Residue and Agronomic Management to Reduce the Continuous Corn Yield Penalty
Abstract
:1. Introduction
2. Materials and Methods
2.1. Agronomic Practices
2.2. Residue Samplings, Emergence Assessment, Plant Biomass Samplings, Health Assessment, and Harvest
2.3. Statistical Analysis
3. Results and Discussion
3.1. Temperature and Precipitation
3.2. Residue Degradation
3.3. Seedling Emergence
3.4. Plant Biomass Accumulation and Plant Health Assessment
3.5. Grain Yield and Harvest Index
3.6. Yield Components and Grain Quality
3.7. Correlations between Crop Growth and Final Grain Yield
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shapiro, C.A.; Wortmann, C.S. Corn response to nitrogen rate, row spacing, and plant density in eastern. Nebraska. Agron. J. 2006, 98, 529–535. [Google Scholar] [CrossRef]
- Vogel, A.M.; Below, F.E. Hybrid selection and agronomic management to lessen the continuous corn yield penalty. Agronomy 2018, 8, 228. [Google Scholar] [CrossRef]
- Bockus, W.W.; Shroyer, J.P. The impact of reduced tillage on soilborne plant pathogens. Annu. Rev. Phytopathol. 1998, 36, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Meese, B.G.; Carter, P.R.; Oplinger, E.S.; Pendleton, J.W. Corn/soybean rotation effect as influenced by tillage, nitrogen, and hybrid/cultivar. J. Prod. Agric. 1991, 4, 74–80. [Google Scholar] [CrossRef]
- Gentry, L.F.; Ruffo, M.L.; Below, F.E. Identifying factors controlling the continuous corn yield penalty. Agron. J. 2013, 105, 295–303. [Google Scholar] [CrossRef]
- Graham, R.L.; Nelson, R.; Sheehan, J.; Perlack, R.D.; Wright, L.L. Current and potential U.S. corn stover supplies. Agron. J. 2007, 99, 1–11. [Google Scholar] [CrossRef]
- Van Doren, D.M.; Triplett, G.B.; Henry, J.E. Influence of long term tillage, crop rotation, and soil type combinations on corn yield. Soil Sci. Soc. Am. J. 1976, 40, 100–105. [Google Scholar] [CrossRef]
- Peterson, T.A.; Varvel, G.E. Crop yield as affected by rotation and nitrogen rate. III. Corn. Agron. J. 1989, 81, 735–738. [Google Scholar] [CrossRef]
- Porter, P.M.; Lauer, J.G.; Lueschen, W.E.; Ford, J.H.; Hoverstad, T.R.; Oplinger, E.S.; Crookston, R.K. Environment affects the corn and soybean rotation effects. Agron. J. 1997, 89, 442–448. [Google Scholar] [CrossRef]
- Howard, D.D.; Chambers, A.Y.; Lessman, G.M. Rotation and fertilization effects on corn and soybean yields and soybean cyst nematode populations in a no-tillage system. Agron. J. 1998, 90, 518–522. [Google Scholar] [CrossRef]
- Katsvairo, T.W.; Cox, W.J. Tillage x rotation x management interactions in corn. Agron. J. 2000, 92, 493–500. [Google Scholar] [CrossRef]
- Pedersen, P.; Lauer, J.G. Corn and soybean response to rotation sequence, row spacing, and tillage system. Agron. J. 2003, 95, 965–971. [Google Scholar] [CrossRef]
- Pikul, J.L.; Hammack, L.; Riedell, W.E. Corn yield, N use and corn rootworm infestation of rotations in the northern Corn Belt. Agron. J. 2005, 97, 854–863. [Google Scholar] [CrossRef]
- Stanger, T.F.; Lauer, J.G.; Chavas, J.-P. Long-term cropping systems: The profitability and risk of cropping systems featuring different rotations and nitrogen rates. Agron. J. 2008, 100, 105–113. [Google Scholar] [CrossRef]
- Swan, J.B.; Schneider, E.C.; Moncrief, J.F.; Paulson, W.H.; Peterson, A.E. Estimating corn growth, yield, and grain moisture from air growing degree days and residue cover. Agron. J. 1987, 79, 53–60. [Google Scholar] [CrossRef]
- Liu, W.; Tollenaar, M.; Stewart, G.; Deen, W. Response of corn grain yield to spatial and temporal variability in emergence. Crop Sci. 2004, 44, 847–854. [Google Scholar] [CrossRef]
- Mehdi, B.B.; Madramootoo, C.A.; Mehuys, G.R. Yield and nitrogen content of corn under different tillage practices. Agron. J. 1999, 91, 631–636. [Google Scholar] [CrossRef]
- Nafziger, E.D.; Carter, P.R.; Graham, E.E. Response of corn to uneven emergence. Crop Sci. 1991, 31, 811–815. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R.; Post, W.M.; Owens, L.B. Changes in long-term no-till corn growth and yield under different rates of stover mulch. Agron. J. 2006, 98, 1128–1136. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Corn stover removal for expanded uses reduces soil fertility and structural stability. Soil Sci. Soc. Am. J. 2009, 73, 418–426. [Google Scholar] [CrossRef]
