Alley Cropping Increases Land Use Efficiency and Economic Profitability Across the Combination Cultivation Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.2.1. A long-Term Experiment
2.2.2. A Short-Term Experiment
2.3. Intercropping Distance between Apple Trees and Crops
2.4. Economic Analysis
2.5. Statistical Analysis
3. Results
3.1. Yields
3.2. Intercropping Distance between Apple Trees and Crops
3.3. Land Equivalent Ratios
3.4. Economic Profitability
4. Discussion
4.1. Land Use Advantage
4.2. Economic Advantage
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Centre, W.A. Annual Report 2010–2011 of World Agroforestry Centre: Wicked Challenges Today, Wicked Solutions Tomorrow; World Agroforestry Centre: Nairobi, Kenya, 2011; pp. 6–7. [Google Scholar]
- Gold, M.A.; Garrett, H.E. Agroforestry Nomenclature, Concepts, and Practices, 2nd ed.; American Society of Agronomy Inc.: Madison, WI, USA, 2009; pp. 45–56. [Google Scholar]
- Jose, S.; Williams, R.; Zamora, D. Belowground ecological interactions in mixed-species forest plantations. For. Ecol. Manag. 2006, 233, 231–239. [Google Scholar] [CrossRef]
- Singh, B.; Bishnoi, M.; Baloch, M.R.; Singh, G. Tree biomass, resource use and crop productivity in agri-horti-silvicultural systems in the dry region of Rajasthan, India. Arch. Agron. Soil Sci. 2014, 60, 1031–1049. [Google Scholar] [CrossRef]
- Razouk, R.; Daoui, K.; Ramdani, A.; Chergaoui, A. Optimal distance between olive trees and annual crops in rainfed intercropping system in northern Morocco. Crop Sci. Res. 2016, 1, 23–32. [Google Scholar]
- Nerlich, K.; Graeff-Hönninger, S.; Claupein, W. Erratum to: Agroforestry in Europe: A review of the disappearance of traditional systems and development of modern agroforestry practices, with emphasis on experiences in Germany. Agrofor. Syst. 2013, 87, 1211. [Google Scholar] [CrossRef]
- Miah, M.G.; Islam, M.M.; Rahman, M.A.; Ahamed, T.; Islam, M.R.; Jose, S. Transformation of jackfruit (Artocarpus heterophyllus Lam.) orchard into multistory agroforestry increases system productivity. Agrofor. Syst. 2018, 92, 1–11. [Google Scholar] [CrossRef]
- Sida, T.S.; Baudron, F.; Hadgu, K.; Derero, A.; Giller, K.E. Crop vs. tree: Can agronomic management reduce trade-offs in tree-crop interactions? Agric. Ecosyst. Environ. 2018, 260, 36–46. [Google Scholar] [CrossRef]
- Zhang, W.; Ahanbieke, P.; Wang, B.; Xu, W.; Li, L.; Christie, P.; Li, L. Root distribution and interactions in jujube tree/wheat agroforestry system. Agrofor. Syst. 2013, 87, 929–939. [Google Scholar] [CrossRef]
- Bohra, B.; Sharma, N.; Saxena, S.; Sabhlok, V.; Ramakrishna, Y. Socio-economic impact of biofuel agroforestry systems on smallholder and large-holder farmers in Karnataka, India. Agrofor. Syst. 2018, 92, 1–16. [Google Scholar] [CrossRef]
