Delimitation of Agricultural Areas with Natural Constraints in Greece: Assessment of the Dryness Climatic Criterion Using Geostatistics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Meteorological Data Processing
2.3. Spatial Interpolation
2.4. Dryness Climatic Criterion Assessment and Climate Variability
3. Results and Discussion
- Mean Error ranged between −52 and −64 mm
- Root Mean Square Error ranged between 158 and 184
- Root Mean Square Standardized Error ranged between 0.82 and 1.07
- Mean Error ranged between −4 to −7.7 mm
- Root Mean Square Error ranged between 72 to 124
- Root Mean Square Standardized Error ranged between 0.84 to 1.52
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eliasson, Å.; Jones, R.J.A.; Nachtergaele, F.; Rossiter, D.G.; Terres, J.; van Orshoven, J.; Le Bas, C. Common criteria for the redefinition of intermediate less favoured areas in the European Union. Environ. Sci. Policy 2010, 13, 766–777. [Google Scholar] [CrossRef]
- Erdogan, H.E.; Tóth, T. Potential for using the world reference base for soil resources to identify less favoured areas. Soil Use Manag. 2014, 30, 560–568. [Google Scholar] [CrossRef]
- Kučera, J.; Hlavsa, T. Agricultural land evaluation considering the Czech less favoured areas delineation. Acta Univ. Agric. Et Silvic. Mendel. Brun. 2017, 65, 1195–1204. [Google Scholar] [CrossRef]
- Schulte, R.P.O.; Fealy, R.; Creamer, R.E.; Towers, W.; Harty, T.; Jones, R.J.A. A review of the role of excess soil moisture conditions in constraining farm practices under Atlantic conditions. Soil Use Manag. 2012, 28, 580–589. [Google Scholar] [CrossRef]
- Střeleček, F.; Lososová, J.; Zdeněk, R. Economic results of agricultural holdings in less favoured areas. Agric. Econ. 2008, 54, 510–520. [Google Scholar] [CrossRef] [Green Version]
- Tsiaras, S.; Andreopoulou, Z. Sustainable development perspectives in a less favoured area of Greece. J. Environ. Prot. Ecol. 2015, 16, 164–172. [Google Scholar]
- Tsiaras, S.; Spanos, I. Tree crops cultivation. A sustainable alternative for the development of mountainous, less favoured areas. J. Environ. Prot. Ecol. 2017, 18, 271–281. [Google Scholar]
- Tsiaras, S.; Triantafillidou, E.; Katsanika, E. Green marketing as a strategic tool for the sustainable development of less favoured areas of Greece: Women’s agro-tourism cooperatives. Int. J. Electron. Cust. Relationsh. Manag. 2016, 10, 54–64. [Google Scholar] [CrossRef]
- Böttcher, K.; Eliasson, A.; Jones, R.; Le Bas, C.; Nachtergaele, F.; Pistocchi, A.; Ramos, F.; Rossiter, D.; Terres, J.M.; van Orshoven, J.; et al. Guidelines for Application of Common Criteria to Identify Agricultural Areas with Natural Handicaps; Office for Official Publications of the European Communities: Luxembourg, 2009; Volume 34. [Google Scholar]
- Asins-Velis, S.; Arnau-Rosalïn, E.; Romero-Gonzïlez, J.; Calvo-Cases, A. Analysis of the consequences of the european union criteria on slope gradient for the delimitation of “areas facing natural constraints” with agricultural terraces. Ann.-Anali Za Istrske Mediter. Studije-Ser. Hist. Et Sociol. 2016, 26, 433–448. [Google Scholar] [CrossRef]
- Castelo-Grande, T.; Augusto, P.A.; Fiúza, A.; Barbosa, D. Strengths and weaknesses of European soil legislations: The case study of Portugal. Environ. Sci. Policy 2018, 79, 66–93. [Google Scholar] [CrossRef]
