Impact of a New Deep Vertical Lime Placement Practice on Corn and Soybean Production in Conservation Tillage Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Field Management
2.3. Plant Data
3. Results and Discussion
3.1. Climatic and Environmental Conditions
3.2. Crop Response to Lime
3.2.1. Corn
3.2.2. Soybean
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sumner, M.E.; Shahandeh, H.; Bouton, J.; Hammel, J. Amelioration of an acid soil profile through deep liming and surface application of gypsum. Soil Sci. Soc. Am. J. 1986, 50, 1254–1258. [Google Scholar] [CrossRef]
- Tupper, G.R.; Pringle, H.C., III; Ebelhar, M.W.; Hamill, J.G. Soybean Yield and Economic Response to Broadcast Incorporated and Deep Band Placement of Lime on Low pH Soils; Mississippi Agricultural & Forestry Experiment Station: Mississippi State, MS, USA, 1987; 7p. [Google Scholar]
- Mclay, C.; Ritchie, G.; Porter, W.; Cruse, A. Amelioration of subsurface acidity in sandy soils in low rainfall regions. 2. Changes to soil solution composition following the surface application of gypsum and lime. Soil Res. 1994, 32, 847–865. [Google Scholar] [CrossRef]
- Farina, M.P.W.; Channon, P.; Thibaud, G.R. A comparison of strategies for ameliorating subsoil acidity: II. Long-term soil effects. Soil Sci. Soc. Am. J. 2000, 64, 652–658. [Google Scholar] [CrossRef]
- Farina, M.P.W.; Channon, P.; Thibaud, G.R. A comparison of strategies for ameliorating subsoil acidity: I. Long-term growth effects. Soil Sci. Soc. Am. J. 2000, 64, 646–651. [Google Scholar] [CrossRef]
- Godsey, C.B.; Pierzynski, G.M.; Mengel, D.B.; Lamond, R.E. Management of soil acidity in no-till production systems through surface application of lime. Agron. J. 2007, 99, 764–772. [Google Scholar] [CrossRef]
- Rengel, Z. Handbook of Soil Acidity; Marcel Dekker, Inc.: New York, NY, USA, 2003; p. 270. [Google Scholar]
- Sumner, M.E.; Yamada, T. Farming with acidity. Commun. Soil Sci. Plant Anal. 2002, 33, 2467–2496. [Google Scholar] [CrossRef]
- Yang, Z.B.; Rao, I.M.; Horst, W.J. Interaction of aluminum and drought stress on root growth and crop yield on acid soils. Plant Soil 2013, 372, 3–25. [Google Scholar] [CrossRef]
- Abruna, F.; Pearson, R.W.; Elkins, C.B. Quantitative evaluation of soil reaction and base status changes resulting from field application of residually acid-forming nitrogen fertilizers. Soil Sci. Soc. Am. J. 1958, 22, 539–542. [Google Scholar] [CrossRef]
- Adeoye, K.B.; Singh, L. The effect of bulk application of lime under two tillage depths on soil pH and crop yield. Plant Soil 1984, 85, 295–297. [Google Scholar] [CrossRef]
- Flower, K.C.; Crabtree, W.L. Soil pH change after surface application of lime related to the levels of soil disturbance caused by no-tillage seeding machinery. Field Crops Res. 2011, 121, 75–87. [Google Scholar] [CrossRef]
