Nanotechnology for Plant Disease Management
Abstract
:1. Introduction
2. Types of Nanoparticles for Plant Disease Management
Nanoparticles as Protectants
3. Nanoparticles that Act as Carriers
4. A Brief Guide to Insecticides, Fungicides, and Herbicides
5. Nanoparticles as Carriers for Insecticides
6. Nanoparticles as Carriers for Fungicides
7. Nanoparticles as Carriers for Herbicides
8. Nanoparticles and RNAi for Plant Protection
9. Conclusion and Future Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Flood, J. The importance of plant health to food security. Food Secur. 2010, 2, 215–231. [Google Scholar] [CrossRef]
- Stephenson, G.R. Pesticide Use and World Food Production: Risks and Benefits; ACS Publications: Washington, DC, USA, 2003. [Google Scholar]
- Ghormade, V.; Deshpande, M.V.; Paknikar, K.M. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 2011, 29, 792–803. [Google Scholar] [CrossRef] [PubMed]
- Sinha, K.; Ghosh, J.; Sil, P.C. 2—New pesticides: A cutting-edge view of contributions from nanotechnology for the development of sustainable agricultural pest control A2—Grumezescu, Alexandru Mihai. In New Pesticides and Soil Sensors; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Balaure, P.C.; Gudovan, D.; Gudovan, I. Nanopesticides: A new paradigm in crop protection. New Pestic. Soil Sens. 2017, 129–192. [Google Scholar] [CrossRef]
- Hayles, J.; Johnson, L.; Worthley, C.; Losic, D. Nanopesticides: A review of current research and perspectives. New Pestic. Soil Sens. 2017, 193–225. [Google Scholar] [CrossRef]
- Khandelwal, N.; Barbole, R.S.; Banerjee, S.S.; Chate, G.P.; Biradar, A.V.; Khandare, J.J.; Giri, A.P. Budding trends in integrated pest management using advanced micro-and nano-materials: Challenges and perspectives. J. Environ. Manag. 2016, 184, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Peters, J.I.; Williams, R.O. Inhaled nanoparticles—A current review. Int. J. Pharm. 2008, 356, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Kah, M.; Hofmann, T. Nanopesticide research: Current trends and future priorities. Environ. Int. 2014, 63, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Gogos, A.; Knauer, K.; Bucheli, T.D. Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. J. Agric. Food Chem. 2012, 60, 9781–9792. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Kadam, A.; Shinde, S.; Saratale, R.G.; Patra, J.; Ghodake, G. Recent developments in nanotechnology transforming the agricultural sector: A transition replete with opportunities. J. Sci. Food Agric. 2018, 98, 849–864. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Singh, H. Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: Exploring their scope and potential in agriculture. Appl. Microbiol. Biotechnol. 2015, 99, 1097–1107. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, R.; Rodriguez, R.J.; Yao, Y.; Kokini, J.L. Advances in nanotechnology as they pertain to food and agriculture: Benefits and risks. Annu. Rev. Food Sci. Technol. 2017, 8, 467–492. [Google Scholar] [CrossRef] [PubMed]
- Malerba, M.; Cerana, R. Chitosan effects on plant systems. Int. J. Mol. Sci. 2016, 17, 996. [Google Scholar] [CrossRef] [PubMed]
- Rafique, M.; Sadaf, I.; Rafique, M.S.; Tahir, M.B. A review on green synthesis of silver nanoparticles and their applications. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1272–1291. [Google Scholar] [CrossRef] [PubMed]
- Krishnaraj, C.; Ramachandran, R.; Mohan, K.; Kalaichelvan, P. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 93, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Jain, D.; Kothari, S. Green synthesis of silver nanoparticles and their application in plant virus inhibition. J. Mycol. Plant Pathol. 2014, 44, 21. [Google Scholar]
- Elbeshehy, E.K.F.; Elazzazy, A.M.; Aggelis, G. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front. Microbiol. 2015, 6, 453. [Google Scholar] [CrossRef] [PubMed]
- Alkubaisi, N.A.O.; Aref, N.M.M.A.; Hendi, A.A. Method of Inhibiting Plant Virus Using Gold Nanoparticles. US Patents US9198434B1, 1 December 2015. [Google Scholar]
- Cota-Arriola, O.; Onofre Cortez-Rocha, M.; Burgos-Hernández, A.; Marina Ezquerra-Brauer, J.; Plascencia-Jatomea, M. Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: Development of new strategies for microbial control in agriculture. J. Sci. Food Agric. 2013, 93, 1525–1536. [Google Scholar] [CrossRef] [PubMed]
- Kochkina, Z.; Pospeshny, G.; Chirkov, S. Inhibition by chitosan of productive infection of T-series bacteriophages in the Escherichia coli culture. Mikrobiologiia 1994, 64, 211–215. [Google Scholar]
- Pospieszny, H.; Chirkov, S.; Atabekov, J. Induction of antiviral resistance in plants by chitosan. Plant Sci. 1991, 79, 63–68. [Google Scholar] [CrossRef]
- Chirkov, S. The antiviral activity of chitosan (review). Appl. Biochem. Microbiol. 2002, 38, 1–8. [Google Scholar] [CrossRef]
