Saffron Cultivation in Marginal Alpine Environments: How AMF Inoculation Modulates Yield and Bioactive Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. AMF Inoculation in Pot
2.2. AMF Inoculation in Open Field
2.3. AMF Evaluation
2.4. Plant Performance and Saffron Yield in Open Field
2.5. Saffron Extract Preparation and Quality
2.6. Total Phenols
2.7. Total Anthocyanins
2.8. Antioxidant Activity
2.9. Identification and Quantification of Bioactive Compounds
2.10. Chemicals and Reagents
2.11. Statistical Analysis
3. Results
3.1. Assessment of Saffron Mycorrhization at Pot and Open Field Scale
3.2. Impact of AMF Symbiosis on Saffron Productivity and Qualitative Traits in Open Field
4. Discussion
4.1. AMF Colonization
4.2. AMF Modulate Crop Performance and Spice Quality
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Molina, R.; García-Luis, A.; Coll, V.; Ferrer, C.; Valero, M.; Navarro, Y.; Guardiola, J. Flower formation in the saffron crocus (Crocus sativus L.). The role of temperature. Acta Hortic. 2004, 650, 39–47. [Google Scholar] [CrossRef]
- Mollafilabi, A. Production and Modern Agronomic of Saffron; Scientific and Industrial Research Organization of Khorasan: Mashhad, Iran, 2004; pp. 22–35. [Google Scholar]
- Gresta, F.; Santonoceto, C.; Avola, G. Crop rotation as an effective strategy for saffron (Crocus sativus L.) cultivation. Sci. Hortic. 2016, 211, 34–39. [Google Scholar] [CrossRef]
- D’Archivio, A.; Giannitto, A.; Maggi, M.; Ruggieri, F. Geographical classification of Italian saffron (Crocus sativus L.) based on chemical constituents determined by high-performance liquid-chromatography and by using linear discriminant analysis. Food Chem. 2016, 212, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Carmona, M.; Zalacain, A.; Pardo, J.; López, E.; Alvarruiz, A.; Alonso, G. Influence of different drying and aging conditions on saffron constituents. J. Agric. Food Chem. 2005, 18, 3974–3979. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Yan, Y.; Zhu, X.; Liu, R.; Gong, F.; Zhang, L.; Wang, P. Simultaneous quantification of crocetin esters and picrocrocin changes in Chinese saffron by high-performance liquid chromatography-diode array detector during 15 years of storage. Pharmacogn. Mag. 2015, 11, 540–545. [Google Scholar] [PubMed]
- ISO 3632-1:2011. Spices—Saffron (Crocus sativus L.). Food Products SC 7, Spices, Culinary Herbs and Condiments; International Organization for Standardization: Geneva, Switzerland, 2011. [Google Scholar]
- Shahi, T.; Assadpour, E.; Jafari, S. Main chemical compounds and pharmacological activities of stigmas and tepals of ‘red gold’; saffron. Trends Food Sci. Technol. 2016, 58, 69–78. [Google Scholar] [CrossRef]
- Bagur, M.; Salinas, G.; Jiménez-Monreal, A.; Chaouqi, S.; Llorens, S.; Martinez-Tomé, M.; Alonso, G. Saffron: An Old Medicinal Plant and a Potential Novel Functional Food. Molecules 2018, 23, 30. [Google Scholar] [CrossRef]
- De Juan, J.A.; Córcoles, H.L.; Muñoz, R.M.; Picornell, M.R. Yield and yield components of saffron under different cropping systems. Ind. Crops Prod. 2009, 30, 212–219. [Google Scholar] [CrossRef]