- Lollato, R.P.; Edwards, J.T.; Zhang, H. Effect of alternative soil acidity amelioration strategies on soil pH distribution and wheat agronomic response. Soil Sci. Soc. Am. J. 2013, 77, 1831–1841. [Google Scholar] [CrossRef]
- Joris, H.A.W.; Caires, E.F.; Bini, A.R.; Scharr, D.A.; Haliski, A. Effects of soil acidity and water stress on corn and soybean performance under a no-till system. Plant Soil 2012, 365, 409–424. [Google Scholar] [CrossRef]
- Barber, S.A. Liming materials and practices. In Soil Acidity and Liming, 2nd ed.; Adams, F., Ed.; Agronomy Series No. 12; American Society of Agronomy: Madison, WI, USA, 1984; pp. 171–210. [Google Scholar]
- West, T.O.; McBride, A.C. The contribution of agricultural lime to carbon dioxide emissions in the United States: Dissolution, transport, and net emissions. Agric. Ecosyst. Environ. 2005, 108, 145–154. [Google Scholar] [CrossRef]
- Blevins, R.L.; Murdock, L.W.; Thomas, G.W. Effect of lime application on no-tillage and conventionally tilled corn. Agron. J. 1978, 70, 322–326. [Google Scholar] [CrossRef]
- Farina, M.P.W.; Channon, P. Acid-subsoil amelioration: I. A comparison of several mechanical procedures. Soil Sci. Soc. Am. J. 1988, 52, 169–175. [Google Scholar] [CrossRef]
- Liu, J.; Hue, N.V. Amending subsoil acidity by surface applications of gypsum, lime, and composts. Commun. Soil Sci. Plant Anal. 2001, 32, 2117–2132. [Google Scholar] [CrossRef]
- Doss, B.D.; Dumas, W.T.; Lund, Z.F. Depth of lime incorporation for correction of subsoil acidity. Agron. J. 1979, 71, 541–544. [Google Scholar] [CrossRef]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. B 2008, 363, 543–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Six, J.; Elliott, E.T.; Paustian, K. Aggregate and soil organic matter dynamic under conventional and no-tillage systems. Soil Sci. Soc. Am. J. 1999, 63, 1350–1358. [Google Scholar] [CrossRef]
- Caires, E.F.; Joris, H.A.W.; Churka, S. Long-term effects of lime and gypsum additions on no-till corn and soybean yield and soil chemical properties in southern Brazil. Soil Use Manag. 2011, 27, 45–53. [Google Scholar] [CrossRef]
- Edwards, D.E.; Beegle, D.B. No till liming effects on soil pH, corn grain yield and earleaf nutrient content. Commun. Soil Sci. Plant Anal. 1988, 19, 543–562. [Google Scholar] [CrossRef]
- Buchholz, D.D.; Brown, J.R.; Garrett, J.D.; Hanson, R.G.; Wheaton, H.N. Soil Test Interpretations and Recommendations Handbook; University of Missouri: Columbia, MO, USA, 1983. [Google Scholar]
- SAS Institute Inc. Base 9.4 Procedures Guide; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Pagani, A.; Mallarino, A.P. On-farm evaluation of corn and soybean grain yield and soil pH responses to liming. Agron. J. 2015, 107, 71–82. [Google Scholar] [CrossRef]