- Kashyap, P.L.; Xiang, X.; Heiden, P. Chitosan nanoparticle based delivery systems for sustainable agriculture. Int. J. Boil. Macromol. 2015, 77, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Mody, V.V.; Cox, A.; Shah, S.; Singh, A.; Bevins, W.; Parihar, H. Magnetic nanoparticle drug delivery systems for targeting tumor. Appl. Nanosci. 2014, 4, 385–392. [Google Scholar] [CrossRef]
- Barik, T.; Sahu, B.; Swain, V. Nanosilica—from medicine to pest control. Parasitol. Res. 2008, 103, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Huang, Q.; Wu, Y. A novel chitosan-poly (lactide) copolymer and its submicron particles as imidacloprid carriers. Pest Manag. Sci. 2011, 67, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Ekambaram, P.; Sathali, A.A.H.; Priyanka, K. Solid lipid nanoparticles: A review. Sci. Rev. Chem. Commun. 2012, 2, 80–102. [Google Scholar]
- Borel, T.; Sabliov, C. Nanodelivery of bioactive components for food applications: Types of delivery systems, properties, and their effect on ADME profiles and toxicity of nanoparticles. Annu. Rev. Food Sci. Technol. 2014, 5, 197–213. [Google Scholar] [CrossRef] [PubMed]
- Tamjidi, F.; Shahedi, M.; Varshosaz, J.; Nasirpour, A. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innov. Food Sci. Emerg. Technol. 2013, 19, 29–43. [Google Scholar] [CrossRef]
- Xu, Z.P.; Stevenson, G.S.; Lu, C.-Q.; Lu, G.Q.; Bartlett, P.F.; Gray, P.P. Stable suspension of layered double hydroxide nanoparticles in aqueous solution. J. Am. Chem. Soc. 2006, 128, 36–37. [Google Scholar] [CrossRef] [PubMed]
- Mitter, N.; Worrall, E.A.; Robinson, K.E.; Li, P.; Jain, R.G.; Taochy, C.; Fletcher, S.J.; Carroll, B.J.; Lu, G.; Xu, Z.P. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 2017, 3, 16207. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Wang, J.; Wang, Q.; O’Hare, D.; Wan, Y. Layered Double Hydroxide Nanotransporter for Molecule Delivery to Intact Plant Cells. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Sparks, T.C.; Nauen, R. IRAC: Mode of action classification and insecticide resistance management. Pestic. Biochem. Physiol. 2015, 121, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Kuck, K.-H.; Leadbeater, A.; Gisi, U. FRAC Mode of Action Classification and Resistance Risk of Fungicides. In Modern Crop Protection Compounds; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012; pp. 539–557. [Google Scholar]
- Liu, Y.; Yan, L.; Heiden, P.; Laks, P. Use of nanoparticles for controlled release of biocides in solid wood. J. Appl. Polym. Sci. 2001, 79, 458–465. [Google Scholar] [CrossRef]
- Lai, F.; Wissing, S.A.; Müller, R.H.; Fadda, A.M. Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: Preparation and characterization. AAPS PharmSciTech 2006, 7, E10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, L.X.; Li, Z.Z.; Zou, H.K.; Liu, A.Q.; Chen, J.F. Controlled release of avermectin from porous hollow silica nanoparticles. Pest Manag. Sci. 2005, 61, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-Z.; Xu, S.-A.; Wen, L.-X.; Liu, F.; Liu, A.-Q.; Wang, Q.; Sun, H.-Y.; Yu, W.; Chen, J.-F. Controlled release of avermectin from porous hollow silica nanoparticles: Influence of shell thickness on loading efficiency, UV-shielding property and release. J. Control. Release 2006, 111, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Z.; Chen, J.F.; Liu, F.; Liu, A.Q.; Wang, Q.; Sun, H.Y.; Wen, L.X. Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag. Sci. 2007, 63, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.-L.; Li, X.-G.; Zhu, F.; Lei, C.-L. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae). J. Agric. Food Chem. 2009, 57, 10156–10162. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.M.; Hwang, I.C.; Park, J.W.; Park, H.J. Photoprotection for deltamethrin using chitosan-coated beeswax solid lipid nanoparticles. Pest Manag. Sci. 2012, 68, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.; Hwang, I.; Park, J.; Park, H. Enhanced payload and photo-protection for pesticides using nanostructured lipid carriers with corn oil as liquid lipid. J. Microencapsul. 2012, 29, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Song, M.-R.; Cui, S.-M.; Gao, F.; Liu, Y.-R.; Fan, C.-L.; Lei, T.-Q.; Liu, D.-C. Dispersible silica nanoparticles as carrier for enhanced bioactivity of chlorfenapyr. J. Pestic. Sci. 2012, 37, 258–260. [Google Scholar] [CrossRef] [Green Version]
- Feng, B.-H.; Peng, L.-F. Synthesis and characterization of carboxymethyl chitosan carrying ricinoleic functions as an emulsifier for azadirachtin. Carbohydr. Polym. 2012, 88, 576–582. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Fan, T.; Xu, Q.; Wu, Y.; Chen, C.; Huang, Q. Construction of novel amphiphilic chitosan copolymer nanoparticles for chlorpyrifos delivery. J. Polym. Res. 2013, 20, 107. [Google Scholar] [CrossRef]