- Gresta, F.; Lombardo, G.; Siracusa, L.; Ruberto, G. Saffron an alternative crop for sustainable agricultural systems. A review. Agron. Sustain. Dev. 2008, 28, 95–112. [Google Scholar] [CrossRef]
- Yarami, N.; Kamgar-Haghighi, A.A.; Sepaskhah, A.R.; Zand-Parsa, S. Determination of the potential evapotranspiration and crop coefficient for saffron using a water-balance lysimeter. Arch. Agron. Soil Sci. 2011, 57, 727–740. [Google Scholar] [CrossRef]
- Maggio, A.; Raimondi, G.; Martino, A.; De Pascale, S. Soilless cultivation of saffron in mediterranean environment. Acta Hortic. 2006, 718, 515–522. [Google Scholar] [CrossRef]
- Molina, R.; Valero, M.; Navarro, Y.; Guardiola, J.; García-Luis, A. Temperature effects on flower formation in saffron (Crocus sativus L.). Sci. Hortic. 2005, 103, 361–379. [Google Scholar] [CrossRef]
- Giorgi, A.; Pentimalli, D.; Giupponi, L.; Panseri, S. Quality traits of saffron (Crocus sativus L.) produced in the Italian Alps. Open Agric. 2017, 2, 52–57. [Google Scholar] [CrossRef]
- Manzo, A.; Panseri, S.; Bertoni, D.; Giorgi, A. Economic and qualitative traits of Italian Alps saffron. J. Mt. Sci. 2015, 12, 1542–1550. [Google Scholar] [CrossRef]
- De Pascale, S.; Rouphael, Y.; Colla, G. Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci. 2017, 82, 277–285. [Google Scholar] [CrossRef]
- De Ponti, T.; Rijk, B.; Van Ittersum, M. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Colla, G. Role of arbuscular mycorrhizal fungi in alleviating the adverse effects of acidity and aluminium toxicity in zucchini squash. Sci. Hortic. 2015, 188, 97–105. [Google Scholar] [CrossRef]
- Mercy, L.; Lucic-Mercy, E.; Nogales, A.; Poghosyan, A.; Schneider, C.; Arnholdt-Schmitt, B. A Functional Approach towards Understanding the Role of the Mitochondrial Respiratory Chain in an Endomycorrhizal Symbiosis. Front. Plant Sci. 2017, 8, 417. [Google Scholar] [CrossRef]
- Błaszkowski, J.; Kovács, G.; Balázs, T.; Orłowska, E.; Sadravi, M.; Wubet, T.; Buscot, F. Glomus africanum and G. iranicum, two new species of arbuscular mycorrhizal fungi (Glomeromycota). Mycologia 2010, 102, 1450–1462. [Google Scholar] [CrossRef]
- Johnson, N.; Gehring, C. Mycorrhizas: Symbiotic mediators of rhizosphere and ecosystem processes. Rhizosphere 2007, 73–100. [Google Scholar] [CrossRef]
- Berruti, A.; Borriello, R.; Lumini, E.; Scariot, V.; Bianciotto, V.; Balestrini, R. Application of laser microdissection to identify the mycorrhizal fungi that establish arbuscules inside root cells. Front. Plant Sci. 2013, 4, 135. [Google Scholar] [CrossRef] [PubMed]
- Borriello, R.; Berruti, A.; Lumini, E.; Della Beffa, M.T.; Scariot, V.; Bianciotto, V. Edaphic factors trigger diverse AM fungal communities associated to exotic camellias in closely located Lake Maggiore (Italy) sites. Mycorrhiza 2015, 25, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, L.; Wei, S.; Xiao, X.; Su, C.; Jiang, P.; Song, Z.; Wang, T.; Yu, Z. Effects of arbuscular mycorrhizal fungi on the growth, nutrient uptake and glycyrrhizin production of licorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul. 2007, 52, 29–39. [Google Scholar] [CrossRef]