- Sharp, R.E.; Davies, W.J. Root growth and water uptake by maize plants in drying soil. J. Exp. Bot. 1985, 36, 1441–1456. [Google Scholar] [CrossRef]
- Caires, E.F.; Garbuio, F.J.; Churka, S.; Barth, G.; Corrêa, J.C.L. Effects of soil acidity amelioration by surface liming on no-till corn, soybean, and wheat root growth and yield. Eur. J. Agron. 2008, 28, 57–64. [Google Scholar] [CrossRef]
- Blumenschein, T.G. Effects of Deep Vertical Placement of Lime on Corn and Soybean Response and Soil Chemical Properties in Conservation Tillage Systems. Master’s Thesis, University of Missouri, Columbia, MO, USA, 2016. [Google Scholar]
- Conyers, M.K.; Heenan, D.P.; McGhie, W.J.; Poile, G.P. Amelioration of acidity with time by limestone under contrasting tillage. Soil Tillage Res. 2003, 72, 85–94. [Google Scholar] [CrossRef]
- Fernandes, M.S.; Souza, S.R. Absorcão de nutrientes. In Nutricão Mineral de Plantas; Fernandes, M.S., Ed.; Sociedade Brasileira de Ciencia do Solo: Vicosa, Brazil, 2006; pp. 115–153. [Google Scholar]
- Scharf, P.; Smeda, R.; Bradley, K. Soil pH Effects on Atrazine Carryover Damage to No-Till Soybean. Missouri Soil Fertility and Fertilizers Research Update 2004; Agronomy Misc. Publ. #05-01; University of Missouri: Columbia, MO, USA, 2005. [Google Scholar]
Soil Depth | ||||
---|---|---|---|---|
Soil Characteristics | 0–13 cm | 13–25 cm | 25–38 cm | 38–51 cm |
Trial #1 | ||||
pHs (0.01 M CaCl2) | 5.6 ± 0.2 | 5.6 ± 0.4 | 4.6 ± 0.2 | 4.6 ± 0.2 |
Neutralizable acidity (cmolc kg−1) | 3.5 ± 2 | 2.9 ± 1 | 8.5 ± 1.6 | 6.8 ± 1.0 |
Organic matter (% w/w) | 2.7 ± 0.3 | 2.3 ± 0.1 | 2.3 ± 0.3 | 2.2 ± 0.2 |
Bray 1P (kg ha−1) | 17.4 ± 9.8 | 5.0 ± 1.4 | 3.9 ± 1.9 | 14.6 ± 4.5 |
Ca (kg ha−1) | 4427 ± 347 | 5200 ± 661 | 5257 ± 706 | 4988 ± 673 |
Mg (kg ha−1) | 494 ± 98 | 689 ± 189 | 981 ±138 | 996 ± 158 |
K (kg ha−1) | 178 ± 12 | 173 ± 28 | 226 ± 32 | 231 ± 16 |
CEC (cmolc kg−1) | 15.4 ± 2.3 | 17.3 ± 3.2 | 24.2 ± 3.2 | 22.0 ± 2.3 |
Trial #2 | ||||
pHs (0.01 M CaCl2) | 5.0 ± 0.1 | 5.0 ± 0.5 | 4.9 ± 0.7 | 4.9 ± 0.8 |
Neutralizable acidity (cmolc kg−1) | 5.1 ± 0.5 | 4.9 ± 1.9 | 6.9 ± 4.0 | 6.8 ± 3.8 |
Organic matter (% w/w) | 3.0 ± 0.6 | 1.9 ± 0.4 | 1.8 ± 0.3 | 1.4 ± 0.4 |
Bray 1P (kg ha−1) | 127.2 ± 46.2 | 19.1 ± 10.7 | 11.5 ± 4.0 | 30.8 ± 19.4 |
Ca (kg ha−1) | 2841 ± 312 | 3263 ± 690 | 4138 ± 1828 | 4144 ± 1678 |
Mg (kg ha−1) | 307 ± 91 | 415 ± 192 | 739 ± 452 | 848 ± 420 |
K (kg ha−1) | 594 ± 240 | 159 ± 47 | 179 ± 77 | 233 ± 85 |
CEC (cmolc kg−1) | 13.3 ± 1.4 | 13.9 ± 3.3 | 19.1 ± 6.4 | 19.4 ± 4.8 |
Trial #3 | ||||
pHs (0.01 M CaCl2) | 6.1 ± 0.1 | 6.2 ± 0.1 | 5.0 ± 0.2 | 4.6 ± 0.1 |
Neutralizable acidity (cmolc kg−1) | 1.8 ± 0.5 | 1.9 ± 0.3 | 7.1 ± 1.9 | 12.3 ± 1.9 |
