fly-WP, Paecilomite | Insects, Mites, Nematodes, Thrips |
Verticillium lecanii | Bio-Catch, Mealikil, Bioline/Verti-Star | Mealy bugs and sucking insects |
Lecanicillium lecanii | Lecatech-WP, Varunastra | Aphids, leafminers, mealybugs, scale insects, thrips, whiteflies |
Myrothecium verrucaria | DiTera | Nematodes |
Active Substances | Commercial Names 1 | Main Targets |
---|---|---|
Helicoverpa zea nucleopolyhedrovirus | Heligen | Helicoverpa spp. and Heliothis virescens |
Spodoptera litura nucleopolyhedrovirus | Biovirus–S, Somstar-SL | Spodoptera litura |
Adoxophyes orana granulovirus (AoGV) | Capex | Summer fruit tortrix moth (Adoxophyes orana) |
Cryptophlebia leucotreta granulovirus | Cryptex | False codling moth (Thaumatotibia leucotreta) |
Helicoverpa armigera nucleopolyhedrovirus (HearNPV) | Biovirus–H, Helicovex, Helitec, Somstar-Ha | African cotton bollworm (Helicoverpa armigera), Corn earworm (H. zea) and other Helicoverpa species (H. virescens, H. punctigera) |
Helicoverpa zea Nuclear Polyhedrosis Virus | Gemstar | Heliothis and Helicoverpa species |
Plutella xylostella granulovirus | Plutellavex | Plutella xylostella |
Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) | Littovir | African cotton leaf worm (Spodoptera littoralis) |
Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) | Gypchek | Lymantria dispar |
Cydia pomonella granulovirus (CpGV) | CYD-X, Madex, Carpovirusine | Cydia pomonella |
Neodiprion abietis nucleopolyhedrovirus (NeabNPV) | Neodiprion abietis NPV | Neodiprion abietis |
Spodoptera exigua nucleopolyhedrovirus (SeNPV) | Spexit, Spod-X | Spodoptera exigua |
Active Substances | Commercial Names 1 | Main Targets |
---|---|---|
Steinernema carpocapsae | Capsanem, Carpocapsae-System, Exhibitline SC, Optinem-C, NemaGard, Nemastar, NemaTrident-T, NemaRed, Nemasys C, Palma-Life | Borer beetles, caterpillars, cranefly, moth larvae, Rhynchophorus ferrugineus, Tipulidae. |
Steinernema feltiae | Entonem, NemaShield, NemaTrident-F, Nemapom, Nemaplus, Nemaflor, NemaFly, Nemafrut, Nemasys F, Nematrip, Nematech-S SP, NemaTrident-S, Nemax-F, Nemycel, Steinernema-System, Optinem-F | Bradysia spp., Chromatomyia syngenesiae, Phytomyza vitalbae, soil dwelling pests, codling moth larvae, sciarids, thrips |
Steinernema kraussei | Kraussei-System | Vine Weevil larvae |
Heterorhabditis bacteriophora | Larvanem, Nemaplant, NemaShield-HB, Nematop, Nematech-H NemaTrident-H, NemaTrident-C, Nema-green, Optinem-H | Otiorhynchus spp., chestnut moths, black vine weevil and soil-dwelling beetle larvae, Melolontha melolontha, caterpillars, cutworms, leafminers |
Heterorhabditis downesi | NemaTrident-CT | Black Vine Weevil Otiorhynchus sulcatus |
Phasmarhabditis hermaphrodita | Slugtech-SP | Molluscs |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiu, L. Microbial Biopesticides in Agroecosystems. Agronomy 2018, 8, 235. https://doi.org/10.3390/agronomy8110235
Ruiu L. Microbial Biopesticides in Agroecosystems. Agronomy. 2018; 8(11):235. https://doi.org/10.3390/agronomy8110235
Chicago/Turabian StyleRuiu, Luca. 2018. "Microbial Biopesticides in Agroecosystems" Agronomy 8, no. 11: 235. https://doi.org/10.3390/agronomy8110235
APA StyleRuiu, L. (2018). Microbial Biopesticides in Agroecosystems. Agronomy, 8(11), 235. https://doi.org/10.3390/agronomy8110235