- Berruti, A.; Lumini, E.; Balestrini, R.; Bianciotto, V. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Front. Microbiol. 2016, 6, 1559. [Google Scholar] [CrossRef] [PubMed]
- Bianciotto, V.; Victorino, I.; Scariot, V.; Berruti, A. Arbuscular mycorrhizal fungi as natural biofertilizers: Current role and potential for the horticulture industry. Acta Hortic. 2018, 1191, 207–215. [Google Scholar] [CrossRef]
- López-Ráez, J.; Verhage, A.; Fenández, I.; García, J.; Azcón-Aguilar, C.; Flors, V.; Pozo, M. Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J. Exp. Bot. 2010, 61, 2589–2601. [Google Scholar] [CrossRef]
- De Sousa Oliveira, M.; da Silva Campos, M.; de Albuquerque, U.P.; da Silva, F.S.B. Arbuscular mycorrhizal fungi (AMF) affects biomolecules content in Myracrodruon urundeuva seedlings. Ind. Crops Prod. 2013, 50, 244–247. [Google Scholar] [CrossRef]
- Bona, E.; Lingua, G.; Manassero, P.; Cantamessa, S.; Marsano, F.; Todeschini, V.; Copetta, A.; D’Agostino, G.; Massa, N.; Avidano, L.; et al. AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza 2015, 25, 181–193. [Google Scholar] [CrossRef]
- Lazzara, S.; Militello, M.; Carrubba, A.; Napoli, E.; Saia, S. Arbuscualr mycorrhizal fungi altered the hypericin, pseudohypericin, and hyperforin conten in flowers of Hypericum perforatum grown under contrasting P availability in a highly organic substrate. Mycorrhiza 2017, 27, 345–354. [Google Scholar] [CrossRef]
- Jurkiewicz, A.; Ryszka, P.; Anielska, T.; Waligórski, P.; Bialońska, D.; Góralska, K.; Tsimilli-Michael, M.; Turnau, K. Optimization of culture conditions of Arnica montana L.: Effects of mycorrhizal fungi and competing plants. Mycorrhiza 2010, 20, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Guo, L.; Chen, B.; Hao, Z.; Wang, J.; Huang, L.; Yang, G.; Cui, X.; Yang, L.; Wu, Z.; et al. Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: Current research status and prospectives. Mycorrhiza 2013, 23, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Giovannetti, M.; Avio, L.; Sbrana, C. Improvement of nutraceutical value of food by plant symbionts. In Natural Products, Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Ramawat, K.G., Merillon, J.M., Eds.; Springer: Berlin, Germany, 2013; pp. 2641–2662. [Google Scholar]
- Rydlová, J.; Jelínkova, M.; Dušek, K.; Dušková, E.; Vosátka, M.; Püschel, D. Arbuscular mycorrhiza differentially affects synthesis of essential oils in coriander and dill. Mycorrhiza 2016, 26, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Hart, M.M.; Antunes, P.M.; Chaudhary, V.B.; Abbott, L.K. Fungal inoculants in the field: Is the reward greater than the risk? Funct. Ecol. 2017, 32, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Ryan, M.H.; Graham, J.H. Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol. 2018, 220, 1092–1107. [Google Scholar] [CrossRef] [PubMed]
- Berg, G. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 2009, 84, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Aimo, S.; Gosetti, F.; D’Agostino, G.; Gamalero, E.; Gianotti, V.; Bottaro, M.; Gennaro, M.; Berta, G. Use of arbuscular mycorrhizal fungi and beneficial soil bacteria to improve yield and quality of saffron (Crocus sativus L.). Acta Hortic. 2010, 850, 159–162. [Google Scholar] [CrossRef]