- Lu, W.; Lu, M.L.; Zhang, Q.P.; Tian, Y.Q.; Zhang, Z.X.; Xu, H.H. Octahydrogenated retinoic acid-conjugated glycol chitosan nanoparticles as a novel carrier of azadirachtin: Synthesis, characterization, and in vitro evaluation. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 3932–3940. [Google Scholar] [CrossRef]
- Kumar, S.; Bhanjana, G.; Sharma, A.; Sidhu, M.; Dilbaghi, N. Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydr. Polym. 2014, 101, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Rani, P.U.; Madhusudhanamurthy, J.; Sreedhar, B. Dynamic adsorption of α-pinene and linalool on silica nanoparticles for enhanced antifeedant activity against agricultural pests. J. Pest Sci. 2014, 87, 191–200. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, H.; Sun, C.; Zhao, X.; Cui, B. Construction and evaluation of controlled-release delivery system of Abamectin using porous silica nanoparticles as carriers. Nanoscale Res. Lett. 2014, 9, 2490. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.Q.; Le, V.A.; Hua, Q.C.; Nguyen, T.T. Enhancing Insecticide Activity of Anacardic Acid by Intercalating it into MgAl Layered Double Hydroxides Nanoparticles; Institut für Abfallwirtschaft und Altlasten, Fakultät Umweltwissenschaften, Technische Universität Dresden: Dresden, Germany, 2015. [Google Scholar]
- Wibowo, D.; Zhao, C.-X.; Peters, B.C.; Middelberg, A.P. Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules. J. Agric. Food Chem. 2014, 62, 12504–12511. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Sheng, W.-B.; Li, W.; Tong, Y.-B.; Liu, Z.-Y.; Zhou, F. Adhesive polydopamine coated avermectin microcapsules for prolonging foliar pesticide retention. ACS Appl. Mater. Interfaces 2014, 6, 19552–19558. [Google Scholar] [CrossRef] [PubMed]
- Sheng, W.-B.; Li, W.; Zhang, G.-X.; Tong, Y.-B.; Liu, Z.-Y.; Jia, X. Study on the UV-shielding and controlled-release properties of a polydopamine coating for avermectin. New J. Chem. 2015, 39, 2752–2757. [Google Scholar] [CrossRef]
- Liu, X.; He, B.; Xu, Z.; Yin, M.; Yang, W.; Zhang, H.; Cao, J.; Shen, J. A functionalized fluorescent dendrimer as a pesticide nanocarrier: Application in pest control. Nanoscale 2015, 7, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Meredith, A.N.; Harper, B.; Harper, S.L. The influence of size on the toxicity of an encapsulated pesticide: A comparison of micron-and nano-sized capsules. Environ. Int. 2016, 86, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Glinski, A.; Liebel, S.; Pelletier, È.; Voigt, C.L.; Randi, M.A.F.; Campos, S.X.; Oliveira Ribeiro, C.A.; Filipak Neto, F. Toxicological interactions of silver nanoparticles and organochlorine pesticides in mouse peritoneal macrophages. Toxicol. Mech. Methods 2016, 26, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Suresh, U.; Murugan, K.; Panneerselvam, C.; Rajaganesh, R.; Roni, M.; Al-Aoh, H.A.N.; Trivedi, S.; Rehman, H.; Kumar, S.; Higuchi, A. Suaeda maritima-based herbal coils and green nanoparticles as potential biopesticides against the dengue vector Aedes aegypti and the tobacco cutworm Spodoptera litura. Physiol. Mol. Plant Pathol. 2018, 101, 225–235. [Google Scholar] [CrossRef]
- Paulraj, M.G.; Ignacimuthu, S.; Gandhi, M.R.; Shajahan, A.; Ganesan, P.; Packiam, S.M.; Al-Dhabi, N.A. Comparative studies of Tripolyphosphate and Glutaraldehyde cross-linked chitosan-botanical pesticide nanoparticles and their agricultural applications. Int. J. Boil. Macromol. 2017, 104 Pt B, 1813–1819. [Google Scholar] [CrossRef]
- Liang, J.; Yu, M.; Guo, L.; Cui, B.; Zhao, X.; Sun, C.; Wang, Y.; Liu, G.; Cui, H.; Zeng, Z. Bioinspired Development of P (St–MAA)–Avermectin Nanoparticles with High Affinity for Foliage To Enhance Folia Retention. J. Agric. Food Chem. 2018, 66, 6578–6584. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Qin, H.; Li, L.; Zhou, X.; Wang, W.; Kan, C. Preparation and characterization of controlled-release avermectin/castor oil-based polyurethane nanoemulsions. J. Agric. Food Chem. 2018, 66, 6552–6560. [Google Scholar] [CrossRef] [PubMed]
- Jenne, M.; Kambham, M.; Tollamadugu, N.P.; Karanam, H.P.; Tirupati, M.K.; Balam, R.R.; Shameer, S.; Yagireddy, M. The use of slow releasing nanoparticle encapsulated Azadirachtin formulations for the management ofCaryedon serratusO.(groundnut bruchid). IET Nanobiotechnol. 2018, 12, 963–967. [Google Scholar] [CrossRef] [PubMed]