- Karlen, D.L.; Hunt, P.G.; Campbell, R.B. Crop residue removal effects on corn yield and fertility of a Norfolk sandy loam. Soil Sci. Soc. Am. J. 1984, 48, 868–872. [Google Scholar] [CrossRef]
- Wilhelm, W.W.; Johnson, J.M.F.; Hatfield, J.L.; Voorhees, W.B.; Linden, D.R. Crop and soil productivity response to corn residue removal: A literature review. Agron. J. 2004, 96, 1–17. [Google Scholar] [CrossRef]
- Janzen, H.H.; Kucey, R.M.N. C, N, and S mineralization of crop residues as influenced by crop species and nutrient regime. Plant Soil 1988, 106, 35–41. [Google Scholar] [CrossRef]
- Kumar, K.; Goh, K.M. Crop residues and management practices: Effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. Adv. Agron. 1999, 68, 197–319. [Google Scholar] [CrossRef]
- Havlin, J.L.; Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers: An Introduction to Nutrient Management, 7th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2007; pp. 119–122. [Google Scholar]
- Aulakh, M.S.; Walters, D.T.; Doran, J.W.; Francis, D.D.; Mosier, A.R. Crop residue type and placement effects on denitrification and mineralization. Soil Sci. Soc. Am. J. 1991, 55, 1020–1025. [Google Scholar] [CrossRef]
- Johnson, J.M.F.; Barbour, N.W.; Lachnicht-Weyers, S. Chemical composition of crop biomass impacts its decomposition. Soil Sci. Soc. Am. J. 2007, 71, 155–162. [Google Scholar] [CrossRef]
- Gentry, L.E.; Below, F.E.; David, M.B.; Bergerou, J.A. Source of the soybean N credit in maize production. Plant Soil 2001, 236, 175–184. [Google Scholar] [CrossRef]
- Bergerou, J.A.; Gentry, L.E.; David, M.B.; Below, F.E. Role of N2 fixation in the soybean N credit in maize production. Plant Soil 2004, 262, 383–394. [Google Scholar] [CrossRef]
- Ambus, P.; Jensen, E.S. Nitrogen mineralization and denitrification as influenced by crop residue particle size. Plant Soil 1997, 197, 261–270. [Google Scholar] [CrossRef]
- Broder, M.W.; Wagner, G.H. Microbial colonization and decomposition of corn, wheat, and soybean residue. Soil Sci. Soc. Am. J. 1988, 52, 112–117. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agriculture uses of plant biostimulants. Plant Soil. 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Adesemoye, A.O.; Yuen, G.; Watts, D.B. Microbial inoculants for optimized plant nutrient use in integrated pest and input management systems. In Probiotics and Plant Health; Kumar, V., Kumar, M., Sharma, S., Prasad, R., Eds.; Springer: Singapore, 2017; pp. 21–40. [Google Scholar]
- Rodriguez, H.; Fraga, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 1999, 17, 319–339. [Google Scholar] [CrossRef]
- Rodriguez, H.; Fraga, R.; Gonzalez, T.; Bashan, Y. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 2006, 287, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, S.; Platonova, N.P.; Karavaiko, G.I.; Stichel, E.; Glombitza, F. Chemical and microbiological solubilization of silicates. Acta Biotechnol. 1991, 11, 187–196. [Google Scholar] [CrossRef]
- Han, H.S.; Lee, K.D. Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res. J. Agric. Biol. Sci. 2005, 1, 176–180. [Google Scholar]
- Sheng, X.F.; He, L.Y. Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can. J. Microbiol. 2006, 52, 66–72. [Google Scholar] [CrossRef]
- Calvo, P.; Watts, D.B.; Ames, R.N.; Kloepper, J.W.; Torbert, H.A. Microbial-based inoculants impact nitrous oxide emissions from an incubated soil medium containing urea fertilizers. J. Environ. Qual. 2013, 42, 704–712. [Google Scholar] [CrossRef]
- Knorr, M.; Frey, S.D.; Curtis, P.S. Nitrogen additions and litter decomposition: A meta-analysis. Ecology 2005, 86, 3252–3257. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Guzman, J.G. Effects of tillage and nitrogen rate on decomposition of transgenic Bt and near-isogenic non-Bt maize residue. Soil Tillage Res. 2013, 129, 32–39. [Google Scholar] [CrossRef]
- Riedell, W.E.; Schumacher, T.E.; Clay, S.A.; Ellsbury, M.M.; Pravecek, M.; Evenson, P.D. Corn and soil fertility responses to crop rotation with low, medium, or high inputs. Crop Sci. 1998, 38, 427–433. [Google Scholar] [CrossRef]