- Ciglič, R.; Hrvatin, M.; Komac, B.; Perko, D. Karst as a criterion for defining areas less suitable for agriculture. Acta Geogr. Slov. 2012, 52, 61–98. [Google Scholar] [CrossRef] [Green Version]
- Gmeiner, P.; Hovorka, G. New delimitation of less favoured areas in Austria. J. Austrian Soc. Agric. Econ. 2011, 20, 63–72. [Google Scholar]
- Ivits, E.; Cherlet, M.; Tóth, T.; Lewińska, K.E.; Tóth, G. Characterisation of productivity limitation of salt-affected lands in different climatic regions of Europe using remote sensing derived productivity indicators. Land Degra. Dev. 2013, 24, 438–452. [Google Scholar] [CrossRef]
- Jarasiunas, G. Assessment of the agricultural land under steep slope in Lithuania. J. Cent. Eur. Agric. 2016, 17, 176–187. [Google Scholar] [CrossRef]
- Jarasiunas, G.; Kinderiene, I.; Bašić, F. Delineation Lithuanian agricultural land for agro-ecological suitability for farming using soil and terrain criteria. Ekol. Bratisl. 2017, 36, 88–100. [Google Scholar] [CrossRef] [Green Version]
- Pogačar, T.; Valher, A.; Zalar, M.; Črepinšek, Z.; Kajfež-Bogataj, L. Calculation of climate factors as an additional criteria to determine agriculturally less favoured areas. Acta Agric. Slov. 2016, 107, 229–242. [Google Scholar] [CrossRef]
- Štolbová, M. Eligibility criteria for less-favoured areas payments in the EU countries and the position of the Czech republic. Agric. Econ. 2008, 54, 166–175. [Google Scholar] [CrossRef]
- Terres, J.M.; Toth, T.; Wania, A.; Hagyo, A.; Koeble, R.; Nisini, L. Updated Guidelines for Applying Common Criteria to Identify Agricultural Areas with Natural Constraints; Joint Research Centre Technical Report; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Dent, F.J. Land Resources of Asia and the Pacific: Problem Soils of Asia and the Pacific; RAPA Report; FAO: Bangkok, Thailand, 1990; p. 283. [Google Scholar]
- Nachtergaele, F.O. The FAO Problem Land Approach adapted to EU conditions. In Presentation at the Expert Meeting “Land Quality Assessment for the Definition of the EU Less Favoured Areas Focusing on Natural Constraints; JRC: Ispra, Italy, 2006; pp. 16–17. [Google Scholar]
- Confalonieri, R.; Francone, C.; Cappelli, G.; Stella, T.; Frasso, N.; Carpani, M.; Fernandes, E. A multi-approach software library for estimating crop suitability to environment. Comput. Electron. Agric. 2013, 90, 170–175. [Google Scholar] [CrossRef]
- Panagos, P.; van Liedekerke, M.; Jones, A.; Montanarella, L. European soil data centre: Response to European policy support and public data requirements. Land Use Policy 2012, 29, 329–338. [Google Scholar] [CrossRef]
- Pásztor, L.; Szabó, J.; Bakacsi, Z. Application of the digital kreybig soil information system for the delineation of naturally handicapped areas in Hungary. Agrok. Es Talajt. 2010, 59, 47–56. [Google Scholar] [CrossRef]
- Soulis, K.X. Discussion of “Procedures to Develop a Standardized Reference Evapotranspiration Zone Map” by Noemi Mancosu, Richard, L. Snyder, and Donatella Spano.”. J. Irrig. Drain. Eng. 2015, 141, 07014055. [Google Scholar] [CrossRef]
- Soulis, K.X.; Tsesmelis, D.E. Calculation of the irrigation water needs spatial and temporal distribution in Greece. Eur. Water 2017, 59, 247–254. [Google Scholar]