- Campos, E.V.; Proença, P.L.; Oliveira, J.L.; Melville, C.C.; Vechia, J.F.; Andrade, D.J.; Fraceto, L.F. Chitosan nanoparticles functionalized with β-cyclodextrin: A promising carrier for botanical pesticides. Sci. Rep. 2018, 8, 2067. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, J.L.; Campos, E.V.R.; Pereira, A.E.S.; Nunes, L.E.; da Silva, C.C.; Pasquoto, T.; Lima, R.; Smaniotto, G.; Polanczyk, R.A.; Fraceto, L.F. Geraniol encapsulated in chitosan/gum arabic nanoparticles: A promising system for pest management in sustainable agriculture. J. Agric. Food Chem. 2018, 66, 5325–5334. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, Z.; Saber, M.; Akbari, A.; Mahdavinia, G.R. Encapsulation of Satureja hortensis L. (Lamiaceae) in chitosan/TPP nanoparticles with enhanced acaricide activity against Tetranychus urticae Koch (Acari: Tetranychidae). Ecotoxicol. Environ. Saf. 2018, 161, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.L.D.; Campos, E.N.V.; Pereira, A.E.; Pasquoto, T.; Lima, R.; Grillo, R.; Andrade, D.J.D.; Santos, F.A.D.; Fraceto, L.F. Zein nanoparticles as eco-friendly carrier systems for botanical repellents aiming sustainable agriculture. J. Agric. Food Chem. 2018, 66, 1330–1340. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cheng, J.; Garamus, V.M.; Li, N.; Zou, A. Preparation of an environmentally friendly formulation of the insecticide nicotine hydrochloride through encapsulation in chitosan/tripolyphosphate nanoparticles. J. Agric. Food Chem. 2018, 66, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, X.; Huang, P.; Wang, J.; Du, T.; Du, X.; Lu, X. Magnetic Cu-MOFs embedded within graphene oxide nanocomposites for enhanced preconcentration of benzenoid-containing insecticides. Talanta 2018, 181, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Campos, E.V.; Proença, P.L.; Oliveira, J.L.; Pereira, A.E.; Ribeiro, L.N.; Fernandes, F.O.; Gonçalves, K.C.; Polanczyk, R.A.; Pasquoto-Stigliani, T.; Lima, R. Carvacrol and linalool co-loaded in β-cyclodextrin-grafted chitosan nanoparticles as sustainable biopesticide aiming pest control. Sci. Rep. 2018, 8, 7623. [Google Scholar] [CrossRef] [PubMed]
- Kaziem, A.E.; Gao, Y.; Zhang, Y.; Qin, X.; Xiao, Y.; Zhang, Y.; You, H.; Li, J.; He, S. α-Amylase triggered carriers based on cyclodextrin anchored hollow mesoporous silica for enhancing insecticidal activity of avermectin against Plutella xylostella. J. Hazard. Mater. 2018, 359, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.R.; Kumar, P.S.; Gandhi, M.R.; Al-Dhabi, N.A.; Paulraj, M.G.; Ignacimuthu, S. Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes. Int. J. Boil. Macromol. 2016, 86, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Laks, P.; Heiden, P. Controlled release of biocides in solid wood. III. Preparation and characterization of surfactant-free nanoparticles. J. Appl. Polym. Sci. 2002, 86, 615–621. [Google Scholar] [CrossRef]
- Liu, Y.; Laks, P.; Heiden, P. Controlled release of biocides in solid wood. I. Efficacy against brown rot wood decay fungus (Gloeophyllum trabeum). J. Appl. Polym. Sci. 2002, 86, 596–607. [Google Scholar] [CrossRef]
- Liu, Y.; Laks, P.; Heiden, P. Controlled release of biocides in solid wood. II. Efficacy against Trametes versicolor and Gloeophyllum trabeum wood decay fungi. J. Appl. Polym. Sci. 2002, 86, 608–614. [Google Scholar] [CrossRef]
- Hatfaludi, T.; Liska, M.; Zellinger, D.; Ousman, J.P.; Szostak, M.; Jalava, K.; Lubitz, W. Bacterial ghost technology for pesticide delivery. J. Agric. Food Chem. 2004, 52, 5627–5634. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wen, L.-X.; Li, Z.-Z.; Yu, W.; Sun, H.-Y.; Chen, J.-F. Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater. Res. Bull. 2006, 41, 2268–2275. [Google Scholar] [CrossRef]
- Qian, K.; Shi, T.; Tang, T.; Zhang, S.; Liu, X.; Cao, Y. Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani. Microchim. Acta 2011, 173, 51–57. [Google Scholar] [CrossRef]
- Qian, K.; Shi, T.; He, S.; Luo, L.; Cao, Y. Release kinetics of tebuconazole from porous hollow silica nanospheres prepared by miniemulsion method. Microporous Mesoporous Mater. 2013, 169, 1–6. [Google Scholar] [CrossRef]
- Dar, J.; Soytong, K. Construction and characterization of copolymer nanomaterials loaded with bioactive compounds from Chaetomium species. J. Agric. Technol. 2014, 10, 823–831. [Google Scholar]
- Wanyika, H. Sustained release of fungicide metalaxyl by mesoporous silica nanospheres. J. Nanopart. Res. 2013, 15, 1831. [Google Scholar] [CrossRef]
- Xu, L.; Cao, L.-D.; Li, F.-M.; Wang, X.-J.; Huang, Q.-L. Utilization of chitosan-lactide copolymer nanoparticles as controlled release pesticide carrier for pyraclostrobin against Colletotrichum gossypii Southw. J. Dispers. Sci. Technol. 2014, 35, 544–550. [Google Scholar] [CrossRef]
- Mei, X.D.; Liang, Y.H.; Zhang, T.; Ning, J.; Wang, Z.Y. An amphiphilic chitosan-polylactide graft copolymer and its nanoparticles as fungicide carriers. Proc. Adv. Mater. Res. 2014, 1051, 21–28. [Google Scholar] [CrossRef]
- Campos, E.V.R.; De Oliveira, J.L.; Da Silva, C.M.G.; Pascoli, M.; Pasquoto, T.; Lima, R.; Abhilash, P.; Fraceto, L.F. Polymeric and solid lipid nanoparticles for sustained release of carbendazim and tebuconazole in agricultural applications. Sci. Rep. 2015, 5, 13809. [Google Scholar] [CrossRef] [PubMed]
- Janatova, A.; Bernardos, A.; Smid, J.; Frankova, A.; Lhotka, M.; Kourimská, L.; Pulkrabek, J.; Kloucek, P. Long-term antifungal activity of volatile essential oil components released from mesoporous silica materials. Ind. Crop. Prod. 2015, 67, 216–220. [Google Scholar] [CrossRef]