- Ruffo, M.L.; Gentry, L.F.; Henninger, A.S.; Seebauer, J.R.; Below, F.E. Evaluating management factor contributions to reduce corn yield gaps. Agron. J. 2015, 107, 495–505. [Google Scholar] [CrossRef]
- Jeschke, M.; Doerge, T. Management of foliar diseases in corn with fungicides. Crop Insights 2010, 18, 1–4. [Google Scholar]
- Goering, H.K.; Van Soest, P.J. Forage Fibre Analyses: Apparatus Reagents, Procedures and Some Applications; USDA Handb. No. 379; U.S. Govt. Printing Offices: Washington, DC, USA, 1970.
- Moore, J.C.; Walter, D.E.; Hunt, H.W. Arthropod regulation of micro- and mesobiota in below-ground detrital food webs. Annu. Rev. Entomol. 1988, 33, 419–439. [Google Scholar] [CrossRef]
- Angers, D.A.; Recous, S. Decomposition of wheat straw and rye residues as affected by particle size. Plant Soil 1997, 189, 197–203. [Google Scholar] [CrossRef]
- Stetson, S.J.; Lehman, R.M.; Osborne, S.L. Corn residue particle size affects soil surface properties. Agric. Environ. Lett. 2018, 3, 180004. [Google Scholar] [CrossRef]
- Bender, R.R.; Haegele, J.W.; Ruffo, M.L.; Below, F.E. Nutrient uptake, partitioning, and remobilization in modern, transgenic insect-protected maize hybrids. Agron. J. 2013, 105, 161–170. [Google Scholar] [CrossRef]
- Ouyang, D.; MacKenzie, A.F.; Fan, M. Phytotoxicity of banded urea amended with triple superphosphate and potassium chloride. Agron. J. 1998, 90, 734–739. [Google Scholar] [CrossRef]
- Sindelar, A.J.; Coulter, J.A.; Lamb, J.A.; Vetsch, J.A. Agronomic responses of continuous corn to stover, tillage, and nitrogen management. Agron. J. 2013, 105, 1498–1506. [Google Scholar] [CrossRef]
- Riedell, W.E.; Pikul, J.L.; Jaradat, A.A.; Schumacher, T.E. Crop rotation and nitrogen input effects on soil fertility, maize mineral nutrition, yield, and seed composition. Agron. J. 2009, 101, 870–879. [Google Scholar] [CrossRef]
- Ciampitti, I.A.; Vyn, T.J. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crops Res. 2012, 133, 48–67. [Google Scholar] [CrossRef]
- Crookston, R.K.; Kurle, J.E.; Copeland, P.J.; Ford, J.H.; Lueschen, W.E. Rotational cropping sequence affects yield of corn and soybean. Agron. J. 1991, 83, 108–113. [Google Scholar] [CrossRef]
- Shanahan, J.F.; Schepers, J.S.; Francis, D.D.; Varvel, G.E.; Wilhelm, W.W.; Tringe, J.M.; Schlemmer, M.R.; Major, D.J. Use of remote-sensing imagery to estimate corn grain yield. Agron. J. 2001, 93, 583–589. [Google Scholar] [CrossRef]
- Attia, A.; Shapiro, C.; Kranz, W.; Mamo, M.; Mainz, M. Improved yield and nitrogen use efficiency of corn following soybean in irrigated sandy loams. Soil Sci. Soc. Am. J. 2015, 79, 1693–1703. [Google Scholar] [CrossRef]
- Ennin, S.A.; Clegg, M.D. Effect of soybean plant population in a soybean and maize rotation. Agron. J. 2001, 93, 396–403. [Google Scholar] [CrossRef]
- Johnson, J.W.; Welch, L.F.; Kurtz, L.T. Environmental implications of N fixation by soybeans. J. Environ. Qual. 1975, 4, 303–306. [Google Scholar] [CrossRef]
- Bender, R.R.; Haegele, J.W.; Below, F.E. Nutrient uptake, partitioning, and remobilization in modern soybean varieties. Agron. J. 2015, 107, 563–573. [Google Scholar] [CrossRef]
- Power, J.F.; Doran, J.W.; Wilhelm, W.W. Uptake of nitrogen from soil fertilizer and crop residues by no-till corn and soybean. Soil Sci. Soc. Am. J. 1986, 50, 137–142. [Google Scholar] [CrossRef]
- Blackmer, T.M.; Schepers, J.S.; Varvel, G.E. Light reflectance compared with other nitrogen stress measurements in corn leaves. Agron. J. 1994, 86, 934–938. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Gitelson, A.A.; Schepers, J.S.; Walthall, C.L. Application of spectral remote sensing for agronomic decisions. Agron. J. 2008, 100, S117–S131. [Google Scholar] [CrossRef]
- Hashemi-Dezfouli, A.; Herbert, S.J. Intensifying plant density response of corn with artificial shade. Agron. J. 1992, 84, 547–551. [Google Scholar] [CrossRef]
- Tajul, M.I.; Alam, M.M.; Hossain, S.M.M.; Naher, K.; Rafii, M.Y.; Latif, M.A. Influence of plant population and nitrogen-fertilizer at various levels on growth and growth efficiency of maize. Sci. World J. 2013, 2013, 193018. [Google Scholar] [CrossRef]