Organic matter (% w/w) | 2.3 ± 0.5 | 2.1 ± 0.2 | 2.3 ± 0.4 | 2.7 ± 0.3 |
Bray 1P (kg ha−1) | 10.4 ± 4.7 | 5.6 ± 2.2 | 2.0 ± 0.6 | 1.1 ± 0 |
Ca (kg ha−1) | 3954 ± 957 | 3646 ± 289 | 4497 ± 434 | 5223 ± 384 |
Mg (kg ha−1) | 398 ± 158 | 377 ± 58 | 749 ± 142 | 1226 ± 80 |
K (kg ha−1) | 154 ± 30 | 136 ± 12 | 220 ± 36 | 349 ± 28 |
CEC (cmolc kg−1) | 12.2 ± 3.2 | 11.6 ± 0.8 | 20.2 ± 3.2 | 28.9 ± 2.7 |
Cropping Season | ||||
---|---|---|---|---|
Trial # | Treatment †† | 2012 | 2013 | 2014 |
cm | ||||
Trial #1 | CTRL | 164 | 202 | 224 |
S-LO | 163 | 206 | 231 | |
S-HI | 159 | 208 | 240 | |
D-NO | 171 | 204 | 238 | |
D-LO | 172 | 202 | 235 | |
D-HI | 170 | 201 | 245 | |
LSD(p ≤ 0.10) | 5 | 5 | 10 | |
Trial #2 | CTRL | --- † | 246 | 266 |
S-LO | --- | 252 | 271 | |
S-HI | --- | 243 | 270 | |
D-NO | --- | 248 | 274 | |
D-LO | --- | 246 | 266 | |
D-HI | --- | 239 | 268 | |
LSD(p ≤ 0.10) | --- | 10 | 5 | |
Trial #3 | CTRL | --- | --- | 251 |
S-LO | --- | --- | 264 | |
S-HI | --- | --- | 251 | |
D-NO | --- | --- | 253 | |
D-LO | --- | --- | 250 | |
D-HI | --- | --- | 259 | |
LSD(p ≤ 0.10) | --- | --- | 10 |
Cropping Season | ||||||
---|---|---|---|---|---|---|
Trial # | Treatment ††† | 2012 | 2013 | 2014 | 2015 | 2016 |
No. ha−1 | ||||||
Trial #1 | CTRL | 74,400 | 66,000 | 70,200 | 62,800 | 74,000 |
S-LO | 74,200 | 66,900 | 70,500 | 61,600 | 73,400 | |
S-HI | 72,200 | 67,800 | 68,400 | 61,100 | 74,900 | |
D-NO | 64,400 | 66,400 | 67,600 | 61,600 | 67,600 | |
D-LO | 57,100 | 68,400 | 68,200 | 61,600 | 58,800 | |
D-HI | 69,000 | 70,200 | 66,900 | 62,000 | 64,200 | |
LSD(p ≤ 0.10) | 5400 | NS † | 2000 | NS | 4900 | |
Trial #2 | CTRL | --- †† | 66,600 | 65,500 | 62,100 | 66,100 |
S-LO | --- | 63,000 | 63,300 | 64,900 | 65,000 | |
S-HI | --- | 66,100 | 65,200 | 63,000 | 70,300 | |
D-NO | --- | 65,900 | 62,400 | 61,300 | 68,300 | |
D-LO | --- | 67,700 | 64,600 | 64,100 | 72,300 | |
D-HI | --- | 66,800 | 64,400 | 61,900 | 69,300 | |
LSD(p ≤ 0.10) | --- | 4200 | 2500 | NS | NS | |
Trial #3 | CTRL | --- | --- | 61,400 | 75,900 | 74,500 |
S-LO | --- | --- | 60,300 | 73,000 | 72,700 | |
S-HI | --- | --- | 58,800 | 73,700 | 75,300 | |
D-NO | --- | --- | 62,200 | 74,200 | 77,000 | |
D-LO | --- | --- | 56,000 | 73,700 | 74,600 | |
D-HI | --- | --- | 60,000 | 74,000 | 71,200 | |
LSD(p ≤ 0.10) | --- | --- | NS | NS | NS |
Cropping Season | |||||
---|---|---|---|---|---|
Trial # | Treatment ††† | 2012 | 2013 | 2014 | 2015 |
cm | |||||
Trial #1 | CTRL | 53 | 70 | 99 | 83 |
S-LO | 54 | 70 | 104 | 74 | |
S-HI | 53 | 66 | 105 | 84 | |
D-NO | 55 | 68 | 98 | 79 | |
D-LO | 53 | 67 | 98 | 86 | |
D-HI | 54 | 66 | 108 | 72 | |
LSD(p ≤ 0.10) | 1 | NS † | 10 | 12 | |
Trial #2 | CTRL | --- †† | 75 | 99 | 61 |
S-LO | --- | 74 | 94 | 63 | |