- Venkateshwaran, M.; Volkening, J.; Sussman, M.; Ané, J. Symbiosis and the social network of higher plants. Curr. Opin. Plant Biol. 2013, 16, 118–127. [Google Scholar] [CrossRef]
- Mohebi-Anabat, M.; Riahi, H.; Zanganeh, S.; Sadeghnezhad, E. Effects of arbuscular mycorrhizal inoculation on the growth, photosynthetic pigments and soluble sugar of Crocus sativus L. (saffron) in autoclaved soil. Int. J. Agron. Agric. Res. 2015, 6, 296–304. [Google Scholar]
- Lone, R.; Shuab, R.; Koul, K. AMF association and their effect on metabolite mobilization, mineral nutrition and nitrogen assimilating enzymes in saffron (Crocus sativus) plant. J. Plant Nutr. 2016, 39, 1852–1862. [Google Scholar] [CrossRef]
- Shajari, M.A.; Moghaddam, P.R.; Ghorbani, R.; Koocheki, A. Increasing saffron (Crocus sativus L.) corm size through the mycorrhizal inoculation, humic acid application and irrigation managements. J. Plant Nutr. 2018, 41, 1047–1064. [Google Scholar] [CrossRef]
- Moghaddam, P.R.; Koocheki, A.; Molafilabi, A.; Seyyedi, M. Effect of biological and chemical fertilizers on replacement corm and flower yield of saffron (Crocus sativus L.). Iran. J. Crop Sci. 2013, 15, 234–246. [Google Scholar]
- Cusano, E.; Consonni, R.; Petrakis, E.A.; Astraka, K.; Cagliani, L.R.; Polissiou, M.G. Integrated analytical methodology to investigate bioactive compounds in Crocus sativus L. flowers. Phytochem. Anal. 2018, 29, 476–486. [Google Scholar] [CrossRef]
- Vahedi, M.; Kabiri, M.; Salami, S.A.; Rezadoost, H.; Mirzaie, M.; Kanani, M.R. Quantitative HPLC-based metabolomics of some Iranian saffron (Crocus sativus L.) accessions. Ind. Crops Prod. 2018, 118, 26–29. [Google Scholar] [CrossRef]
- Trouvelot, A.; Kough, J.; Gianinazzi-Pearson, V. Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In Mycorrhizae: Physiology and Genetics; Gianinazzi-Pearson, V., Gianinazzi, S., Eds.; INRA Press: Paris, France, 1986; pp. 217–221. [Google Scholar]
- Caser, M.; D’Angiolillo, F.; Chitarra, W.; Lovisolo, C.; Ruffoni, B.; Pistelli, L.; Pistelli, L.; Scariot, V. Ecophysiological and phytochemical responses of Salvia sinaloensis Fern. to drought stress. Plant Growth Regul. 2018, 84, 383–394. [Google Scholar] [CrossRef]
- Donno, D.; Beccaro, G.; Mellano, M.; Cerutti, A.; Bounous, G. Goji berry fruit (Lycium spp.): Antioxidant compound fingerprint and bioactivity evaluation. J. Funct. Foods 2015, 18, 1070–1085. [Google Scholar] [CrossRef]
- Caser, M.; D’Angiolillo, F.; Chitarra, W.; Lovisolo, C.; Ruffoni, B.; Pistelli, L.; Pistelli, L.; Scariot, V. Water deficit regimes trigger changes in valuable physiological and phytochemical parameters in Helichrysum petiolare Hilliard & B.L. Burtt. Ind. Crops Prod. 2016, 83, 680–669. [Google Scholar]
- Urbani, E.; Blasi, F.; Simonetti, M.; Chiesi, C.; Cossignani, L. Investigation on secondary metabolite content and antioxidant activity of commercial saffron powder. Eur. Food Res. Technol. 2016, 242, 987–993. [Google Scholar] [CrossRef]