- Caviglia-Harris, J.L.; Kahn, J.R.; Green, T. Demand-side policies for environmental protection and sustainable usage of renewable resources. Ecol. Econ. 2003, 45, 119–132. [Google Scholar] [CrossRef]
- Pumariño, L.; Sileshi, G.W.; Gripenberg, S.; Kaartinen, R.; Barrios, E.; Muchane, M.N.; Midega, C.; Jonsson, M. Effects of agroforestry on pest, disease and weed control: A meta-analysis. Basic Appl. Ecol. 2015, 16, 573–582. [Google Scholar] [CrossRef]
- Torralba, M.; Fagerholm, N.; Burgess, P.J.; Moreno, G.; Plieninger, T. Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agric. Ecosyst. Environ. 2016, 230, 150–161. [Google Scholar] [CrossRef]
- Garrity, D. Agroforestry and the future of global land use. In Agroforestry-The Future of Global Land Use; Springer: Dordrecht, The Netherlands, 2012; Volome 9, pp. 21–27. [Google Scholar]
- Thevathasan, N.V.; Gordon, A.M.; Bradley, R.; Cogliastro, A.; Folkard, P.; Grant, R.; Kort, J.; Liggins, L.; Njenga, F.; Olivier, A. Agroforestry research and development in Canada: The way forward. In Agroforestry-The Future of Global Land Use; Springer: Dordrecht, The Netherlands, 2012; pp. 247–283. [Google Scholar]
- Wilson, M.H.; Lovell, S.T. Agroforestry—The next step in sustainable and resilient agriculture. Sustainability 2016, 8, 574. [Google Scholar] [CrossRef]
- Rahman, S.A.; Jacobsen, J.B.; Healey, J.R.; Roshetko, J.M.; Sunderland, T. Finding alternatives to swidden agriculture: Does agroforestry improve livelihood options and reduce pressure on existing forest? Agrofor. Syst. 2017, 91, 185–199. [Google Scholar] [CrossRef]
- Rahman, H.T.; Deb, J.C.; Hickey, G.M.; Kayes, I. Contrasting the financial efficiency of agroforestry practices in buffer zone management of Madhupur National Park, Bangladesh. J. For. Res. 2014, 19, 12–21. [Google Scholar] [CrossRef]
- Bi, H.; Yun, L.; Zhu, Q. Interspecific Relationship in Agroforestry Systems on the Loess Plateau of West Shanxi Province; Science Press: Beijing, China, 2011; pp. 112–121. [Google Scholar]
- Du, Z.; He, M.; Yang, Z. The Effect of Shading Treatment on Photosynthetic Properties of Setaria Italica and Arachis Hypogaea. CNKI 1982, 6, 219–226. [Google Scholar]
- Zhang, K. Influence of Shading on Photosynthetic Characteristics, Yield and Quality of Peanut and Its Growth Model; Shandong Agircultural University: Taian, China, 2009. [Google Scholar]
- Zhong, X.-M.; Shi, Z.-S. Research progress on corn shading stress. J. Maize Sci. 2012, 1, 030. [Google Scholar]
- Xiaobang, P. Eco-Physiological Characteristics and Productivity of Grooviest System in the Loess Area of the Northern Wei River, Shaanxi, China; Northwest A&F University: Yangling, China, 2009. [Google Scholar]
- The Modelling of Three Dimensional Distribution of Photosynthetically Active Radiation in Maize Canopy; China Agricultural University: Beijing, China, 2004.