- Ilk, S.; Saglam, N.; Özgen, M. Kaempferol loaded lecithin/chitosan nanoparticles: Preparation, characterization, and their potential applications as a sustainable antifungal agent. Artif. Cells Nanomed. Biotechnol. 2017, 45, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Nasseri, M.; Golmohammadzadeh, S.; Arouiee, H.; Jaafari, M.R.; Neamati, H. Antifungal activity of Zataria multiflora essential oil-loaded solid lipid nanoparticles in-vitro condition. Iran. J. Basic Med. Sci. 2016, 19, 1231–1237. [Google Scholar] [PubMed]
- Hou, R.; Zhang, Z.; Pang, S.; Yang, T.; Clark, J.M.; He, L. Alteration of the nonsystemic behavior of the pesticide ferbam on tea leaves by engineered gold nanoparticles. Environ. Sci. Technol. 2016, 50, 6216–6223. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Zhang, H.; Cao, C.; Zhang, J.; Li, F.; Huang, Q. Quaternized chitosan-capped mesoporous silica nanoparticles as nanocarriers for controlled pesticide release. Nanomaterials 2016, 6, 126. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kumar, D.; Dilbaghi, N. Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles. Environ. Sci. Pollut. Res. 2017, 24, 926–937. [Google Scholar]
- Zhao, P.; Cao, L.; Ma, D.; Zhou, Z.; Huang, Q.; Pan, C. Synthesis of Pyrimethanil-Loaded Mesoporous Silica Nanoparticles and Its Distribution and Dissipation in Cucumber Plants. Molecules 2017, 22, 817. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Cao, L.; Ma, D.; Zhou, Z.; Huang, Q.; Pan, C. Translocation, distribution and degradation of prochloraz-loaded mesoporous silica nanoparticles in cucumber plants. Nanoscale 2018, 10, 1798–1806. [Google Scholar] [CrossRef] [PubMed]
- Hasheminejad, N.; Khodaiyan, F.; Safari, M. Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chem. 2019, 275, 113–122. [Google Scholar] [CrossRef]
- Huang, W.; Wang, C.; Duan, H.; Bi, Y.; Wu, D.; Du, J.; Yu, H. Synergistic Antifungal Effect of Biosynthesized Silver Nanoparticles Combined with Fungicides. Int. J. Agric. Biol. 2018, 20, 1225–1229. [Google Scholar]
- Kalagatur, N.K.; Ghosh, O.S.N.; Sundararaj, N.; Mudili, V. Antifungal activity of chitosan nanoparticles encapsulated with Cymbopogon martinii essential oil on plant pathogenic fungi Fusarium graminearum. Front. Pharmacol. 2018, 9, 610. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, C.; Wang, Y.; Zhang, Y.; Li, X. Compound Pesticide Controlled Release System Based on the Mixture of poly (butylene succinate) and PLA. J. Microencapsul. 2018, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Zhang, H.; Zhou, Z.; Xu, C.; Shan, Y.; Lin, Y.; Huang, Q. Fluorophore-free luminescent double-shelled hollow mesoporous silica nanoparticles as pesticide delivery vehicles. Nanoscale 2018, 10, 20354–20365. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.-S.; Lee, S.-Y.; Yang, J.-H.; Hwang, H.S.; Park, I. Paraquat release control using intercalated montmorillonite compounds. J. Phys. Chem. Solids 2010, 71, 460–463. [Google Scholar] [CrossRef]
- Kanimozhi, V.; Chinnamuthu, C. Engineering core/hallow shell nanomaterials to load herbicide active ingredient for controlled release. Res. J. Nanosci. Nanotechnol. 2012, 2, 58–69. [Google Scholar] [CrossRef]
- Tan, D.; Yuan, P.; Annabi-Bergaya, F.; Dong, F.; Liu, D.; He, H. A comparative study of tubular halloysite and platy kaolinite as carriers for the loading and release of the herbicide amitrole. Appl. Clay Sci. 2015, 114, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Viirlaid, E.; Riiberg, R.; Mäeorg, U.; Rinken, T. Glyphosate attachment on aminoactivated carriers for sample stabilization and concentration. Agron. Res. 2009, 13, 1152–1159. [Google Scholar]
- Chidambaram, R. Application of rice husk nanosorbents containing 2, 4-dichlorophenoxyacetic acid herbicide to control weeds and reduce leaching from soil. J. Taiwan Inst. Chem. Eng. 2016, 63, 318–326. [Google Scholar]
- dos Santos Silva, M.; Cocenza, D.S.; Grillo, R.; de Melo, N.F.S.; Tonello, P.S.; de Oliveira, L.C.; Cassimiro, D.L.; Rosa, A.H.; Fraceto, L.F. Paraquat-loaded alginate/chitosan nanoparticles: Preparation, characterization and soil sorption studies. J. Hazard. Mater. 2011, 190, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Grillo, R.; dos Santos, N.Z.P.; Maruyama, C.R.; Rosa, A.H.; de Lima, R.; Fraceto, L.F. Poly (ɛ-caprolactone) nanocapsules as carrier systems for herbicides: Physico-chemical characterization and genotoxicity evaluation. J. Hazard. Mater. 2012, 231, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Grillo, R.; Rosa, A.; Fraceto, L.F. Poly (ε-caprolactone) nanocapsules carrying the herbicide atrazine: Effect of chitosan-coating agent on physico-chemical stability and herbicide release profile. Int. J. Environ. Sci. Technol. 2014, 11, 1691–1700. [Google Scholar] [CrossRef]