- Subedi, K.D.; Ma, B.L. Nitrogen uptake and partitioning in stay-green and leafy maize hybrids. Crop Sci. 2005, 45, 740–747. [Google Scholar] [CrossRef]
- Hokmalipour, S.; Darbandi, M.H. Effects of nitrogen fertilizer on chlorophyll content and other leaf indicate in three cultivars of maize (Zea mays L.). World Appl. Sci. J. 2011, 15, 1780–1785. [Google Scholar]
- Sindelar, A.J.; Schmer, M.R.; Jin, V.L.; Wienhold, B.J.; Varvel, G.E. Long-term corn and soybean response to crop rotation and tillage. Agron. J. 2015, 107, 2241–2252. [Google Scholar] [CrossRef]
- Huggins, D.R.; Fuchs, D.J. Long-term N management effects on corn yield and soil C of an aquic Haplustoll in Minnesota. In Soil Organic Matter in Temperate Ecosystems: Long-Term Experiments in North America; Paul, E.A., Paustian, K.H., Cole, C.V., Eds.; CRC Press: Boca Raton, FL, USA, 1997; pp. 121–128. [Google Scholar]
- Lorenz, A.J.; Gustafson, T.J.; Coors, J.G.; De Leon, N. Breeding maize for a bioeconomy: A literature survey examining harvest index and stover yield and their relationship to grain yield. Crop Sci. 2010, 50, 1–12. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Ellert, B.H.; Drury, C.F.; Liang, B.C. Fertilization effects on soil organic matter turnover and corn residue C storage. Soil Sci. Soc. Am. J. 1996, 60, 472–476. [Google Scholar] [CrossRef]
- Wilts, A.R.; Reicosky, D.C.; Allmaras, R.R.; Clapp, C.E. Long-term corn residue effects: Harvest alternatives, soil carbon turnover, and root-derived carbon. Soil Sci. Soc. Am. J. 2004, 68, 1342–1351. [Google Scholar] [CrossRef]
- Tollenaar, M. Genetic improvement in grain yield of commercial maize hybrids grown in Ontario from 1959 to 1988. Crop Sci. 1989, 29, 1365–1371. [Google Scholar] [CrossRef]
- Maloney, T.S.; Silveira, K.G.; Oplinger, E.S. Rotational vs. nitrogen-fixing influence of soybean on corn grain and silage yield and nitrogen use. J. Prod. Agric. 1999, 12, 175–187. [Google Scholar] [CrossRef]
- Evans, J.D. Straightforward Statistics for Behavioral Sciences; Brooks/Cole Publishing: Pacific Grove, CA, USA, 1996. [Google Scholar]
- Haegele, J.W.; Becker, R.J.; Henninger, A.S.; Below, F.E. Row arrangement, phosphorus fertility, and hybrid contributions to managing increased plant density of maize. Agron. J. 2014, 106, 1838–1846. [Google Scholar] [CrossRef]
Residue Management | ||||
---|---|---|---|---|
Rotation | Mechanical | Chemical | Input Level | Hybrid |
Continuous Corn | Standard stalk rollers | Untreated | Standard | 6110SS |
Corn-Soybean | Calmer’s BT Choppers | Extract PBA | Intensive | 6594SS |
Ammonium Sulfate |
Precipitation | Temperature | |||
---|---|---|---|---|
Month | 2017 | 2018 | 2017 | 2018 |
mm | °C | |||
April | 157.5 (+64.0) | 63.5 (−30.0) | 13.9 (+2.8) | 7.8 (−3.3) |
May | 142.2 (+18.0) | 106.7 (−17.5) | 16.1 (−0.8) | 22.2 (+5.3) |
June | 63.5 (−46.7) | 185.4 (+75.2) | 22.8 (+0.4) | 23.9 (+1.6) |
July | 55.9 (−63.5) | 81.3 (−38.1) | 25.0 (+1.2) | 23.9 (+0.1) |
August | 55.9 (−43.9) | 101.6 (+1.8) | 22.2 (−0.8) | 23.9 (+0.9) |
September | 20.3 (−59.2) | 119.4 (39.9) | 20.6 (+1.6) | 21.7 (+2.7) |
Emergence | Early Season Biomass | Leaf Greenness | Late Bio. | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Source of variation | % Residue Decay | Days to 50% | Days to Max | % of Total | V6 Shoot | V6 Root | V6 Shoot:Root | V8 NDVI | R2 SPAD | R6 Stover |
p > F | ||||||||||
Rotation (R) | 0.6812 | 0.1565 | 0.1274 | 0.2896 | 0.7798 | 0.3565 | 0.3307 | 0.6817 | 0.0012 | 0.3855 |
Mechanical (M) | 0.0104 | 0.1231 | 0.1027 | 0.0357 | 0.8989 | 0.8234 | 0.6159 | 0.2413 | 0.0427 | 0.4131 |
R × M | 0.8541 | 0.1536 | 0.5458 | 0.7653 | 0.7196 | 0.2977 | 0.1202 | 0.2439 | 0.9106 | 0.7942 |
Chemical (C) | 0.1886 | 0.2442 | 0.7839 | 0.8671 | 0.7179 | 0.6631 | 0.2710 | 0.7223 | <0.0001 | 0.1952 |
R × C | 0.4729 | 0.5051 | 0.5261 | 0.2126 | 0.6808 | 0.3519 | 0.0819 | 0.9135 | 0.0347 | 0.7378 |
M × C | 0.7766 | 0.8607 | 0.6636 | 0.2113 | 0.6340 | 0.3338 | 0.1004 | 0.4169 | 0.7360 | 0.4048 |
R × M × C | 0.9119 | 0.6110 | 0.5060 | 0.3414 | 0.5827 | 0.8952 | 0.5107 | 0.7269 | 0.8304 | 0.3692 |
Input Level (I) | - | 0.0078 | 0.0109 | 0.0139 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
