Long-Term Winter Wheat (Triticum aestivum L.) Seasonal Irrigation Amount, Evapotranspiration, Yield, and Water Productivity under Semiarid Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Station Area
2.2. Experimental Design and Crop Management
2.3. Crop Seasonal Evapotranspiration Estimation
2.4. Thermal Unit (TU)
2.5. Crop Water Use Efficiency
2.6. Statistical Analysis
3. Results and Discussion
3.1. Climatic Conditions during the Winter Wheat Growing Seasons
3.2. Winter Wheat Water Use
3.3. Winter Wheat Evapotranspiration
3.4. Long-Term Winter Wheat Yield
3.5. Winter Wheat Crop-, Irrigation-, and Evapotranspiration Water Use Efficiency
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United States Department of Agriculture; National Agricultural Statistics Service. Small Grains 2017 Summary (September 2017) 5 USDA. In Proceedings of the USDA NASS Data Users’ Meeting, Kansas City, MI, USA, 24 October 2017.
- Irmak, S.; Djaman, K.; Sharma, V. Evapotranspiration and single (normal) and basal crop coefficients of winter wheat (Triticum aestivum L.). Trans. ASABE 2015, 58, 1047–1066. [Google Scholar]
- United States Department of Agriculture. New Mexico Annual Bulletin—USDA; National Agricultural Statistics Service in Cooperation with New Mexico Department of Agriculture: Washington, DC, USA, 2013.
- United States Department of Agriculture. New Mexico Annual Bulletin—USDA; National Agricultural Statistics Service in Cooperation with New Mexico Department of Agriculture: Washington, DC, USA, 2015.
- Lobell, D.B.; Sibley, A.; Ortiz-Monasterio, J.I. Extreme heat effects on wheat senescence in India. Nat. Clim. Chang. 2012, 2, 186–189. [Google Scholar] [CrossRef]
- Graybosch, R.A.; Peterson, C.J. Genetic improvement in winter wheat yields in the Great Plains of North America, 1959–2008. Crop Sci. 2010, 50, 1882–1890. [Google Scholar] [CrossRef]
- Chen, S.; Sun, H.; Shao, L.; Zhang, X. Performance of winter wheat under different irrigation regimes associated with weather conditions in the North China Plain. Aust. J. Crop Sci. 2014, 8, 550–557. [Google Scholar]
- Sun, H.Y.; Liu, C.M.; Zhang, X.Y.; Shen, Y.J.; Zhang, Y.Q. Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agric. Water Manag. 2006, 85, 211–218. [Google Scholar] [CrossRef]
- Liu, J.; David Wiberg, D.; Zehnder, A.J.B.; Yang, H. Modeling the role of irrigation in winter wheat yield, crop water productivity, and production in China. Irrig. Sci. 2007, 26, 21–33. [Google Scholar] [CrossRef]
- Qiu, G.Y.; Wang, L.; He, X.; Zhang, X.; Chen, S.; Chen, J.; Yang, Y. Water use efficiency and evapotranspiration of winter wheat and its response to irrigation regime in the north China plain. Agric. For. Meteorol. 2008, 148, 1848–1859. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Vigil, M.F.; Anderson, R.L.; Bowman, R.A.; Benjamin, J.G.; Halvorson, A.D. Cropping system influence on planting water content and yield of winter wheat. Agron. J. 2002, 94, 962–967. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Vigil, M.F.; Benjamin, J.G. Evaluating decision rules for dryland rotation crop selection. Field Crops Res. 2011, 120, 254–261. [Google Scholar] [CrossRef]
- Musick, J.T.; Jones, O.R.; Stewart, B.A.; Dusek, D.A. Water-Yield relationship for irrigated and dryland wheat in the US southern plains. Agron. J. 1994, 86, 980–986. [Google Scholar] [CrossRef]