- Mancosu, N.; Snyder, R.L.; Spano, D. Procedures to develop a standardized reference evapotranspiration zone map. J. Irrig. Drain. Eng. 2014, 140, A4014004. [Google Scholar] [CrossRef]
- Mardikis, M.G.; Kalivas, D.P.; Kollias, V.J. Comparison of interpolation methods for the prediction of reference evapotranspiration—An application in Greece. Water Resour. Manag. 2005, 19, 251–278. [Google Scholar] [CrossRef]
- Papadaki, C.; Soulis, K.X.; Muñoz-Mas, R.; Martinez-Capel, F.; Zogaris, S.; Ntoanidis, L.; Dimitriou, E. Potential impacts of climate change on flow regime and fish habitat in mountain rivers of the south-western Balkans. Sci. Total Environ. 2015, 540, 418–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brito, E.; Pereira, L.S.; Itier, B. Modelling the local climate in island environments: Water balance applications. Agric. Water Manag. 1999, 40, 393–403. [Google Scholar] [CrossRef]
- Allen, R.G. Assessing integrity of weather data for reference evapotranspiration estimation. J. Irrig. Drain. Eng. 1996, 122, 97–106. [Google Scholar] [CrossRef]
- Valiantzas, J.D. Discussion of “Case Study on the Accuracy and Cost/Efectiveness in Simulating Reference Evapotranspiration in West-Central Florida” by Exner-Kittridge, M.G., Rains. M.C. J. Hydrol. Eng. 2012, 17, 224–225. [Google Scholar] [CrossRef]
- Valiantzas, J.D. Simplified forms for the standardized FAO-56 Penman–Monteith reference evapotranspiration using limited weather data. J. Hydrol. 2013, 505, 13–23. [Google Scholar] [CrossRef]
- Soulis, K.; Dercas, N. AgroHydroLogos: Development and testing of a spatially distributed agro-hydrological model on the basis of ArcGIS. In Proceedings of the International Congress on Environmental Modelling and Software, Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, ON, Canada, 5–8 July 2010. [Google Scholar]
- Soulis, K.; Dercas, N. Development of a GIS-based Spatially Distributed Continuous Hydrological Model and its First Application. Water Int. 2007, 32, 177–192. [Google Scholar] [CrossRef]
- Soulis, K.X.; Manolakos, D.; Anagnostopoulos, J.; Papantonis, D. Development of a geo-information system embedding a spatially distributed hydrological model for the preliminary assessment of the hydropower potential of historical hydro sites in poorly gauged areas. Renew. Energy 2016, 92, 222–232. [Google Scholar] [CrossRef]
- HNMS Hellenic National Meteorological Service, El. Venizelou 14, Hellinikon, Greece. Available online: http://www.hnms.gr/hnms/english/index_html (accessed on 15 May 2018).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Requirements-Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-filled Seamless SRTM Data V4: International Centre for Tropical Agriculture (CIAT). 2008. Available online: http://srtm.csi.cgiar.org (accessed on 7 May 2018).
- OPEKEPE Integrated Administration and Control System; Payment and Control Agency for Guidance and Guarantee Community Aid, Ministry of Agricultural Development and Food, Athens, Greece. Available online: http://www.opekepe.gr/ (accessed on 15 May 2018).
- ELSTAT Census of Agricultural and Livestock Holdings. Hellenic Statistical Authority, 46 Pireos St. Eponiton St. 185 10, Piraeus, Greece. Available online: http://www.statistics.gr/ (accessed on 10 May 2018).
- Geodatagovgr, Greek Public Open Geodata Service. Available online: http://geodata.gov.gr/ (accessed on 16 May 2018).