R × I | - | 0.1174 | 0.0717 | 0.3504 | 0.2338 | 0.1239 | 0.9293 | 0.7138 | 0.5185 | 0.7990 |
M × I | - | 0.4878 | 0.5039 | 0.7109 | 0.3153 | 0.7307 | 0.1714 | 0.5235 | 0.6474 | 0.5453 |
R × M × I | - | 0.8226 | 0.4358 | 0.4686 | 0.2733 | 0.7897 | 0.5797 | 0.0003 | 0.6477 | 0.8096 |
C × I | - | 0.8893 | 0.2107 | 0.5268 | 0.3702 | 0.4680 | 0.4270 | 0.2499 | 0.0093 | 0.1152 |
R × C × I | - | 0.4751 | 0.9215 | 0.7097 | 0.6078 | 0.4434 | 0.7877 | 0.3800 | 0.4781 | 0.7723 |
M × C × I | - | 0.4113 | 0.2534 | 0.1827 | 0.4753 | 0.5974 | 0.7011 | 0.5125 | 0.7107 | 0.8253 |
R × M × C × I | - | 0.2296 | 0.4438 | 0.3848 | 0.9647 | 0.4729 | 0.3453 | 0.4865 | 0.7642 | 0.3777 |
Hybrid (H) | - | 0.6785 | 0.4773 | 0.1042 | 0.0008 | <0.0001 | 0.8358 | <0.0001 | 0.0015 | 0.8021 |
R × H | - | 0.0056 | 0.1715 | 0.9071 | 0.8008 | 0.6464 | 0.6752 | 0.3192 | 0.1637 | 0.5007 |
M × H | - | 0.7735 | 0.5212 | 0.0043 | 0.7451 | 0.7463 | 0.9703 | 0.9138 | 0.6959 | 0.6208 |
R × M × H | - | 0.2767 | 0.0493 | 0.6248 | 0.8790 | 0.3113 | 0.0672 | 0.4544 | 0.9509 | 0.9819 |
C × H | - | 0.4975 | 0.2307 | 0.3025 | 0.1030 | 0.0393 | 0.4525 | 0.8564 | 0.2154 | 0.4430 |
R × C × H | - | 0.5981 | 0.0350 | 0.5704 | 0.9346 | 0.7368 | 0.9753 | 0.8950 | 0.1160 | 0.9294 |
M × C × H | - | 0.1025 | 0.1928 | 0.3903 | 0.9740 | 0.3072 | 0.8358 | 0.8778 | 0.2848 | 0.7999 |
R × M × C × H | - | 0.2522 | 0.3161 | 0.0773 | 0.7912 | 0.4894 | 0.5227 | 0.9749 | 0.5867 | 0.8895 |
I × H | - | 0.6150 | 0.5116 | 0.9395 | 0.6930 | 0.5138 | 0.5938 | 0.8513 | 0.3289 | 0.8472 |
R × I × H | - | 0.9843 | 0.9193 | 0.8686 | 0.6646 | 0.2437 | 0.6497 | 0.6629 | 0.6325 | 0.8766 |
M × I × H | - | 0.4878 | 0.2742 | 0.2464 | 0.6651 | 0.7252 | 0.6446 | 0.8705 | 0.7563 | 0.4796 |
R × M × I × H | - | 0.4662 | 0.0378 | 0.2528 | 0.7776 | 0.2767 | 0.9096 | 0.5229 | 0.8730 | 0.3123 |
C × I × H | - | 0.2907 | 0.4613 | 0.6272 | 0.0119 | 0.0118 | 0.6771 | 0.8874 | 0.3353 | 0.7815 |
R × C × I × H | - | 0.0213 | 0.9876 | 0.7396 | 0.1128 | 0.2934 | 0.6651 | 0.3724 | 0.8353 | 0.2942 |
M × C × I × H | - | 0.6544 | 0.0127 | 0.4734 | 0.9593 | 0.9025 | 0.4283 | 0.8308 | 0.3338 | 0.9325 |
R × M × C × I × H | - | 0.7251 | 0.3065 | 0.2320 | 0.9253 | 0.3776 | 0.2107 | 0.6780 | 0.8806 | 0.2254 |
Mechanical Residue Management § | ||
---|---|---|
Rotation †/Chemical Residue Management. ‡ | Standard | Chopped |
% Reduction | ||
Continuous Corn | ||
Untreated | 34 | 43 |
Extract PBA | 40 | 43 |
AMS | 42 | 49 |
Corn-Soybean | ||
Untreated | 39 | 47 |
Extract PBA | 40 | 46 |
AMS | 40 | 49 |
Input Level | Hybrid | Chemical | Days to 50% Emergence | Days to Max Emergence | Percent Emerged at Total Emergence |
---|---|---|---|---|---|
days after planting | % | ||||
Continuous Corn—Standard Residue Management. | |||||
Standard | 6110SS | Untreated | 14.4 | 19.1 | 95.4 |
Extract PBA | 14.3 | 18.9 | 95.4 | ||
AMS † | 14.6 | 19.6 | 96.6 | ||
6594SS | Untreated | 14.4 | 18.0 | 96.6 | |
Extract PBA | 14.4 | 16.6 | 91.4 | ||
AMS | 14.3 | 17.5 | 92.8 | ||
Intensive | 6110SS | Untreated | 14.6 | 18.7 | 93.5 |
Extract PBA | 14.5 | 18.0 | 97.7 | ||
AMS | 14.6 | 18.4 | 93.1 | ||
6594SS | Untreated | 14.4 | 19.4 | 95.8 | |
Extract PBA | 14.3 | 18.5 | 92.1 | ||
AMS | 14.1 | 17.7 | 89.4 | ||
Continuous Corn—Chopped Residue Management | |||||
Standard | 6110SS | Untreated | 14.6 | 17.8 | 97.4 |
Extract PBA | 14.5 | 17.4 | 96.1 | ||
AMS | 14.1 | 18.9 | 92.8 | ||
6594SS | Untreated | 14.1 | 18.4 | 97.4 | |
Extract PBA | 14.3 | 20.2 | 95.1 | ||
AMS | 14.4 | 18.8 | 95.4 | ||
Intensive | 6110SS | Untreated | 14.5 | 19.6 | 94.4 |
Extract PBA | 14.6 | 18.5 | 94.9 | ||
AMS | 14.3 | 18.4 | 94.9 | ||
6594SS | Untreated | 14.6 | 18.4 | 94.0 | |
Extract PBA | 14.3 | 18.6 | 94.0 | ||
AMS | 14.4 | 19.1 | 97.7 | ||
Corn-Soybean Rotation—Standard Residue Management | |||||
Standard | 6110SS | Untreated | 14.1 | 17.4 | 92.8 |
Extract PBA | 14.9 | 18.1 | 97.4 | ||
AMS | 14.4 | 17.8 | 93.4 | ||
6594SS | Untreated | 15.3 | 19.1 | 92.1 | |
Extract PBA | 14.9 | 18.3 | 93.3 | ||
AMS | 14.2 | 18.8 | 92.9 | ||
Intensive | 6110SS | Untreated | 14.8 | 17.5 | 93.5 |
Extract PBA | 14.8 | 20.3 | 96.3 | ||
AMS | 14.6 | 20.3 | 93.3 | ||
6594SS | Untreated | 15.1 | 20.9 | 88.4 | |