- Howell, T.A.; Steiner, J.L.; Schneider, A.D.; Evett, S.R. Evapotranspiration of irrigated winter wheat: Southern high plains. Trans. ASAE 1995, 38, 745–759. [Google Scholar] [CrossRef]
- Kang, G.; Wang, C.; Sun, G.; Wang, Z. Salicylic acid changes activities of H2O2 metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environ. Exp. Bot. 2003, 50, 9–15. [Google Scholar] [CrossRef]
- Drerup, P.; Brueck, H.S.; Scherer, H.W. Evapotranspiration of winter wheat estimated with the FAO 56 approach and NDVI measurements in a temperate humid climate of NW Europe. Agric. Water Manag. 2017, 192, 180–188. [Google Scholar] [CrossRef]
- Jensen, M.E. Water consumption by agricultural plants. Water Defic. Plant Growth 1968, 2, 1–22. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration: Guide-lines for computing crop water requirements. In FAO Irrigation and Drainage Paper; No. 56; FAO: Rome, Italy, 1998; 300p. [Google Scholar]
- ASCE-EWRI. The ASCE standardized reference evapotranspiration equation. In Standardization of Reference Evapotranspiration Task Committee Final Report; Allen, R.G., Walter, I.A., Elliot, R.L., Eds.; Environmental and Water Resources Institute (EWRI) of the American Society of Civil Engineers, ASCE: Reston, VA, USA, 2005; p. 213. [Google Scholar]
- SAS/STAT 9.3. User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2011. [Google Scholar]
- Musick, J.T.; Porter, K.B. Wheat. In Irrigation of Agricultural Crops. Agronomy Monograph No. 30; Steward, B.A., Nielson, D.R, Eds.; ASA; CSSA; SSSA: Madison, WI, USA, 1990; pp. 597–638. [Google Scholar]
- Howell, T.A.; Steiner, J.L.; Schneider, A.D.; Evett, S.R.; Tolk, J.A. Seasonal and maximum daily evapotranspiration of irrigated winter wheat, sorghum, and corn—Southern High Plains. Trans. ASAE 1997, 40, 623–634. [Google Scholar] [CrossRef]
- Schlegel, J.A.; Assefa, Y.; Haag, L.A.; Thompson, C.R.; Stone, L.R. Long-Term Tillage on Yield and Water Use of Grain Sorghum and Winter Wheat. Agron. J. 2018, 110, 269–280. [Google Scholar] [CrossRef]
- Ko, J.; Piccinni, G.; Marek, T.; Howell, T. Determination of growth-stage-specific crop coefficients (Kc) of cotton and wheat. Agric. Water Manag. 2009, 96, 1691–1697. [Google Scholar] [CrossRef]
- Luo, M.C.; Ma, Y.; You, F.M.; Anderson, O.D.; Kopecký, D.; Šimková, H.; Šafář, J.; Doležel, J.; Gill, B.; McGuir, P.E.; et al. Feasibility of physical map construction from fingerprinted bacterial artificial chromosome libraries of polyploid plant species. BMC Genom. 2010, 11, 122. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Rudd, J.C.; Liu, S.; Jessup, K.E.; Devkota, R.N.; Mahano, J.R. Yield determination and water-use efficiency of wheat under water-limited conditions in the U.S. Southern High Plains. Crop Sci. 2014, 54, 34–47. [Google Scholar] [CrossRef]
- Howell, T.A.; Tolk, J.A.; Evett, S.R.; Copeland, K.S.; Dusek, D.A. Evapotranspiration of deficit irrigated sorghum and winter wheat. In Proceedings of the USCID Fourth International Conference on Irrigation and Drainage. The Role of Irrigation and Drainage in a Sustainable Future, Sacramento, CA, USA, 3–6 October 2007; Clemmens, A.J., Ed.; U.S. Committee on Irrigation and Drainage (USDID): Denver, CO, USA, 2007; pp. 223–239. [Google Scholar]