- Donno, D.; Mellano, M.G.; Prgomet, Z.; Beccaro, G.L. Advances in Ribes x nidigrolaria Rud. Bauer & A. Bauer fruits as potential source of natural molecules: A preliminary study on physico-chemical traits of an underutilized berry. Sci. Hortic. 2018, 237, 20–27. [Google Scholar]
- Gosling, P.; Mead, A.; Proctor, M.; Hammond, J.P.; Bending, G.D. Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytol. 2013, 198, 546–556. [Google Scholar] [CrossRef]
- Watt-Williams, S.J.; Smith, F.A.; Jakobsen, I. Soil phosphorus availability is a driver of the responses of maize (Zea mays) to elevated CO2 concentration and arbuscular mycorrhizal colonization. Symbiosis 2018, 1–10. [Google Scholar] [CrossRef]
- Brundrett, M.; Kendrick, B. The roots and mycorrhizas of herbaceous woodland plants. II. Structural aspects of morphology. New Phytol. 1990, 114, 469–479. [Google Scholar] [CrossRef]
- Gavito, M.E.; Olsson, P.A.; Rouhier, H.; Medina-Peńafiel, A.; Jakobsen, I.; Bago, A.; Azcón-Aguilar, C. Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi. New Phytol. 2005, 168, 179–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavito, M.E.; Azcón-Aguilar, C. Temperature stress in arbuscular mycorrhizal fungi: A test for adaptation to soil temperature in three isolates of Funneliformis mosseae from different climates. Agric. Food Sci. 2012, 21, 2–11. [Google Scholar] [CrossRef]
- Tammaro, F. Saffron (Crocus sativus L.) in Italy. In Saffron: Crocus sativus L.; Negbi, M., Ed.; Harwood Academic Publishers: Amsterdam, NL, 1999; pp. 53–62. [Google Scholar]
- Mollafilabi, A.; Koocheki, A.; Moeinerad, H.; Kooshki, L. Effect of plant density and weight of corm on yield and yield components of saffron (Crocus sativus L.) under soil, hydroponic and plastic tunnel cultivation. Acta Hortic. 2013, 997, 51–58. [Google Scholar] [CrossRef]
- Koocheki, A.; Seyyedi, S. How irrigation rounds and mother corm size control saffron yield, quality, daughter corms behavior and phosphorus uptake. Sci. Hortic. 2016, 213, 132–143. [Google Scholar] [CrossRef]
- Bayat, M.; Amirnia, R.; Rahimi, M. Phenotypic and genotypic relationships between traits in saffron (Crocus sativus L.) as revealed by path analysis. J. Appl. Res. Med. Aromat. Plants 2017, 5, 33–40. [Google Scholar] [CrossRef]
- Geneva, M.; Stancheva, I.; Boychinova, M.; Mincheva, N.; Yonova, P. Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. J. Sci. Food Agric. 2010, 90, 696–702. [Google Scholar]
- Araim, G.; Saleem, A.; Amason, J.; Charest, C. Root colonization by an arbuscular mycorrhizal (AM) fungus increases growth and secondary metabolism of purple coneflower, Echinacea purpurea (L.) Moench. J. Agric. Food Chem. 2009, 57, 2255–2258. [Google Scholar] [CrossRef]
- Makhlouf, H.; Saksouk, M.; Habib, J.; Chahine, R. Determination of antioxidant activity of saffron taken from the flower of Crocus sativus grown in Lebanon. Afr. J. Biotechnol. 2011, 10, 8093–8100. [Google Scholar]
- Gülçin, I.; Güngör, Ş.; Beydemir, Ş.; Elmastas, M.; İrfan, K. Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chem. 2004, 87, 393–400. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Tian, X.; Zhao, C.; Liu, Y.; Jia, L.; Yin, H.X.; Chen, C. Antioxidant potential of crocins and ethanol extracts of Gardenia jasminoides ELLIS and Crocus sativus L. A relationship investigation between antioxidant activity and crocin contents. Food Chem. 2008, 109, 484–492. [Google Scholar] [CrossRef]