S-HI | --- | 74 | 92 | 58 | |
D-NO | --- | 72 | 91 | 57 | |
D-LO | --- | 77 | 96 | 60 | |
D-HI | --- | 73 | 94 | 58 | |
LSD(p ≤ 0.10) | --- | NS | 6 | NS | |
Trial #3 | CTRL | --- | --- | 98 | 84 |
S-LO | --- | --- | 97 | 74 | |
S-HI | --- | --- | 102 | 70 | |
D-NO | --- | --- | 100 | 72 | |
D-LO | --- | --- | 104 | 79 | |
D-HI | --- | --- | 103 | 74 | |
LSD(p ≤ 0.10) | --- | --- | 6 | 10 |
Cropping Season | ||||||
---|---|---|---|---|---|---|
Trial # | Treatment ††† | 2012 | 2013 | 2014 | 2015 | 2016 |
No ha−1 | ||||||
Trial #1 | CTRL | 462,800 | 376,700 | 226,000 | 269,100 | 592,000 |
S-LO | 581,300 | 387,500 | 258,300 | 290,600 | 505,900 | |
S-HI | 398,300 | 409,000 | 269,100 | 312,200 | 581,300 | |
D-NO | 484,400 | 355,200 | 236,800 | 269,100 | 742,700 | |
D-LO | 452,100 | 312,200 | 290,600 | 290,600 | 721,200 | |
D-HI | 570,500 | 366,000 | 279,900 | 226,000 | 710,400 | |
LSD(p ≤ 0.10) | 116,100 | 86,400 | 56,000 | 59,000 | 19,7900 | |
Trial #2 | CTRL | --- †† | 452,100 | 215,300 | 193,800 | 656,600 |
S-LO | --- | 430,600 | 199,100 | 204,500 | 721,200 | |
S-HI | --- | 366,000 | 183,000 | 226,000 | 699,700 | |
D-NO | --- | 344,400 | 188,400 | 215,300 | 688,900 | |
D-LO | --- | 376,700 | 177,600 | 204,500 | 753,500 | |
D-HI | --- | 409,000 | 199,100 | 215,300 | 581,300 | |
LSD(p ≤ 0.10) | --- | NS † | 31,700 | NS | NS | |
Trial #3 | CTRL | --- | --- | 269,100 | 290,600 | 839,600 |
S-LO | --- | --- | 269,100 | 290,600 | 914,900 | |
S-HI | --- | --- | 258,300 | 226,000 | 1,065,600 | |
D-NO | --- | --- | 247,600 | 279,900 | 882,600 | |
D-LO | --- | --- | 258,300 | 269,100 | 1,097,900 | |
D-HI | --- | --- | 279,900 | 279,900 | 1,108,700 | |
LSD(p ≤ 0.10) | --- | --- | NS | 54,200 | NS |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blumenschein, T.G.; Nelson, K.A.; Motavalli, P.P. Impact of a New Deep Vertical Lime Placement Practice on Corn and Soybean Production in Conservation Tillage Systems. Agronomy 2018, 8, 104. https://doi.org/10.3390/agronomy8070104
Blumenschein TG, Nelson KA, Motavalli PP. Impact of a New Deep Vertical Lime Placement Practice on Corn and Soybean Production in Conservation Tillage Systems. Agronomy. 2018; 8(7):104. https://doi.org/10.3390/agronomy8070104
Chicago/Turabian StyleBlumenschein, Theodore G., Kelly A. Nelson, and Peter P. Motavalli. 2018. "Impact of a New Deep Vertical Lime Placement Practice on Corn and Soybean Production in Conservation Tillage Systems" Agronomy 8, no. 7: 104. https://doi.org/10.3390/agronomy8070104
APA StyleBlumenschein, T. G., Nelson, K. A., & Motavalli, P. P. (2018). Impact of a New Deep Vertical Lime Placement Practice on Corn and Soybean Production in Conservation Tillage Systems. Agronomy, 8(7), 104. https://doi.org/10.3390/agronomy8070104