- Morgan, C.L. Mid-parent advantage and heterosis in F1 hybrids of wheat from crosses among old and modern varieties. J. Agric. Sci. 1998, 130, 287–295. [Google Scholar] [CrossRef]
- Zhong, Y.; Shangguan, Z. Water Consumption Characteristics and Water Use Efficiency of Winter Wheat under Long-Term Nitrogen Fertilization Regimes in Northwest China. PLoS ONE 2014, 9, e98850. [Google Scholar] [CrossRef] [PubMed]
- Baenziger, P.S.; Graybosch, R.A.; Regassa, T.; Klein, R.N.; Kruger, G.R.; Santra, D.K.; Xu, L.; Rose, D.J.; Wegulo, S.N.; Jin, Y.; et al. Registration of ‘NE06545′ (Husker Genetics Brand Freeman) hard red winter wheat. J. Plant Regist. 2014, 8, 279–284. [Google Scholar] [CrossRef]
- Peck, R.A.; Kirkham, M.B. Water relations and yield of winter wheat grown under three water regimes in the high plains. Proc. Okla. Acad. Sci. 1979, 59, 53–59. [Google Scholar]
- Pope, D.; Hay, D. Irrigation. In Wheat Production Handbook; C-529, Coop. Ext. Serv.; Kansas State University: New York, NY, USA, 1976; pp. 12–15. [Google Scholar]
- Porter, J.R.; Gawith, M. Temperatures and the growth and development of wheat: A review. Eur. J. Agron. 1999, 10, 23–36. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.; Thomson, A.M; Wolfe, D. Climate impacts on agriculture: Implications for crop production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef]
- Hou, R.X.; Ouyang, Z.; Li, Y.; Wilson, G.; Li, H. Is the change of winter wheat yield under warming caused by shortened reproductive period? Ecol. Evol. 2012, 2, 2999–3008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Chen, C.; Luo, Q.; Li, L.; Yu, Q. Climate change effects on wheat yield and water use in oasis cropland. Int. J. Plant Prod. 2011, 5, 83–94. [Google Scholar]
- Fogarasi, J.; Kemény, G.; Molnár, A.; Keményné, H.Z.; Zubor-Nemes, A.; Kiss, A. Modelling climate effects on Hungarian wheat and maize yields. Stud. Agric. Econom. 2016, 118, 85–90. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, G.S.; Pang, Y.M. Impacts of climate change on maize and winter wheat yields in China from 1961 to 2010 based on provincial data. J. Agric. Sci. 2015, 153, 825–836. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Y.; Hao, B.; Xu, X.; Zhao, Z.; Wang, Z.; Xue, Q. Grain Yield and Water Use Efficiency in Extremely-Late Sown Winter Wheat Cultivars under Two Irrigation Regimes in the North China Plain. PLoS ONE 2016, 11, e0153695. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhao, H.; Lei, H.; Shao, H.; Liu, T. Winter wheat productivity evaluated by 605 the developed remote sensing evapotranspiration model in Hebei Plain, China. Sci. World J. 2015, 2015, 384086. [Google Scholar] [CrossRef] [PubMed]
- Li, W.H.; Yang, J.; Gu, X. Expression divergence between duplicate genes. Trends Genet. 2005, 21, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.P.; Zhang, Y.H.; Wang, Z.M.; Wang, Z.J. Characteristics of canopy structure and contributions of non-leaf organs to yield in winter wheat under different irrigated conditions. Field Crops Res. 2011, 123, 187–195. [Google Scholar] [CrossRef]