- Ordoudi, S.; Befani, C.; Nenadis, N.; Koliakos, G.; Tsimidou, M. Further Examination of Antiradical Properties of Crocus sativus Stigmas Extract Rich in Crocins. J. Agric. Food Chem. 2009, 57, 3080–3086. [Google Scholar] [CrossRef] [PubMed]
- Karimi, E.; Oskoueian, E.; Hendra, R.; Jaafar, H. Evaluation of Crocus sativus L. stigma phenolic and flavonoid compounds and its antioxidant activity. Molecules 2010, 15, 6244–6256. [Google Scholar] [CrossRef] [PubMed]
- Inoue, E.; Shimizu, Y.; Masui, R.; Hayakawa, T.; Tsubonoya, T.; Hori, S.; Sudoh, K. Effects of saffron and its constituents, crocin-1, crocin-2, and crocetin on α-synuclein fibrils. J. Nat. Med. 2018, 72, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Asdaq, S.; Inamdar, M. Potential of garlic and its active constituent, S-allyl cysteine, as antihypertensive and cardioprotective in presence of captopril. Phytomedicine 2010, 17, 1016–1026. [Google Scholar] [CrossRef] [PubMed]
- Amin, S.; Parker, M.; Armbrust, E. Interactions between diatoms and bacteria. Microbiol. Mol. Boil. Rev. 2012, 76, 667–684. [Google Scholar] [CrossRef] [PubMed]
- Del Campo, P.; Carmona, M.; Maggi, L.; Kanakis, C.; Anastasaki, E.; Tarantilis, P.; Polissiou, M.; Alonso, G. Picrocrocin Content and Quality Categories in Different (345) Worldwide Samples of Saffron (Crocus sativus L.). J. Agric. Food Chem. 2010, 58, 1305–1312. [Google Scholar] [CrossRef]
- Proestos, C.; Chorianopoulos, N.; Nychas, G.; Komaitis, M. RP-HPLC Analysis of the Phenolic Compounds of Plant Extracts. Investigation of Their Antioxidant Capacity and Antimicrobial Activity. J. Agric. Food Chem. 2005, 53, 1190–1195. [Google Scholar] [CrossRef]
Index (%) | ||||
---|---|---|---|---|
Treatment | M | m | A | a |
Ri + Fm | 93.33 a | 93.33 a | 93.33 a | 100.00 a |
Ri | 71.37 b | 80.28 b | 58.98 b | 82.99 b |
AMF- | 0.07 c | 0.33 c | 0.00 c | 0.00 c |
p | *** | *** | *** | *** |
Effect | Index (%) | |||
---|---|---|---|---|
Year 1 | M | m | A | a |
Ri + Fm | 11.6 a | 11.7 | 4.0 a | 26.6 a |
Ri | 13.8 a | 14.2 | 6.9 a | 38.1 a |
AMF- | 1.7 b | 3.4 | 0.0 b | 0.0 b |
p | * | ns | *** | *** |
Year 2 | ||||
Ri + Fm | 7.0 | 8.5 | 0.8 | 12.5 |
Ri | 16.1 | 16.5 | 1.6 | 8.31 |
AMF- | 4.73 | 6.1 | 2.5 | 18.8 |
p | ns | ns | ns | ns |
Year × Treatment (p) | * | ns | * | * |
Growing Seasons | AMF Treatments | Year × AMF | ||||||
---|---|---|---|---|---|---|---|---|
Traits | Year 1 | Year 2 | p | Ri + Fm | Ri | AMF- | p | p |
Wilting rate (%) | 39.0 | 54.4 | *** | 44.3 | 50.0 | 45.8 | ns | ns |
Flower (n m−2) | 49.8 | 101.7 | *** | 91.8 a | 61.9 b | 66.4 b | * | * |
Flower/corm (n) | 1.5 | 4.2 | *** | 5.1 a | 3.8 b | 3.9 b | * | * |
Saffron yield (mg m−2) | 278.0 | 700.0 | *** | 645.3 a | 377.4 b | 477.2 b | * | * |
Saffron/flower (mg) | 6.0 | 7.0 | ** | 7.1 a | 5.8 b | 7.3 a | * | * |
Leaf length (cm) | 36.8 | 24.1 | *** | 31.4 | 30.3 | 29.9 | ns | ns |
SPAD unit | 74.8 | 45.7 | *** | 60.0 | 61.1 | 59.7 | ns | ns |