- Andersen, M.K.; Hauggaard-Nielsen, H.; Weiner, J.; Jensen, E.S. Competitive dynamics in two-and three-component intercrops. J. Appl. Ecol. 2007, 44, 545–551. [Google Scholar] [CrossRef]
- Wolz, K.J.; DeLucia, E.H. Alley cropping: Global patterns of species composition and function. Agric. Ecosyst. Environ. 2018, 252, 61–68. [Google Scholar] [CrossRef]
- Schroth, G. Tree root characteristics as criteria for species selection and systems design in agroforestry. In Agroforestry: Science, Policy and Practice; Springer: Berlin, Gremany, 1995; pp. 125–143. [Google Scholar]
- Cardinael, R.; Mao, Z.; Prieto, I.; Stokes, A.; Dupraz, C.; Kim, J.H.; Jourdan, C. Competition with winter crops induces deeper rooting of walnut trees in a Mediterranean alley cropping agroforestry system. Plant Soil 2015, 391, 219–235. [Google Scholar] [CrossRef]
- Sun, Y.; Bi, H.; Xu, H.; Duan, H.; Peng, R.; Wang, J. Below-Ground Interspecific Competition of Apple (Malus pumila M.)–Soybean (Glycine max L. Merr.) Intercropping Systems Based on Niche Overlap on the Loess Plateau of China. Sustainability 2018, 10, 3022. [Google Scholar] [CrossRef]
- Bo, Y. Quantification of the Three-Dimensional Root Architecture of Field-Grown Maize; China Agricultural University: Beijing, China, 2013. [Google Scholar]
- Pearce, D.; Mourato, S. The economic valuation of agroforestry’s environmental services. In Agroforestry and Biodiversity Conservation in Tropical Landscapes; Island Press: Washington, DC, USA, 2004; pp. 67–86. [Google Scholar]
- Gao, L.; Xu, H.; Bi, H.; Xi, W.; Bao, B.; Wang, X.; Bi, C.; Chang, Y. Intercropping competition between apple trees and crops in agroforestry systems on the Loess Plateau of China. PLoS ONE 2013, 8, e70739. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Bi, H.; Tian, X.; Cui, Z.; Zhou, H.; Gao, L.; Liu, L. Main interspecific competition and land productivity of fruit-crop intercropping in Loess Region of West Shanxi. Yingyong Shengtai Xuebao 2011, 22, 1225–1232. [Google Scholar]
- Nair, P.R. Intensive Multiple Cropping with Coconuts in India. Principles, Programmes and Prospects; Verlag Paul Parey: Berlin, Germany, 1979. [Google Scholar]
- Bai, W.; Sun, Z.; Zheng, J.; Du, G.; Feng, L.; Cai, Q.; Yang, N.; Feng, C.; Zhang, Z.; Evers, J.B. Mixing trees and crops increases land and water use efficiencies in a semi-arid area. Agric. Water Manag. 2016, 178, 281–290. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.Y.; Wu, H.M.; Zhang, F.F.; Li, C.J.; Li, X.X.; Lambers, H.; Li, L. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc. Natl. Acad. Sci. USA 2016, 113, 6496–6501. [Google Scholar] [CrossRef] [PubMed]