- Grillo, R.; Pereira, A.E.; Nishisaka, C.S.; de Lima, R.; Oehlke, K.; Greiner, R.; Fraceto, L.F. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: An environmentally safer alternative for weed control. J. Hazard. Mater. 2014, 278, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Grillo, R.; Clemente, Z.; de Oliveira, J.L.; Campos, E.V.R.; Chalupe, V.C.; Jonsson, C.M.; de Lima, R.; Sanches, G.; Nishisaka, C.S.; Rosa, A.H. Chitosan nanoparticles loaded the herbicide paraquat: The influence of the aquatic humic substances on the colloidal stability and toxicity. J. Hazard. Mater. 2015, 286, 562–572. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, J.L.; Campos, E.n.V.R.; Gonçalves da Silva, C.M.; Pasquoto, T.; Lima, R.; Fraceto, L.F. Solid lipid nanoparticles co-loaded with simazine and atrazine: Preparation, characterization, and evaluation of herbicidal activity. J. Agric. Food Chem. 2015, 63, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, C.R.; Guilger, M.; Pascoli, M.; Bileshy-José, N.; Abhilash, P.; Fraceto, L.F.; de Lima, R. Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Sun, X.; Song, H.; Wang, W.; Ye, Z.; Shi, L.; Ding, K. Glutathione-Responsive Carboxymethyl Chitosan Nanoparticles for Controlled Release of Herbicides. Mater. Sci. Appl. 2015, 6, 591–604. [Google Scholar] [CrossRef]
- De Oliveira, C.R.; Fraceto, L.F.; Rizzi, G.M.; Salla, R.F.; Abdalla, F.C.; Costa, M.J.; Silva-Zacarin, E.C.M. Hepatic effects of the clomazone herbicide in both its free form and associated with chitosan-alginate nanoparticles in bullfrog tadpoles. Chemosphere 2016, 149, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Wu, Y.; Zhao, C.; Xu, Y.; Lu, J.; Xiang, S.; Zong, F.; Wu, X. Polymeric Nanoparticles as a Metolachlor Carrier: Water-Based Formulation for Hydrophobic Pesticides and Absorption by Plants. J. Agric. Food Chem. 2017, 65, 7371–7378. [Google Scholar] [CrossRef] [PubMed]
- Jacques, M.T.; Oliveira, J.L.; Campos, E.V.; Fraceto, L.F.; Ávila, D.S. Safety assessment of nanopesticides using the roundworm Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2017, 139, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Schnoor, B.; Elhendawy, A.; Joseph, S.; Putman, M.; Chacón-Cerdas, R.; Flores-Mora, D.; Bravo-Moraga, F.; Gonzalez-Nilo, F.; Salvador-Morales, C. Engineering Atrazine Loaded Poly (lactic-co-glycolic Acid) Nanoparticles to Ameliorate Environmental Challenges. J. Agric. Food Chem. 2018, 66, 7889–7898. [Google Scholar] [CrossRef] [PubMed]
- Baulcombe, D. RNA silencing in plants. Nature 2004, 431, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D. MicroRNAs: Genomics, biogensis, mechanism and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Burand, J.P.; Hunter, W.B. RNAi: Future in insect management. J. Invertebr. Pathol. 2013, 112, S68–S74. [Google Scholar] [CrossRef] [PubMed]
- Maillard, P.; Ciaudo, C.; Marchais, A.; Li, Y.; Jay, F.; Ding, S.; Voinnet, O. Antiviral RNA interference in mammalian cells. Science 2013, 342, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Borges, F.; Martienssen, R.A. The expanding world of small RNAs in plants. Nat. Rev. Mol. Cell Boil. 2015, 16, 727–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, K.E.; Worrall, E.A.; Mitter, N. Double stranded RNA expression and its topical application for non-transgenic resistance to plant viruses. J. Plant Biochem. Biotechnol. 2014, 23, 231–237. [Google Scholar] [CrossRef]
- Mitter, N.; Worrall, E.A.; Robinson, K.E.; Xu, Z.P.; Carroll, B.J. Induction of virus resistance by exogenous application of double-stranded RNA. Curr. Opin. Virol. 2017, 26, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Li-Byarlay, H.; Li, Y.; Stroud, H.; Feng, S.; Newman, T.C.; Kaneda, M.; Hou, K.K.; Worley, K.C.; Elsik, C.G.; Wickline, S.A. RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee. Proc. Natl. Acad. Sci. USA 2013, 110, 12750–12755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thairu, M.; Skidmore, I.; Bansal, R.; Nováková, E.; Hansen, T.; Li-Byarlay, H.; Wickline, S.; Hansen, A. Efficacy of RNA interference knockdown using aerosolized short interfering RNAs bound to nanoparticles in three diverse aphid species. Insect Mol. Boil. 2017, 26, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Debnath, N.; Cui, Y.; Unrine, J.; Palli, S.R. Chitosan, carbon quantum dot, and silica nanoparticle mediated dsRNA delivery for gene silencing in Aedes aegypti: A comparative analysis. ACS Appl. Mater. Interfaces 2015, 7, 19530–19535. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, J.; Zhu, K. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol. Boil. 2010, 19, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Mysore, K.; Flannery, E.; Michel, K.; Severson, D.W.; Zhu, K.Y.; Duman-Scheel, M. Chitosan/interfering RNA nanoparticle mediated gene silencing in disease vector mosquito larvae. J. Vis. Exp. JoVE 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, A.; Biedenkopf, D.; Furch, A.; Weber, L.; Rossbach, O.; Abdellatef, E.; Linicus, L.; Johannsmeier, J.; Jelonek, L.; Goesmann, A. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog. 2016, 12, e1005901. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Weiberg, A.; Lin, F.-M.; Thomma, B.P.; Huang, H.-D.; Jin, H. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat. Plants 2016, 2, 16151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.K.B.; Hunter, W.B.; Park, A.L.; Gundersen-Rindal, D.E. Double strand RNA delivery system for plant-sap-feeding insects. PLoS ONE 2017, 12, e0171861. [Google Scholar] [CrossRef] [PubMed]