Shoot size (mm) | 5.3 | 4.1 | ** | 5.5 a | 3.3 b | 4.2 ab | ** | * |
Corm size (mm) | 21.1 | 20.2 | ns | 19.8 | 20.0 | 22.2 | ns | ns |
Replacement corm (n) | 2.2 | 3.7 | * | 2.8 | 3.4 | 2.7 | ns | ns |
Corm weight (g) | 7.7 | 6.5 | ns | 7.8 | 7.4 | 6.3 | ns | ns |
Chlorophyll (µg mg−1) | 1.6 | 4.1 | *** | 2.9 | 2.9 | 2.7 | ns | ns |
Carotenoids (µg mg−1) | 0.6 | 2.2 | *** | 1.4 | 1.5 | 1.4 | ns | ns |
Growing Seasons | AMF Treatments | Year × AMF | ||||||
---|---|---|---|---|---|---|---|---|
Traits | Year 1 | Year 2 | p | Ri + Fm | Ri | AMF- | p | p |
ISO 3632 [7] | ||||||||
Picrocrocin | 131.4 | 135.0 | * | 130.2 b | 138.7 a | 136.1 a | * | * |
Safranal | 38.8 | 44.2 | ** | 39.9 | 43.8 | 40.8 | ns | ns |
Crocins | 207.1 | 368.5 | *** | 275.9 | 303.5 | 284.1 | ns | ns |
Bioactive compounds (mg 100 g−1 dry weight) | ||||||||
Coumaric acid | 23.6 | 23.5 | ns | 23.6 | 23.5 | 23.7 | ns | ns |
Isoquercitrin | 2.6 | 2.5 | * | 2.5 | 2.5 | 2.6 | ns | ns |
Quercitrin | 22.8 | 16.0 | *** | 17.0 b | 22.3 a | 18.9 ab | * | * |
Gallic acid | 5.0 | 4.9 | ns | 4.9 | 4.9 | 5.1 | ns | ns |
Ellagic acid | 2.7 | 0.8 | *** | 2.0 | 2.1 | 1.3 | ns | ns |
Catechin | 3.4 | 3.1 | ns | 2.7 | 3.0 | 4.3 | ns | ns |
Epicatechin | 6.1 | 8.3 | ns | 6.4 | 6.3 | 9.0 | ns | ns |
Safranal | 4.4 | 4.0 | *** | 4.2 | 4.3 | 4.2 | ns | ns |
Crocin I | 32.5 | 67.9 | ** | 49.2 | 37.7 | 63.8 | ns | ns |
Crocin II | 31.1 | 36.6 | * | 35.0 ab | 38.8 a | 27.7 b | * | * |
Total Vitamin C | 76.5 | 67.0 | ** | 71.4 | 70.1 | 73.2 | ns | ns |
TPC (mgGAE 100 g−1 DW) | 1340.7 | 2355.5 | ns | 1906.1 | 1868.8 | 1819.5 | ns | ns |
Antocyanins (mgC3G 100 g−1 DW) | 1866.5 | 1633.6 | ns | 964.1 | 2418.8 | 1867.3 | ns | ns |
Antioxidant activity | ||||||||
FRAP (mmol Fe2+ kg−1) | 408.9 | 1937.1 | *** | 424.8 a | 463.8 a | 338.2 b | *** | *** |
ABTS (μmolTE g−1) | 4.2 | 4.6 | ns | 4.3 | 4.5 | 4.6 | ns | ns |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caser, M.; Victorino, Í.M.M.; Demasi, S.; Berruti, A.; Donno, D.; Lumini, E.; Bianciotto, V.; Scariot, V. Saffron Cultivation in Marginal Alpine Environments: How AMF Inoculation Modulates Yield and Bioactive Compounds. Agronomy 2019, 9, 12. https://doi.org/10.3390/agronomy9010012
Caser M, Victorino ÍMM, Demasi S, Berruti A, Donno D, Lumini E, Bianciotto V, Scariot V. Saffron Cultivation in Marginal Alpine Environments: How AMF Inoculation Modulates Yield and Bioactive Compounds. Agronomy. 2019; 9(1):12. https://doi.org/10.3390/agronomy9010012
Chicago/Turabian StyleCaser, Matteo, Íris Marisa Maxaieie Victorino, Sonia Demasi, Andrea Berruti, Dario Donno, Erica Lumini, Valeria Bianciotto, and Valentina Scariot. 2019. "Saffron Cultivation in Marginal Alpine Environments: How AMF Inoculation Modulates Yield and Bioactive Compounds" Agronomy 9, no. 1: 12. https://doi.org/10.3390/agronomy9010012
APA StyleCaser, M., Victorino, Í. M. M., Demasi, S., Berruti, A., Donno, D., Lumini, E., Bianciotto, V., & Scariot, V. (2019). Saffron Cultivation in Marginal Alpine Environments: How AMF Inoculation Modulates Yield and Bioactive Compounds. Agronomy, 9(1), 12. https://doi.org/10.3390/agronomy9010012