- Chirko, C.P.; Gold, M.A.; Nguyen, P.V.; Jiang, J. Influence of direction and distance from trees on wheat yield and photosynthetic photon flux density (Qp) in a Paulownia and wheat intercropping system. For. Ecol. Manag. 1996, 83, 171–180. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, D.; Zhang, L.; Han, S.; van der Werf, W.; Evers, J.B.; Su, Z.; Anten, N.P. Spatial configuration drives complementary capture of light of the understory cotton in young jujube plantations. Field Crops Res. 2017, 213, 21–28. [Google Scholar] [CrossRef]
- Dordas, C.A.; Vlachostergios, D.N.; Lithourgidis, A.S. Growth dynamics and agronomic-economic benefits of pea–oat and pea–barley intercrops. Crop Pasture Sci. 2012, 63, 45–52. [Google Scholar] [CrossRef]
- Rasul, G.; Thapa, G.B. Financial and economic suitability of agroforestry as an alternative to shifting cultivation: The case of the Chittagong Hill Tracts, Bangladesh. Agric. Syst. 2006, 91, 29–50. [Google Scholar] [CrossRef]
- Betters, D.R. Planning optimal economic strategies for agroforestry systems. Agrofor. Syst. 1988, 7, 17–31. [Google Scholar] [CrossRef]
- McGinty, M.M.; Swisher, M.E.; Alavalapati, J. Agroforestry adoption and maintenance: Self-efficacy, attitudes and socio-economic factors. Agrofor. Syst. 2008, 73, 99–108. [Google Scholar] [CrossRef]
- Pantera, A.; Burgess, P.J.; Losada, R.M.; Moreno, G.; López-Díaz, M.; Corroyer, N.; McAdam, J.; Rosati, A.; Papadopoulos, A.; Graves, A. Agroforestry for high value tree systems in Europe. Agrofor. Syst. 2018, 92, 945–949. [Google Scholar] [CrossRef]
- Jamar, L.; Rondia, A.; Lateur, M.; Minet, L.; Froncoux, A.; Stilmant, D. Co-design and establishment of innovative fruit-based agroforestry cropping systems in Belgium. In Proceedings of the International Symposium on Innovation in Integrated and Organic Horticulture (INNOHORT), Avignon, France, 8–12 June 2015; pp. 347–350. [Google Scholar]
- Fahmi, M.K.M.; Dafa-Alla, D.-A.M.; Kanninen, M.; Luukkanen, O. Impact of agroforestry parklands on crop yield and income generation: Case study of rainfed farming in the semi-arid zone of Sudan. Agrofor. Syst. 2018, 92, 1–16. [Google Scholar] [CrossRef]
- Ngwira, A.R.; Aune, J.B.; Mkwinda, S. On-farm evaluation of yield and economic benefit of short term maize legume intercropping systems under conservation agriculture in Malawi. Field Crops Res. 2012, 132, 149–157. [Google Scholar] [CrossRef]
- Isaac, M.E.; Carlsson, G.; Ghoulam, C.; Makhani, M.; Thevathasan, N.V.; Gordon, A.M. Legume performance and nitrogen acquisition strategies in a tree-based agroecosystem. Agroecol. Sustain. Food Syst. 2014, 38, 686–703. [Google Scholar] [CrossRef]