- Hargreaves, G.H.; Samani, Z.A. Estimating potential evapotranspiration. J. Irrig. Drain. Div. 1982, 108, 225–230. [Google Scholar]
- Valiantzas, J.D. Temperature-and humidity-based simplified Penman’s ET0 formulae. Comparisons with temperature-based Hargreaves-Samani and other methodologies. Agric. Water Manag. 2018, 208, 326–334. [Google Scholar] [CrossRef]
- Armani, A.; Lebel, T. Lagrangian kriging for the estimation of Sahelian rainfall at small time steps. J. Hydrol. 1997, 192, 125–157. [Google Scholar] [CrossRef]
- Kassim, A.H.M.; Kottegoda, N.T. Rainfall network design through comparative kriging methods. [A planification des réseaux de pluviomètres par les méthodes comparatives de krigeage]. Hydrol. Sci. J. 1991, 36, 223–240. [Google Scholar] [CrossRef]
- Kebaili Bargaoui, Z.; Chebbi, A. Comparison of two kriging interpolation methods applied to spatiotemporal rainfall. J. Hydrol. 2009, 365, 56–73. [Google Scholar] [CrossRef]
- Yeung, H.Y.; Man, C.; Chan, S.T.; Seed, A. Development of an operational rainfall data quality-control scheme based on radar-raingauge co-kriging analysis. Hydrol. Sci. J. 2014, 59, 1293–1307. [Google Scholar] [CrossRef] [Green Version]
- Arowolo, A.O.; Bhowmik, A.K.; Qi, W.; Deng, X. Comparison of spatial interpolation techniques to generate high-resolution climate surfaces for Nigeria. Int. J. Climatol. 2017, 37, 179–192. [Google Scholar] [CrossRef]
- Valiantzas, J.D. Simplified versions for the Penman evaporation equation using routine weather data. J. Hydrol. 2006, 331, 690–702. [Google Scholar] [CrossRef]
- Valiantzas, J.D. Simplified limited data Penman’s ET0 formulas adapted for humid locations. J. Hydrol. 2015, 524, 701–707. [Google Scholar] [CrossRef]
- Shi, H.; Fu, X.; Chen, J.; Wang, G.; Li, T. Spatial distribution of monthly potential evaporation over mountainous regions: A case of the Lhasa River basin in China. Hydrol. Sci. J. 2014, 59, 1856–1871. [Google Scholar] [CrossRef]
- Mimides, Th.; Kotsovinos, N.; Rhizos, S.; Soulis, C.; Karakatsoulis, P. Integrated Rainfall Analysis Concerning Greek-Bulgarian Transboundary Hydrological Basin of River Nestos/Mesta. In Proceedings of the International Conference on New Water Culture of South East European Countries-AQUA, Helexpo, Athens, Greece, 21–23 October 2005. [Google Scholar]
- Mimides, Th.; Kotsovinos, N.; Rizos, S.; Soulis, C.; Karakatsoulis, P.; Stavropoulos, D. Integrated runoff and balance analysis concerning Greek-Bulgarian transboundary hydrological basin of River Nestos/Mesta. Desalination 2007, 213, 174–181. [Google Scholar] [CrossRef]
- Markonis, Y.; Batelis, S.C.; Dimakos, Y.; Moschou, E.; Koutsoyiannis, D. Temporal and spatial variability of rainfall over Greece. Theor. Appl. Climatol. 2017, 130, 217–232. [Google Scholar] [CrossRef]
- Tolika, C.K.; Zanis, P.; Anagnostopoulou, C. Regional climate change scenarios for Greece: Future temperature and precipitation projections from ensembles of RCMs. Glob. Nest J. 2012, 14, 407–421. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soulis, K.X.; Kalivas, D.P.; Apostolopoulos, C. Delimitation of Agricultural Areas with Natural Constraints in Greece: Assessment of the Dryness Climatic Criterion Using Geostatistics. Agronomy 2018, 8, 161. https://doi.org/10.3390/agronomy8090161
Soulis KX, Kalivas DP, Apostolopoulos C. Delimitation of Agricultural Areas with Natural Constraints in Greece: Assessment of the Dryness Climatic Criterion Using Geostatistics. Agronomy. 2018; 8(9):161. https://doi.org/10.3390/agronomy8090161
Chicago/Turabian StyleSoulis, Konstantinos X., Dionissios P. Kalivas, and Costas Apostolopoulos. 2018. "Delimitation of Agricultural Areas with Natural Constraints in Greece: Assessment of the Dryness Climatic Criterion Using Geostatistics" Agronomy 8, no. 9: 161. https://doi.org/10.3390/agronomy8090161