Extract PBA | 14.8 | 20.3 | 91.2 | ||
AMS | 15.1 | 19.1 | 91.0 | ||
Corn-Soybean Rotation—Chopped Residue Management | |||||
Standard | 6110SS | Untreated | 14.1 | 17.3 | 98.0 |
Extract PBA | 14.4 | 19.8 | 94.1 | ||
AMS | 14.3 | 20.9 | 96.1 | ||
6594SS | Untreated | 14.6 | 19.3 | 94.6 | |
Extract PBA | 14.3 | 18.4 | 96.1 | ||
AMS | 14.3 | 19.7 | 95.9 | ||
Intensive | 6110SS | Untreated | 14.8 | 20.4 | 89.4 |
Extract PBA | 14.8 | 20.6 | 91.2 | ||
AMS | 14.4 | 18.0 | 95.4 | ||
6594SS | Untreated | 14.4 | 20.5 | 96.3 | |
Extract PBA | 15.0 | 18.8 | 93.2 | ||
AMS | 14.8 | 21.4 | 93.7 | ||
Rotation LSD (p ≤ 0.10) | NS ‡ | NS | NS | ||
Mechanical Residue Management LSD (p ≤ 0.10) | NS | NS | 1.2 | ||
Chemical Residue Management LSD (p ≤ 0.10) | NS | NS | NS | ||
Input Level LSD (p ≤ 0.10) | 0.1 | 0.5 | 1.1 | ||
Hybrid LSD (p ≤ 0.10) | NS | NS | NS |
Early Season Biomass | Leaf Greenness | Late Biomass | |||||||
---|---|---|---|---|---|---|---|---|---|
Input Level | Hybrid | Chemical | V6 Shoot | V6 Root | V6 Shoot:Root | V8 NDVI | R2 SPAD | R6 Stover | HI |
kg ha−1 | kg ha−1 | % | |||||||
Continuous Corn—Standard Residue Management | |||||||||
Standard | 6110SS | Untreated | 385 | 79 | 4.9 | 0.55 | 56.2 | 8424 | 55.3 |
Extract PBA | 440 | 86 | 5.1 | 0.57 | 55.9 | 7774 | 55.8 | ||
AMS † | 348 | 71 | 4.9 | 0.56 | 57.8 | 8101 | 56.3 | ||
6594SS | Untreated | 424 | 95 | 4.4 | 0.59 | 54.3 | 8027 | 54.0 | |
Extract PBA | 436 | 86 | 5.1 | 0.60 | 55.8 | 8045 | 54.8 | ||
AMS | 465 | 94 | 4.9 | 0.59 | 58.2 | 7637 | 56.5 | ||
Intensive | 6110SS | Untreated | 723 | 141 | 5.1 | 0.62 | 53.2 | 10198 | 54.3 |
Extract PBA | 678 | 124 | 5.5 | 0.62 | 54.5 | 10688 | 53.4 | ||
AMS | 766 | 151 | 5.1 | 0.62 | 55.4 | 9705 | 55.5 | ||
6594SS | Untreated | 764 | 147 | 5.2 | 0.65 | 51.7 | 10025 | 53.0 | |
Extract PBA | 818 | 160 | 5.1 | 0.66 | 53.5 | 11193 | 51.8 | ||
AMS | 683 | 134 | 5.1 | 0.66 | 53.5 | 10396 | 52.9 | ||
Continuous Corn—Chopped Residue Management | |||||||||
Standard | 6110SS | Untreated | 384 | 76 | 5.0 | 0.55 | 55.7 | 8550 | 56.1 |
Extract PBA | 399 | 74 | 5.4 | 0.54 | 57.0 | 7082 | 59.6 | ||
AMS | 395 | 83 | 4.8 | 0.55 | 59.2 | 7747 | 57.9 | ||
6594SS | Untreated | 411 | 88 | 4.7 | 0.58 | 55.8 | 8469 | 55.1 | |
Extract PBA | 416 | 86 | 4.8 | 0.58 | 55.0 | 8500 | 54.4 | ||
AMS | 485 | 99 | 4.9 | 0.57 | 58.2 | 7920 | 57.4 | ||
Intensive | 6110SS | Untreated | 742 | 127 | 5.9 | 0.64 | 54.8 | 10195 | 55.8 |
Extract PBA | 635 | 120 | 5.3 | 0.64 | 55.5 | 11232 | 53.3 | ||
AMS | 731 | 132 | 5.5 | 0.64 | 55.3 | 10703 | 54.3 | ||
6594SS | Untreated | 783 | 156 | 5.0 | 0.66 | 53.5 | 10945 | 53.3 | |
Extract PBA | 808 | 154 | 5.3 | 0.67 | 53.8 | 10462 | 54.8 | ||
AMS | 709 | 141 | 5.1 | 0.67 | 54.1 | 10550 | 53.8 | ||
Corn-Soybean Rotation—Standard Residue Management | |||||||||
Standard | 6110SS | Untreated | 423 | 86 | 4.9 | 0.57 | 59.4 | 8616 | 57.1 |
Extract PBA | 401 | 75 | 5.3 | 0.55 | 59.5 | 8360 | 58.3 | ||
AMS | 444 | 84 | 5.3 | 0.56 | 59.5 | 8187 | 58.3 | ||
6594SS | Untreated | 490 | 107 | 4.6 | 0.58 | 57.6 | 7885 | 57.2 | |
Extract PBA | 477 | 102 | 4.7 | 0.59 | 59.9 | 8729 | 56.2 | ||
AMS | 456 | 87 | 5.3 | 0.59 | 60.4 | 8411 | 56.9 | ||
Intensive | 6110SS | Untreated | 712 | 134 | 5.3 | 0.63 | 57.6 | 10422 | 57.1 |
Extract PBA | 671 | 135 | 5.0 | 0.65 | 56.8 | 10770 | 56.3 | ||
AMS | 710 | 127 | 5.6 | 0.65 | 57.9 | 11368 | 54.5 | ||
6594SS | Untreated | 683 | 132 | 5.2 | 0.66 | 56.5 | 10195 | 55.7 | |
Extract PBA | 789 | 170 | 4.6 | 0.67 | 58.1 | 11042 | 55.9 | ||
AMS | 699 | 126 | 5.5 | 0.66 | 56.2 | 10560 | 55.7 | ||
Corn-Soybean Rotation—Chopped Residue Management | |||||||||
Standard | 6110SS | Untreated | 341 | 70 | 4.9 | 0.58 | 59.6 | 8515 | 58.4 |
Extract PBA | 403 | 92 | 4.4 | 0.56 | 59.8 | 8447 | 58.2 | ||
AMS | 457 | 89 | 5.2 | 0.55 | 61.6 | 8204 | 58.8 | ||
6594SS | Untreated | 429 | 113 | 3.8 | 0.60 | 59.0 | 8642 | 56.5 | |
Extract PBA | 450 | 93 | 4.8 | 0.60 | 60.4 | 8323 | 57.9 | ||
AMS | 480 | 97 | 4.9 | 0.57 | 60.1 | 8267 | 56.7 | ||
Intensive | 6110SS | Untreated | 725 | 134 | 5.4 | 0.62 | 58.2 | 11219 | 54.2 |
Extract PBA | 720 | 134 | 5.4 | 0.63 | 57.6 | 11228 | 54.7 | ||
AMS | 734 | 145 | 5.0 | 0.63 | 58.8 | 10174 | 57.0 | ||