- Malézieux, E.; Crozat, Y.; Dupraz, C.; Laurans, M.; Makowski, D.; Ozier-Lafontaine, H.; Rapidel, B.; De Tourdonnet, S.; Valantin-Morison, M. Mixing plant species in cropping systems: Concepts, tools and models: A review. In Sustainable Agriculture; Springer: Berlin, Germany, 2009; pp. 329–353. [Google Scholar]
- Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Smith, J.; Girling, R.; Wolfe, M.; Pearce, B. Agroforestry: Integrating apple and arable production as an approach to reducing copper use in organic and low-input apple production. In Proceedings of the Agriculture and the Environment X: Delivering Multiple Benefits from our Land: Sustainable Development in Practice, Edinburgh, UK, 15–16 April 2014; pp. 278–284. [Google Scholar]
- Schut, M.; Rodenburg, J.; Klerkx, L.; van Ast, A.; Bastiaans, L. Systems approaches to innovation in crop protection. A systematic literature review. Crop Prot. 2014, 56, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Simon, S.; Lesueur Jannoyer, M.; Plénet, D.; Lauri, P.-É.; Le Bellec, F. Design of Innovative Orchards: Proposal of an Adapted Conceptual Framework. 2015. Available online: http://fsd5.european-agronomy.org/documents/proceedings.pdf (accessed on 11 August 2018).
- Quinkenstein, A.; Woellecke, J.; Böhm, C.; Grünewald, H.; Freese, D.; Schneider, B.U.; Hüttl, R.F. Ecological benefits of the alley cropping agroforestry system in sensitive regions of Europe. Environ. Sci. Policy 2009, 12, 1112–1121. [Google Scholar] [CrossRef]
Species | Cropping System | Year after Establishment | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
First | Second | Third | Fourth | Fifth | Sixth | Seventh | Eighth | Ninth | ||
Peanut | Mono | 2.79 ± 0.17 a | 3.42 ± 0.51 a | 3.05 ± 0.10 a | 2.60 ± 0.1 8a | 3.18 ± 0.12 a | 2.56 ± 0.17 a | 3.75 ± 0.24 a | 2.82 ± 0.12 a | 3.06 ± 0.13 a |
Inter | 2.67 ± 0.11 a | 3.29 ± 0.28 a | 2.89 ± 0.05 a | 2.37 ± 0.12 a | 2.81 ± 0.07 a | 2.28 ± 0.02 a | 3.00 ± 0.10 a | 2.35 ± 0.14 b | 1.93 ± 0.49 b | |
Millet | Mono | 3.03 ± 0.12 a | 3.93 ± 0.14 a | 3.49 ± 0.23 a | 2.89 ± 0.18 a | 3.45 ± 0.19 a | 3.03 ± 0.21 a | 3.87 ± 0.17 a | 3.20 ± 0.24 a | 3.56 ± 0.28 a |
Inter | 2.93 ± 0.07 a | 3.77 ± 0.05 a | 3.32 ± 0.07 a | 2.58 ± 0.06 a | 2.94 ± 0.05 a | 2.62 ± 0.07 a | 3.29 ± 0.14 a | 2.36 ± 0.21 b | 1.90 ± 0.17 b | |
Maize | Mono | 10.32 ± 0.63 a | 13.19 ± 0.49 a | 11.28 ± 0.60 a | 9.53 ± 0.57 a | 11.71 ± 0.55 a | 9.46 ± 0.60 a | 13.59 ± 0.52 a | 10.69 ± 0.61 a | 11.56 ± 0.75 a |
Inter | 9.91 ± 0.33 a | 12.77 ± 0.12 a | 10.81 ± 0.48 a | 8.84 ± 0.23 a | 10.42 ± 0.26 a | 8.06 ± 0.26 a | 10.45 ± 0.31 b | 6.55 ± 0.24 b | 5.56 ± 1.47 b | |
Apple | Mono | -- | -- | -- | -- | -- | 2.35 ± 0.18 a | 3.59 ± 0.05 a | 7.62 ± 0.29 a | 13.64 ± 0.30 a |
Associated with Peanut | -- | -- | -- | -- | -- | 2.17 ± 0.14 ab | 3.39 ± 0.04 ab | 7.44 ± 0.26 a | 13.43 ± 0.33 ab | |