- San Miguel, K.; Scott, J.G. The next generation of insecticides: DsRNA is stable as a foliar-applied insecticide. Pest Manag. Sci. 2016, 72, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Kookana, R.S.; Boxall, A.B.A.; Reeves, P.T.; Ashauer, R.; Beulke, S.; Chaudhry, Q.; Cornelis, G.; Fernandes, T.F.; Gan, J.; Kah, M.; et al. Nanopesticides: Guiding Principles for Regulatory Evaluation of Environmental Risks. J. Agric. Food Chem. 2014, 62, 4227–4240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, S.; Keswani, C.; Abhilash, P.; Fraceto, L.F.; Singh, H.B. Integrated Approach of Agri-nanotechnology: Challenges and Future Trends. Front. Plant Sci. 2017, 8, 471. [Google Scholar] [CrossRef] [PubMed]
- Arts, J.H.; Hadi, M.; Keene, A.M.; Kreiling, R.; Lyon, D.; Maier, M.; Michel, K.; Petry, T.; Sauer, U.G.; Warheit, D. A critical appraisal of existing concepts for the grouping of nanomaterials. Regul. Toxicol. Pharmacol. 2014, 70, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Parisi, C.; Vigani, M.; Rodríguez-Cerezo, E. Agricultural Nanotechnologies: What are the current possibilities? Nano Today 2015, 10, 124–127. [Google Scholar] [CrossRef] [Green Version]
Insecticide (IRAC MoA Classification a) | Nanoparticle | Crop | Target Pest | Toxicity or Soil Leaching | Reference |
---|---|---|---|---|---|
Chlorpyrifos (1B) | PVC | Birch and southern yellow pine | - | - | [36] |
A. arborescens L. essential oil * | SLN | - | - | - | [37] |
Avermectin (6) | PHSN | - | - | - | [38] |
Avermectin (6) | PHSN | - | - | - | [39] |
Avermectin (6) | PHSN | - | - | - | [40] |
Garlic essential oil * | PEG | Rice (harvested) | Red flour beetle (T. castaneum) | - | [41] |
Deltamethrin (3A) | Chitosan-coated beeswax SLN | - | - | - | [42] |
Deltamethrin (3A) | Corn oil (liquid lipid) and beeswax SLN | - | - | - | [43] |
Chlorfenapyr (13) | Silica | Brassica chinese | Cotton bollworm (H. armigera) P. xylostella | - | [44] |
Azadirachtin (UN) | Chitosan | - | - | - | [45] |
Chlorpyrifos (1B) | Chitosan/PLA | - | - | - | [46] |
Azadirachtin (UN) | Chitosan | - | Tobacco cutworm (S. litura) culture ovarian cell lines Sl-1 | - | [47] |
Imidacloprid (4A) | Sodium alginate | Plants (unspecified) | Leafhopper (Jassids) | Vero cells (monkey) | [48] |
α-pinene * and Linalool * | Silica | Castor leaf discs | Tobacco cutworm (S. litura) Castor semi-looper (A. janata) | - | [49] |
Abamectin (6) | Porous silica | - | - | - | [50] |
Anacardic acid * Abamectin (6) Cyhalothrin (3A) | LDH | Mustard leaves (B. juncea) | Tobacco cutworm (S. litura) | - | [51] |
Fipronil (2B) | Silica shell (oil core) | - | Termites (C. acinaciformis) | - | [52] |
Avermectin (6) | Polydopamine | Cotton leaves and corn leaves | - | - | [53] |
Avermectin (6) | Polydopamine | - | - | - | [54] |
Thiamethoxam (4A) | Dendrimers | - | Cotton bollworm cells and larvae (H. armigera) | - | [55] |
λ-cyhalothrin (3A) | Hollow polymeric shell | - | - | Embryonic zebrafish (D. rerio) | [56] |
Organochlorine pesticides (EPA 8080 pesticide mix) (2A) | Polymer coated silver | - | - | Mouse peritoneal macrophages | [57] |
S. maritima-based herbal coils * | Silver | Cotton leaf discs | Tobacco cutworm (S. litura) | - | [58] |
PONNEEM * | Chitosan | - | Cotton bollworm larvae (H. armigera) | - | [59] |
Avermectin (6) | Polydopamine | Cucumber Broccoli | Aphids (unspecified) | - | [60] |
Avermectin (6) | Castor oil-based polyurethane | Corn leaves | - | - | [61] |
Azadirachtin (UN) | Zinc oxide and chitosan | - | Groundnut bruchid (C. serratus) | - | [62] |
Carvacrol * Linalool * | Chitosan | - | Mite (T. urticae) | - | [63] |
Geraniol * | Chitosan/Gum Arabic | - | Whitefly (B. tabaei) | - | [64] |
S. hortensis L. essential oil * | Chitosan/TPP | - | Mite (T. urticae) | - | [65] |
Geraniol and R-citronellal essential oils * | Zein | - | Mite (T. urticae) | Bean seed (P. vulgaris) Two fibroblast cell lines (hamster and mouse) | [66] |
Nicotine (4B) | Chitosan/TPP | - | House fly (M. domestica) | - | [67] |
Imidacloprid (4A) Cyfluthrin (3A) | Magnetic nanocomposites | - | - | - | [68] |
Carvacrol * Linalool * | Chitosan | Bean leaf discs | Corn earworm (H. armigera) and Mites (T. urticae) | Mouse fibroblast and pulmonary cells Maize (Z. mays) | [69] |