- Bian, C.; Ma, C.; Liu, X.; Gao, C.; Liu, Q.; Yan, Z.; Li, Q. Responses of winter wheat yield and water use efficiency to irrigation frequency and planting pattern. PLoS ONE 2016, 11, e0154673. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, X.; You, M.Z.; Liu, C.M. Water–yield relations and water-use efficiency of winter wheat in the North China Plain. Irrig. Sci. 1999, 19, 37–45. [Google Scholar] [CrossRef]
- Liu, H.J.; Yu, L.P.; Luo, Y.; Wang, X.P.; Huang, G.H. Responses of winter wheat (Triticum aestivum L.) evapotranspiration and yield to sprinkler irrigation regimes. Agric. Water Manag. 2011, 98, 483–492. [Google Scholar] [CrossRef]
- Zhang, J.H.; Sui, X.Z.; Li, B.; Su, B.L.; Li, J.M.; Zhou, D.X. An improved water-use efficiency for winter wheat grown under reduced irrigation. Field Crops Res. 1998, 59, 91–98. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Dawes, W.R.; Liu, C. Improving water use efficiency of irrigated crops in the North China Plain measurements and modeling. Agric. Water Manag. 2001, 48, 151–167. [Google Scholar] [CrossRef]
- Eck, H.V. Winter wheat response to nitrogen and irrigation. Agron. J. 1988, 80, 902–908. [Google Scholar] [CrossRef]
Year | u2 | Tmax | Tmin | Tmean | RHmean | Rs |
---|---|---|---|---|---|---|
(m/s) | (°C) | (°C) | (°C) | (%) | (MJ m−2) | |
2002–2003 | 2.8 | 12.0 | 2.1 | 7.0 | 68.8 | 14.6 |
2003–2004 | 2.9 | 12.6 | 2.7 | 7.7 | 59.0 | 15.4 |
2004–2005 | 2.7 | 12.0 | 1.7 | 6.8 | 61.9 | 15.6 |
2005–2006 | 2.9 | 12.5 | 2.5 | 7.5 | 58.1 | 15.3 |
2006–2007 | 2.8 | 13.0 | 3.4 | 8.2 | 60.3 | 15.0 |
2007–2008 | 3.3 | 13.8 | 2.4 | 8.1 | 56.6 | 16.2 |
2008–2009 | 3.7 | 16.6 | 3.5 | 10.0 | 46.8 | 16.1 |
2009–2010 | 3.7 | 15.5 | 2.7 | 9.1 | 52.6 | 15.5 |
2010–2011 | 3.8 | 15.9 | 2.9 | 9.4 | 46.1 | 16.1 |
2011–2012 | 3.4 | 15.3 | 3.1 | 9.2 | 56.6 | 15.4 |
2012–2013 | 3.7 | 14.6 | 2.0 | 8.3 | 60.1 | 15.2 |
2013–2014 | 3.3 | 14.3 | 1.9 | 8.1 | 64.0 | 14.8 |
Average | 3.3 | 14.0 | 2.6 | 8.3 | 57.6 | 15.4 |
Year | Planting | Harvesting | N-P2O5-K2O-ZnSO4 | Precipitation | Irrigation | Water Supply |
---|---|---|---|---|---|---|
Date | Date | (kg/ha) | (mm) | (mm) | (mm) | |
2002 | 2-October-2 | |||||
2003 | 6-October-3 | 30-July-3 | 280-57-67-0 | 164 | 559 | 723 |
2004 | 6-October-3 | 20-July-04 | 151-58-34-0 | 151 | 610 | 761 |
2005 | 27-September-5 | 19-July-5 | 151-58-34-0 | 167 | 578 | 745 |
2006 | 4-October-6 | 20-July-6 | 103-56-65-0 | 80 | 511 | 591 |
2007 | 4-October-7 | 26-July-7 | 166-54-64-19 | 190 | 605 | 795 |
2008 | 24-September-8 | 20-July-8 | 146-54-63-7 | 97 | 686 | 783 |
2009 | 15-September-9 | 11-August-9 | 168-58-67-0 | 122 | 711 | 833 |
2010 | 15-September-10 | 10-August-10 | 168-58-67-0 | 130 | 635 | 765 |
2011 | 16-September-11 | 1-August-11 | 185-0-0-0 | 142 | 704 | 846 |
2012 | 11-September-12 | 1-August-12 | 112-58-67-16 | 114 | 737 | 851 |
2013 | 16-September-13 | 26-July-13 | 230-117-135-40 | 89 | 732 | 821 |
2014 | 13-July-14 | 233-45-54-0 | 107 | 787 | 894 |
Season | Daily ETc (mm) | Seasonal ETc | ||
---|---|---|---|---|
Max | Min | Average | (mm) | |
2002–2003 | 10.5 | 0.1 | 2.1 | 626 |
2003–2004 | 11.4 | 0.1 | 2.6 | 755 |
2004–2005 | 11.7 | 0.1 | 2.6 | 738 |
2005–2006 | 14.5 | 0.1 | 2.5 | 741 |
2006–2007 | 13.5 | 0.1 | 2.6 | 768 |
2007–2008 | 13.2 | 0.1 | 2.8 | 786 |
2008–2009 | 13.0 | 0.3 | 2.9 | 884 |
2009–2010 | 10.0 | 0.2 | 2.6 | 777 |
2010–2011 | 11.1 | 0.2 | 2.9 | 887 |
2011–2012 | 11.1 | 0.2 | 2.6 | 777 |
2012–2013 | 11.6 | 0.2 | 2.9 | 866 |