Associated with Millet | -- | -- | -- | -- | -- | 2.17 ± 0.15 ab | 3.29 ± 0.03 b | 7.32 ± 0.16 a | 13.08 ± 0.21 bc | |
Associated with Maize | -- | -- | -- | -- | -- | 2.08 ± 0.10 b | 3.22 ± 0.07 b | 7.22 ± 0.10 a | 12.73 ± 0.17 c |
Year after Establishment | Exp.1 | Exp.2 | |||||||
---|---|---|---|---|---|---|---|---|---|
Conventional Intercropping Distance | Apple/Peanut (millet) | Apple/Maize | |||||||
IIDabove | IIDbelow | Analog IID | Operable IID | IIDabove | IIDbelow | Analog IID | Operable IID | ||
First | 0.50 | 0.33 | 0.48 | 0.48 | 0.50 | 0.40 | 0.48 | 0.48 | 0.50 |
Second | 0.75 | 0.42 | 0.64 | 0.64 | 0.75 | 0.49 | 0.64 | 0.64 | 0.75 |
Third | 1.00 | 0.59 | 0.86 | 0.86 | 1.00 | 0.66 | 0.86 | 0.86 | 1.00 |
Fourth | 1.00 | 0.90 | 1.15 | 1.15 | 1.25 | 0.97 | 1.15 | 1.15 | 1.25 |
Fifth | 1.50 | 1.33 | 1.48 | 1.48 | 1.50 | 1.40 | 1.48 | 1.48 | 1.50 |
Sixth | 1.75 | 1.80 | 1.79 | 1.80 | 1.75 | 1.87 | 1.79 | 1.87 | 2.00 |
Seventh | 2.00 | 2.17 | 2.05 | 2.17 | 2.25 | 2.24 | 2.05 | 2.24 | 2.25 |
Eighth | 2.25 | 2.41 | 2.23 | 2.41 | 2.25 | 2.48 | 2.23 | 2.48 | 2.50 |
Ninth | 2.50 | 2.53 | 2.35 | 2.53 | 2.50 | 2.60 | 2.35 | 2.60 | -- |
Years after Establishment | Crop Species | Exp.1 (2005–2013) | Exp.2 (2014) | ||||
---|---|---|---|---|---|---|---|
LER Crop | LER Apple | LER | LER Crop | LER Apple | LER | ||
First | Peanut | 0.86 ± 0.02 aA | -- | 0.86 ± 0.02 aA | 0.89 ± 0.01 aA | -- | 0.89 ± 0.01 aA |
Millet | 0.87 ± 0.01 aA | -- | 0.87 ± 0.01 aA | 0.87 ± 0.01 aA | -- | 0.87 ± 0.01 aA | |
Maize | 0.86 ± 0.01 aA | -- | 0.86 ± 0.01 aA | 0.87 ± 0.01 aA | -- | 0.87 ± 0.01 aA | |
Second | Peanut | 0.77 ± 0.02 aA | -- | 0.77 ± 0.02 aA | 0.78 ± 0.02 aA | -- | 0.78 ± 0.02 aA |
Millet | 0.77 ± 0.01 aA | -- | 0.77 ± 0.01 aA | 0.76 ± 0.01 aA | -- | 0.76 ± 0.01 aA | |
Maize | 0.76 ± 0.02 aA | -- | 0.76 ± 0.02 aA | 0.78 ± 0.01 aA | -- | 0.78 ± 0.01 aA | |
Third | Peanut | 0.66 ± 0.02 aA | -- | 0.66 ± 0.02 aA | 0.69 ± 0.01 aA | -- | 0.69 ± 0.01 aA |
Millet | 0.67 ± 0.02 aA | -- | 0.67 ± 0.02 aA | 0.68 ± 0.02 aA | -- | 0.68 ± 0.02 aA | |
Maize | 0.67 ± 0.02 aA | -- | 0.67 ± 0.02 aA | 0.67 ± 0.01 aA | -- | 0.67 ± 0.01 aA | |
Fourth | Peanut | 0.64 ± 0.01 aA | -- | 0.64 ± 0.01 aA | 0.57 ± 0.01 aB | -- | 0.57 ± 0.01 aB |
Millet | 0.63 ± 0.02 aA | -- | 0.63 ± 0.02 aA | 0.57 ± 0.02 aB | -- | 0.57 ± 0.02 aB | |
Maize | 0.65 ± 0.01 aA | -- | 0.65 ± 0.01 aA | 0.57 ± 0.01 aB | -- | 0.57 ± 0.01 aB | |
Fifth | Peanut | 0.44 ± 0.02 aA | -- | 0.44 ± 0.02 aA | 0.48 ± 0.01 aA | -- | 0.48 ± 0.01 aA |
Millet | 0.50 ± 0.05 aA | -- | 0.50 ± 0.05 aA | 0.48 ± 0.01 abA | -- | 0.48 ± 0.01 abA | |
Maize | 0.46 ± 0.01 aA | -- | 0.46 ± 0.01 aA | 0.47 ± 0.02 bA | -- | 0.47 ± 0.02 bA | |