Avermectin (6) | PHSN | Brassica oleracea | P. xylostella larvae | - | [70] |
Fungicide (FRAC Code a) | Nanoparticle | Crop | Target Pest | Toxicity or Soil Leaching | Reference |
---|---|---|---|---|---|
Tebuconazole (3) Chlorothalonil (M 05) | PVP and PVP copolymer | Southern pine sapwood | G. trabeum | - | [36] |
Tebuconazole (3) Chlorothalonil (M 05) | PVP and PVP copolymer | Southern yellow pine | G. trabeum | - | [73] |
Tebuconazole (3) Chlorothalonil (M 05) KATHON 930 (32) | PVC | Birch and Southern yellow pine | Turkey tail (T. versicolor) G. trabeum | - | [74] |
Tebuconazole (3) Chlorothalonil (M 05) | PVP and PVP copolymer | Birch and Southern yellow pine | Turkey tail (T. versicolor) G. trabeum | - | [72] |
Tebuconazole (3) | Bacterial ghosts | Barley, wheat, and cucumber | E. graminis, L. nodorum, P. teres and S. fuliginea | Barley (necrosis and yellowing) | [75] |
Validamycin (26) | PHSN | - | - | - | [76] |
Validamycin (26) | Calcium carbonate | - | R. solani | - | [77] |
Tebuconazole (3) | PHSN | - | - | - | [78] |
Bioactive compounds from Chaetomium spp. * | PLA | - | - | - | [79] |
Metalaxyl (4) | MSN | - | - | Soil sorption | [80] |
Pyraclostrobin (11) | Chitosan–PLA graft copolymer | - | C. gossypii Southw. | - | [81] |
Flusilazole (3) | Chitosan–PLA graft copolymer | - | - | - | [82] |
Bioactive compounds from Chaetomium spp. * | PLA | - | - | - | [79] |
Carbendazim (1) Tebuconazole (3) | Polymeric and SLN | Bean seeds | - | Mouse fibroblast cells and soil sorption | [83] |
7 different volatile essential oils * | MSN | - | A. niger | - | [84] |
Kaempferol * | Lecithin/Chitosan | - | F. oxysporum | - | [85] |
Zataria multiflora essential oil * | SLN | - | A. ochraceus, A. niger, A. flavus, A. solani, R. solani and Black bread mold (R. stolonifera) | - | [86] |
Ferbam (M 03) | Gold | Tea leaves | - | - | [87] |
Pyraclostrobin (11) | Chitosan/MSN | - | P. asparagi | - | [88] |
Carbendazim (1) | Chitosan/Pectin | Cucumber Maize Tomato | F. oxysporum and A. parasiticus | E. coli and S. aureus | [89] |
Pyrimethanil (9) | MSN | Cucumber | - | - | [90] |
Carbendazim (1) Metalaxyl (4) Myclobutanil (3) Tebuconazole (3) | Magnetic nanocomposites | - | - | - | [68] |
Prochloraz (3) | PHSN | Cucumber | B. cinerea | - | [91] |
Clove essential oil * | Chitosan | - | A. niger | - | [92] |
Tebuconazole (3) Propineb (M 03) Fludioxonil (12) | Silver | - | B. maydis | - | [93] |
Cymbopogon martini essential oil * | Chitosan | Maize grains | F. graminearum | - | [94] |
Azoxystrobin (11) Difenoconazole (3) | PBS/PLA | - | - | Zebrafish | [95] |
Pyraclostrobin (11) | MSN | - | P. asparagi | - | [96] |
Herbicide (HRAC MoA Group a) | Nanoparticle | Target Pest | Toxicity or Soil Leaching | Reference |
---|---|---|---|---|
Paraquat (L) | Montmorillonite | - | - | [97] |
Paraquat (L) | Alginate/chitosan | - | Lara and Carvoeiro soil sorption | [102] |
Pendimethalin (D) | Manganese carbonate core-shell | - | - | [98] |
Ametryn (C) Atrazine (C) Simazine (C) | Poly(ε-caprolactone) | - | Human blood cells A. cepa | [103] |
Atrazine (C) | Poly(ε-caprolactone) coated in chitosan | - | - | [104] |
Paraquat (L) | Chitosan/tripolyphosphate | Maize Mustard (Brassica sp.) | Chinese hamster ovary cells A. cepa Soil sorption | [105] |
Paraquat (L) | Chitosan/tripolyphosphate | - | Microalga (P. subcapitata) A. cepa | [106] |
Atrazine (C) Simazine (C) | SLN | R. raphanistrum | Mouse fibroblast cells Maize | [107] |
Amitrole (Q) | Tubular halloysite and platy kaolinite | - | - | [99] |
Imazapic (B) and Imazapyr (B) combined | Alginate/chitosanChitosan/tripolyphosphate | Black-jack (B. pilosa) | Chinese hamster ovary cells A. cepa Soil biota | [108] |
Diuron (C) | Chitosan | E. crus-galli | Maize | [109] |
Glyphosate (M) | Amino-activated aminopropyl silane coated magnetic iron oxide | - | - | [100] |
2,4-D (I) | Nanosized rice husk | Maize | Brassica Sp. Soil sorption | [101] |
Clomazone (Q) | Chitosan/alginate | - | Liver bullfrog tadpoles (L. catesbeianus) | [110] |
Metolachlor (K) | Polymer | Rice D. sanguinalis A. thaliana | Preosteoblast cell line (mammal) | [111] |
Paraquat (L) Simazine (C) Atrazine (C) | SLN Polymeric Chitosan/tripolyphosphate | - | C. elegans | [112] |
Atrazine (C) | Poly (lactic-co-glycolic Acid) | Potato plant | - | [113] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Worrall, E.A.; Hamid, A.; Mody, K.T.; Mitter, N.; Pappu, H.R. Nanotechnology for Plant Disease Management. Agronomy 2018, 8, 285. https://doi.org/10.3390/agronomy8120285
Worrall EA, Hamid A, Mody KT, Mitter N, Pappu HR. Nanotechnology for Plant Disease Management. Agronomy. 2018; 8(12):285. https://doi.org/10.3390/agronomy8120285
Chicago/Turabian StyleWorrall, Elizabeth A., Aflaq Hamid, Karishma T. Mody, Neena Mitter, and Hanu R. Pappu. 2018. "Nanotechnology for Plant Disease Management" Agronomy 8, no. 12: 285. https://doi.org/10.3390/agronomy8120285