6594SS | Untreated | 735 | 141 | 5.2 | 0.64 | 57.3 | 10671 | 54.8 | |
Extract PBA | 815 | 149 | 5.5 | 0.65 | 58.8 | 11849 | 54.2 | ||
AMS | 734 | 131 | 5.6 | 0.66 | 56.7 | 10124 | 57.6 | ||
Rotation LSD (p ≤ 0.10) | NS ‡ | NS | NS | NS | 1.2 | NS | 1.0 | ||
Mechanical Residue Management LSD (p ≤ 0.10) | NS | NS | NS | NS | 0.5 | NS | NS | ||
Chemical Residue Management LSD (p ≤ 0.10) | NS | NS | NS | NS | 0.5 | NS | NS | ||
Input Level LSD (p ≤ 0.10) | 21 | 4 | 0.1 | 0.01 | 0.4 | 265 | 0.6 | ||
Hybrid LSD (p ≤ 0.10) | 21 | 4 | NS | 0.01 | 0.4 | NS | 0.6 |
Yield Component | Grain Quality | ||||||
---|---|---|---|---|---|---|---|
Source of Variation | Yield | Harvest Index | Kernel Number | Kernel Weight | Oil | Protein | Starch |
p > F | |||||||
Rotation (R) | 0.0002 | 0.0214 | 0.0010 | 0.0015 | 0.3341 | 0.0779 | 0.0806 |
Mechanical (M) | 0.0818 | 0.1879 | 0.0082 | 0.5783 | 0.1382 | 0.0357 | 0.9907 |
R × M | 0.1936 | 0.1836 | 0.2202 | 0.4137 | 0.2912 | 0.1322 | 0.3406 |
Chemical (C) | 0.6004 | 0.1956 | 0.5321 | 0.4623 | 0.0018 | 0.1571 | 0.0495 |
R × C | 0.2558 | 0.8874 | 0.0819 | 0.8843 | 0.5450 | 0.1645 | 0.7453 |
M × C | 0.6235 | 0.6744 | 0.7391 | 0.3476 | 0.6565 | 0.9027 | 0.9584 |
R × M × C | 0.5092 | 0.2593 | 0.3432 | 0.8542 | 0.1502 | 0.2285 | 0.5909 |
Input Level (I) | <0.0001 | <0.0001 | <0.0001 | 0.0042 | 0.4969 | 0.0006 | 0.1146 |
R × I | 0.2937 | 0.6228 | 0.2845 | 0.0141 | 0.6696 | 0.0889 | 0.3000 |
M × I | 0.8738 | 0.3413 | 0.3870 | 0.3129 | 0.6078 | 0.3458 | 0.1818 |
R × M × I | 0.5914 | 0.8535 | 0.8231 | 0.6203 | 0.2152 | 0.7580 | 0.3918 |
C × I | 0.4971 | 0.4108 | 0.9579 | 0.2279 | 0.2383 | 0.4203 | 0.6573 |
R × C × I | 0.5739 | 0.4513 | 0.8496 | 0.4125 | 0.6202 | 0.5090 | 0.5270 |
M × C × I | 0.7787 | 0.6162 | 0.6233 | 0.8912 | 0.3953 | 0.9670 | 0.5033 |
R × M × C × I | 0.4934 | 0.1940 | 0.4328 | 0.8470 | 0.1911 | 0.3985 | 0.1818 |
Hybrid (H) | 0.0014 | 0.0078 | <0.0001 | <0.0001 | 0.0059 | <0.0001 | 0.0318 |
R × H | 0.6079 | 0.3514 | 0.3422 | 0.9809 | 0.4951 | 0.0923 | 0.5322 |
M × H | 0.4555 | 0.9742 | 0.0998 | 0.5765 | 0.3407 | 0.8541 | 0.2341 |
R × M × H | 0.9513 | 0.8715 | 0.5490 | 0.4131 | 0.9359 | 0.8246 | 0.5854 |
C × H | 0.1805 | 0.8000 | 0.1417 | 0.4084 | 0.5192 | 0.8141 | 0.7864 |
R × C × H | 0.8534 | 0.9714 | 0.2120 | 0.1660 | 0.2290 | 0.9228 | 0.4422 |
M × C × H | 0.9007 | 0.9775 | 0.7812 | 0.8685 | 0.8440 | 0.7883 | 0.8506 |
R × M × C × H | 0.9678 | 0.7207 | 0.9848 | 0.9330 | 0.5710 | 0.8026 | 0.5981 |
I × H | 0.1618 | 0.2828 | 0.7569 | 0.0002 | 0.0057 | 0.1305 | 0.0018 |
R × I × H | 0.5361 | 0.5021 | 0.9173 | 0.3873 | 0.2282 | 0.9451 | 0.2495 |
M × I × H | 0.5865 | 0.2448 | 0.4981 | 0.9788 | 0.8698 | 0.1793 | 0.5334 |
R × M × I × H | 0.5621 | 0.4477 | 0.4409 | 0.7780 | 0.2113 | 0.1547 | 0.2559 |
C × I × H | 0.9776 | 0.5457 | 0.9540 | 0.9980 | 0.7654 | 0.9979 | 0.5890 |
R × C × I × H | 0.8853 | 0.2224 | 0.7447 | 0.9772 | 0.3482 | 0.5545 | 0.8929 |
M × C × I × H | 0.8689 | 0.9217 | 0.3573 | 0.6877 | 0.9897 | 0.9136 | 0.3539 |
R × M × C × I × H | 0.7555 | 0.1204 | 0.6109 | 0.9910 | 0.7726 | 0.8401 | 0.7851 |
Crop Rotation § | ||||||||
---|---|---|---|---|---|---|---|---|
Continuous Corn | Corn-Soybean | |||||||
Mechanical Residue Management ¶ | Mechanical Residue Management | |||||||
Standard | Chopped | Standard | Chopped | |||||
Hybrid †/ | Input Level # | Input Level | Input Level | Input Level | ||||
Chemical Residue Management ‡ | Standard | Intensive | Standard | Intensive | Standard | Intensive | Standard | Intensive |
Mg ha−1 | ||||||||
6110SS | ||||||||
Untreated | 10.23 | 11.87 | 10.77 | 12.68 | 11.43 | 13.72 | 11.83 | 13.24 |
Extract PBA | 9.77 | 12.02 | 10.33 | 12.45 | 11.62 | 13.63 | 11.53 | 13.49 |
AMS | 10.43 | 12.00 | 10.56 | 12.27 | 11.27 | 13.50 | 11.56 | 13.48 |
6594SS | ||||||||
Untreated | 9.34 | 11.20 | 10.15 | 12.35 | 10.62 | 12.96 | 11.10 | 12.95 |
Extract PBA | 9.51 | 11.80 | 9.98 | 12.21 | 11.23 | 13.93 | 11.34 | 13.85 |
AMS | 9.79 | 11.67 | 10.22 | 12.06 | 10.97 | 13.07 | 10.77 | 13.83 |
Yield Components | Grain Quality | ||||||
---|---|---|---|---|---|---|---|
Input Level | Hybrid | Chemical | Kernel number | Kernel Weight | Oil | Protein | Starch |
kernel m−2 | mg kernel−1 | % | |||||