Sixth | Peanut | 0.36 ± 0.02 aA | 0.92 ± 0.01 aA | 1.28 ± 0.01 aB | 0.38 ± 0.02 aA | 0.97 ± 0.01 aA | 1.35 ± 0.02 aA |
Millet | 0.38 ± 0.04 aA | 0.92 ± 0.01 aB | 1.31 ± 0.01 abA | 0.37 ± 0.02 aA | 0.95 ± 0.01 aA | 1.32 ± 0.01 aA | |
Maize | 0.35 ± 0.01 bA | 0.89 ± 0.03 aB | 1.23 ± 0.03 bA | 0.27 ± 0.01 bB | 0.94 ± 0.03 aA | 1.20 ± 0.01 bA | |
Seventh | Peanut | 0.24 ± 0.01 aA | 0.95 ± 0.01 aB | 1.19 ± 0.01 aA | 0.18 ± 0.01 aB | 0.98 ± 0.01 aA | 1.16 ± 0.03 aA |
Millet | 0.26 ± 0.02 aA | 0.92 ± 0.01 abB | 1.17 ± 0.01 abA | 0.17 ± 0.02 aB | 0.97 ± 0.01 abA | 1.14 ± 0.01 aA | |
Maize | 0.23 ± 0.03 aA | 0.90 ± 0.02 bB | 1.13 ± 0.02 bA | 0.16 ± 0.01 aB | 0.94 ± 0.02 bA | 1.09 ± 0.02 aA | |
Eighth | Peanut | 0.18 ± 0.03 aA | 0.98 ± 0.01 aA | 1.16 ± 0.01 aA | 0.16 ± 0.02 aA | 0.98 ± 0.01 aA | 1.13 ± 0.01 aA |
Millet | 0.15 ± 0.03 aA | 0.96 ± 0.02 aA | 1.11 ± 0.02 abA | 0.16 ± 0.02 aA | 0.96 ± 0.02 aA | 1.12 ± 0.02 abA | |
Maize | 0.12 ± 0.01 aA | 0.95 ± 0.02 aA | 1.07 ± 0.02 bA | 0.06 ± 0.01 aB | 0.95 ± 0.02 aA | 1.01 ± 0.03 bA | |
Ninth | Peanut | 0.06 ± 0.03 aA | 0.98 ± 0.01 aA | 1.05 ± 0.01 aA | 0.08 ± 0.01 aA | 0.98 ± 0.01 aA | 1.07 ± 0.01 aA |
Millet | 0.05 ± 0.01 aA | 0.96 ± 0.02 abA | 1.01 ± 0.02 abA | 0.07 ± 0.01 aA | 0.96 ± 0.02 abA | 1.04 ± 0.02 abA | |
Maize | 0.05 ± 0.02 aA | 0.93 ± 0.03 bB | 0.98 ± 0.03 bA | -- | 1.00 ± 0.01 bA | 1.00 ± 0.01 bA | |
First-ninth | Peanut | 0.46 ± 0.00 aA | 0.97 ± 0.01 aA | 1.43 ± 0.01 aA | 0.47 ± 0.01 aA | 0.98 ± 0.00 aA | 1.45 ± 0.01 aA |
Millet | 0.46 ± 0.02 aA | 0.95 ± 0.01 abA | 1.41 ± 0.03 aA | 0.46 ± 0.01 aA | 0.97 ± 0.00 aA | 1.43 ± 0.01 bA | |
Maize | 0.46 ± 0.03 aB | 0.93 ± 0.00 bB | 1.39 ± 0.03 aB | 0.48 ± 0.01 aA | 0.97 ± 0.00 aA | 1.45 ± 0.01 aA |
Activities | Quantity ha−1 | Price unit−1 | Cost (USD ha−1) | |
---|---|---|---|---|
Planting | ||||
First | Rootstock seedling | 500.0 | 0.41 | 204.25 |
Planting | 500.0 | 0.13 | 65.36 | |
Second | Rootstock seedling | 48.0 | 0.41 | 19.61 |
Replanting | 48.0 | 0.13 | 6.27 | |
Graft seeding | 452.0 | 1.23 | 553.92 | |
Grafting | 452.0 | 0.16 | 73.86 | |
Third | Graft seeding | 48.0 | 1.23 | 58.82 |
Grafting | 48.0 | 0.16 | 7.84 | |
Tending (fertilizer, blossom and fruit thinning, agrochemical, intertillage etc.) | ||||
First, second | 220.6 | |||
Third | 306.4 | |||
Fourth | 361.9 | |||
Fifth | 531.0 | |||
Sixth | 789.2 | |||
Seventh | 919.1 | |||
Eighth | 1086.6 | |||
Ninth | 1188.7 | |||
Harvesting | ||||
Sixth | 2.71 | 49.02 | 132.66 | |
Seventh | 3.88 | 49.02 | 190.31 | |
Eighth | 8.22 | 49.02 | 402.76 | |
Ninth | 14.19 | 49.02 | 695.65 |
Activities | Quantity ha−1 | Price unit−1 | Cost (USD ha−1) | |
---|---|---|---|---|
Sowing | ||||
Peanut | Seed | 150.0 | 1.14 | 171.57 |
Tillage | 36.76 | |||
Sowing | 68.63 | |||