2013–2014 | 12.7 | 0.2 | 3.1 | 879 |
Variety | Total Water Supply |
---|---|
Kharkof | Y = −5.1621X + 7701.1. R2 = 0.13 |
Scout 66 | Y = −1.7004X + 5453.7, R2 = 0.01 |
TAM107 | Y = −0.4897X + 5366.8, R2 = 0.0 |
Average | Y = −13.527X + 15361, R2 = 0.45 |
Season | ETc (mm) | Yield (kg/ha) | IWUE (kg/m3) | ETWUE (kg/m3) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Kharkof | Scout 66 | TAM107 | Kharkof | Scout 66 | TAM107 | Kharkof | Scout 66 | TAM107 | Kharkof | Scout 66 | TAM107 | |
2002–2003 | 627.22 | 626.12 | 625.14 | 5683.5 | 4954.3 | 5771.9 | 0.61 | 0.53 | 0.62 | 0.91 | 0.79 | 0.92 |
2003–2004 | 756.75 | 755.27 | 752.23 | 5054.6 | 5314.5 | 5590.5 | 0.90 | 0.95 | 1.00 | 0.67 | 0.70 | 0.74 |
2004–2005 | 737.91 | 739.14 | 737.32 | 4039.4 | 4141.2 | 5362.0 | 0.66 | 0.68 | 0.88 | 0.55 | 0.56 | 0.73 |
2005–2006 | 742.32 | 740.88 | 738.22 | 3391.0 | 3539.2 | 4239.5 | 0.59 | 0.61 | 0.73 | 0.46 | 0.48 | 0.57 |
2006–2007 | 769.65 | 768.56 | 766.30 | 3844.7 | 5298.7 | 5966.0 | 0.75 | 1.04 | 1.17 | 0.50 | 0.69 | 0.78 |
2007–2008 | 788.43 | 786.82 | 783.66 | 4881.2 | 6360.3 | 7085.7 | 0.81 | 1.05 | 1.17 | 0.62 | 0.81 | 0.90 |
2008–2009 | 886.61 | 884.57 | 880.66 | 3614.3 | 4499.2 | 6478.3 | 0.53 | 0.66 | 0.94 | 0.41 | 0.51 | 0.74 |
2009–2010 | 779.13 | 777.51 | 774.43 | 2424.6 | 2500.2 | 2836.4 | 0.34 | 0.35 | 0.40 | 0.31 | 0.32 | 0.37 |
2010–2011 | 890.21 | 887.97 | 883.69 | 3109.7 | 2598.4 | 2743.4 | 0.49 | 0.41 | 0.43 | 0.35 | 0.29 | 0.31 |
2011–2012 | 778.78 | 777.21 | 774.23 | 1834.1 | 3796.3 | 5755.9 | 0.26 | 0.54 | 0.82 | 0.24 | 0.49 | 0.74 |
2012–2013 | 866.69 | 865.79 | 864.11 | 2996.8 | 2693.0 | 3837.6 | 0.41 | 0.37 | 0.52 | 0.35 | 0.31 | 0.44 |
2013–2014 | 879.97 | 878.86 | 876.71 | 2993.3 | 3757.9 | 4128.7 | 0.41 | 0.51 | 0.56 | 0.34 | 0.43 | 0.47 |
Average | 792.0 | 790.7 | 788.1 | 3655.6 | 4121.1 | 4983.0 | 0.56 | 0.64 | 0.77 | 0.46 | 0.52 | 0.63 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djaman, K.; O’Neill, M.; Owen, C.; Smeal, D.; West, M.; Begay, D.; Allen, S.; Koudahe, K.; Irmak, S.; Lombard, K. Long-Term Winter Wheat (Triticum aestivum L.) Seasonal Irrigation Amount, Evapotranspiration, Yield, and Water Productivity under Semiarid Climate. Agronomy 2018, 8, 96. https://doi.org/10.3390/agronomy8060096
Djaman K, O’Neill M, Owen C, Smeal D, West M, Begay D, Allen S, Koudahe K, Irmak S, Lombard K. Long-Term Winter Wheat (Triticum aestivum L.) Seasonal Irrigation Amount, Evapotranspiration, Yield, and Water Productivity under Semiarid Climate. Agronomy. 2018; 8(6):96. https://doi.org/10.3390/agronomy8060096
Chicago/Turabian StyleDjaman, Koffi, Michael O’Neill, Curtis Owen, Daniel Smeal, Margaret West, Dallen Begay, Samuel Allen, Komlan Koudahe, Suat Irmak, and Kevin Lombard. 2018. "Long-Term Winter Wheat (Triticum aestivum L.) Seasonal Irrigation Amount, Evapotranspiration, Yield, and Water Productivity under Semiarid Climate" Agronomy 8, no. 6: 96. https://doi.org/10.3390/agronomy8060096
APA StyleDjaman, K., O’Neill, M., Owen, C., Smeal, D., West, M., Begay, D., Allen, S., Koudahe, K., Irmak, S., & Lombard, K. (2018). Long-Term Winter Wheat (Triticum aestivum L.) Seasonal Irrigation Amount, Evapotranspiration, Yield, and Water Productivity under Semiarid Climate. Agronomy, 8(6), 96. https://doi.org/10.3390/agronomy8060096