Continuous Corn—Standard Residue Management | |||||||
Standard | 6110SS | Untreated | 4062 | 251.9 | 4.26 | 6.15 | 73.17 |
Extract PBA | 3947 | 248.3 | 4.09 | 5.98 | 73.57 | ||
AMS † | 4165 | 250.6 | 3.97 | 6.11 | 73.55 | ||
6594SS | Untreated | 4081 | 227.9 | 3.97 | 6.55 | 73.65 | |
Extract PBA | 4084 | 233.1 | 4.00 | 6.64 | 73.46 | ||
AMS | 4250 | 231.1 | 3.91 | 6.70 | 73.49 | ||
Intensive | 6110SS | Untreated | 4982 | 237.9 | 4.15 | 6.11 | 73.77 |
Extract PBA | 4973 | 241.2 | 4.04 | 6.10 | 73.50 | ||
AMS | 5167 | 232.3 | 3.98 | 6.18 | 73.80 | ||
6594SS | Untreated | 5040 | 218.9 | 4.10 | 6.89 | 73.45 | |
Extract PBA | 5064 | 232.0 | 4.10 | 6.96 | 73.07 | ||
AMS | 5190 | 223.5 | 3.94 | 7.07 | 73.46 | ||
Continuous Corn—Chopped Residue Management | |||||||
Standard | 6110SS | Untreated | 4200 | 255.4 | 4.17 | 6.17 | 73.47 |
Extract PBA | 4192 | 246.4 | 4.29 | 6.28 | 73.16 | ||
AMS | 4211 | 250.8 | 4.17 | 6.29 | 73.45 | ||
6594SS | Untreated | 4440 | 227.2 | 3.96 | 6.83 | 73.42 | |
Extract PBA | 4461 | 224.4 | 4.38 | 7.01 | 72.85 | ||
AMS | 4442 | 229.0 | 4.15 | 7.03 | 73.22 | ||
Intensive | 6110SS | Untreated | 5191 | 243.6 | 4.18 | 6.31 | 73.71 |
Extract PBA | 5114 | 241.9 | 4.04 | 6.40 | 73.76 | ||
AMS | 5129 | 238.1 | 4.14 | 6.60 | 73.56 | ||
6594SS | Untreated | 5426 | 225.2 | 4.18 | 7.02 | 73.49 | |
Extract PBA | 5268 | 229.6 | 4.16 | 6.99 | 73.30 | ||
AMS | 5372 | 222.6 | 3.96 | 7.20 | 73.55 | ||
Corn-Soybean Rotation—Standard Residue Management | |||||||
Standard | 6110SS | Untreated | 4345 | 262.8 | 4.22 | 6.24 | 73.26 |
Extract PBA | 4365 | 266.2 | 4.36 | 6.49 | 73.03 | ||
AMS | 4238 | 267.3 | 4.17 | 6.35 | 73.24 | ||
6594SS | Untreated | 4401 | 239.9 | 4.01 | 6.75 | 73.70 | |
Extract PBA | 4630 | 243.6 | 4.19 | 7.04 | 73.06 | ||
AMS | 4631 | 237.9 | 3.99 | 6.85 | 73.50 | ||
Intensive | 6110SS | Untreated | 5364 | 255.3 | 4.14 | 6.40 | 73.61 |
Extract PBA | 5259 | 259.2 | 4.19 | 6.39 | 73.36 | ||
AMS | 5235 | 257.4 | 4.15 | 6.46 | 73.26 | ||
6594SS | Untreated | 5273 | 244.9 | 4.08 | 7.00 | 73.16 | |
Extract PBA | 5630 | 248.0 | 4.14 | 7.04 | 73.24 | ||
AMS | 5316 | 244.6 | 4.11 | 7.05 | 73.18 | ||
Corn-Soybean Rotation—Chopped Residue Management | |||||||
Standard | 6110SS | Untreated | 4507 | 262.4 | 4.22 | 6.39 | 73.54 |
Extract PBA | 4443 | 259.6 | 4.36 | 6.49 | 73.06 | ||
AMS | 4406 | 262.0 | 4.22 | 6.46 | 73.31 | ||
6594SS | Untreated | 4626 | 240.4 | 4.09 | 6.99 | 73.45 | |
Extract PBA | 4767 | 238.2 | 4.08 | 6.95 | 73.46 | ||
AMS | 4592 | 235.0 | 3.99 | 6.96 | 73.29 | ||
Intensive | 6110SS | Untreated | 5266 | 251.2 | 4.16 | 6.53 | 73.61 |
Extract PBA | 5282 | 255.2 | 4.23 | 6.36 | 73.66 | ||
AMS | 5177 | 260.1 | 4.01 | 6.34 | 73.73 | ||
6594SS | Untreated | 5299 | 244.0 | 4.22 | 7.05 | 73.18 | |
Extract PBA | 5588 | 247.2 | 4.25 | 7.05 | 73.17 | ||
AMS | 5731 | 240.4 | 4.16 | 7.00 | 73.15 | ||
Rotation LSD (p ≤ 0.10) | 91 | 5.6 | NS | 0.11 | 0.10 | ||
Mechanical Residue Management LSD (p ≤ 0.10) | 82 | NS | NS | 0.10 | NS | ||
Chemical Residue Management LSD (p ≤ 0.10) | NS ‡ | NS | 0.05 | NS | 0.12 | ||
Input Level LSD (p ≤ 0.10) | 59 | 2.3 | NS | 0.06 | NS | ||
Hybrid LSD (p ≤ 0.10) | 58 | 2.3 | 0.04 | 0.06 | 0.10 |
Corn Parameter | Correlation r |
---|---|
V6 Shoot Biomass | 0.35 *** |
V6 Root Biomass | 0.53 *** |
V6 Shoot:Root | −0.34 *** |
R2 SPAD | 0.19 *** |
R6 Stover | 0.80 *** |
Kernel Number | 0.92 *** |
Kernel Weight | 0.37 *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vogel, A.M.; Below, F.E. Residue and Agronomic Management to Reduce the Continuous Corn Yield Penalty. Agronomy 2019, 9, 567. https://doi.org/10.3390/agronomy9100567
Vogel AM, Below FE. Residue and Agronomic Management to Reduce the Continuous Corn Yield Penalty. Agronomy. 2019; 9(10):567. https://doi.org/10.3390/agronomy9100567
Chicago/Turabian StyleVogel, Alison M., and Frederick E. Below. 2019. "Residue and Agronomic Management to Reduce the Continuous Corn Yield Penalty" Agronomy 9, no. 10: 567. https://doi.org/10.3390/agronomy9100567
APA StyleVogel, A. M., & Below, F. E. (2019). Residue and Agronomic Management to Reduce the Continuous Corn Yield Penalty. Agronomy, 9(10), 567. https://doi.org/10.3390/agronomy9100567