Millet | Seed | 6.0 | 8.99 | 53.92 |
Tillage | 36.76 | |||
Sowing | 49.02 | |||
Maize | Seed | 60.0 | 2.45 | 147.06 |
Tillage | 36.76 | |||
Sowing | 49.02 | |||
Tending (fertilizer, agrochemical, intertillage, etc.) | ||||
Peanut | 155.23 | |||
Millet | 205.88 | |||
Maize | 214.87 | |||
Harvesting | ||||
Peanut | 3.20 | 16.34 | 52.32 | |
Millet | 3.38 | 16.34 | 55.20 | |
Maize | 11.71 | 3.27 | 38.25 |
Activities | Cropping System | Year after Establishment | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
First | Second | Third | Fourth | Fifth | Sixth | Seventh | Eighth | Ninth | ||
Plantingand sowing | Apple/peanut | 518.87 | 875.23 | 260.54 | 166.18 | 138.48 | 110.78 | 55.39 | 55.39 | 27.70 |
Apple/millet | 395.34 | 765.42 | 164.46 | 83.82 | 69.85 | 55.88 | 27.94 | 27.94 | 27.94 | |
Apple/maize | 479.17 | 839.93 | 229.66 | 139.71 | 116.42 | 69.85 | 46.57 | 23.28 | -- | |
Tending | Apple/peanut | 321.47 | 307.81 | 371.36 | 407.70 | 551.55 | 788.61 | 891.29 | 1059.59 | 1138.61 |
Apple/millet | 365.29 | 346.76 | 408.51 | 444.15 | 586.52 | 815.98 | 928.61 | 1080.20 | 1172.01 | |
Apple/maize | 383.61 | 364.26 | 426.42 | 463.48 | 611.81 | 831.45 | 939.41 | 1095.08 | 1188.73 | |
Harvesting | Apple/peanut | 46.63 | 40.59 | 35.87 | 29.82 | 25.13 | 148.69 | 195.52 | 401.36 | 692.61 |
Apple/millet | 47.89 | 42.14 | 37.48 | 31.52 | 26.57 | 147.03 | 193.48 | 395.11 | 683.68 | |
Apple/maize | 33.40 | 29.82 | 25.75 | 21.83 | 17.88 | 134.61 | 184.30 | 386.88 | 695.77 | |
Total cost | Apple/peanut | 886.98 | 1223.63 | 667.76 | 603.69 | 715.16 | 1048.09 | 1142.21 | 1516.34 | 1858.92 |
Apple/millet | 808.53 | 1154.33 | 610.44 | 559.49 | 682.94 | 1018.89 | 1150.03 | 1503.25 | 1883.63 | |
Apple/maize | 896.16 | 1234.02 | 681.83 | 625.02 | 746.09 | 1035.90 | 1170.28 | 1505.25 | 1884.49 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Bi, H.; Gao, L.; Yun, L. Alley Cropping Increases Land Use Efficiency and Economic Profitability Across the Combination Cultivation Period. Agronomy 2019, 9, 34. https://doi.org/10.3390/agronomy9010034
Xu H, Bi H, Gao L, Yun L. Alley Cropping Increases Land Use Efficiency and Economic Profitability Across the Combination Cultivation Period. Agronomy. 2019; 9(1):34. https://doi.org/10.3390/agronomy9010034
Chicago/Turabian StyleXu, Huasen, Huaxing Bi, Lubo Gao, and Lei Yun. 2019. "Alley Cropping Increases Land Use Efficiency and Economic Profitability Across the Combination Cultivation Period" Agronomy 9, no. 1: 34. https://doi.org/10.3390/agronomy9010034
APA StyleXu, H., Bi, H., Gao, L., & Yun, L. (2019). Alley Cropping Increases Land Use Efficiency and Economic Profitability Across the Combination Cultivation Period. Agronomy, 9(1), 34. https://doi.org/10.3390/agronomy9010034