Potato Germplasm Enhancement Enters the Genomics Era
Abstract
:1. Germplasm Enhancement
2. The genetic Base of Cultivated Potato
3. The Case for Continued Germplasm Enhancement
3.1. Disease Resistance
3.2. Processing Quality Traits
3.3. Resilience to Abiotic Stress
3.4. Consumer Traits
4. Germplasm Resources
4.1. Solanum Tuberosum
4.2. Solanum Section Petota
4.3. Genus Solanum
5. Germplasm Collections in the Genomics Era
Identifying Valuable Germplasm
6. Incorporating Traits into Cultivated Potato
6.1. Sexual Hybridization
6.2. Molecular Approaches
7. Identifying Superior Genotypes
8. Conclusions
9. Dedication
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Spooner, D.M.; Ruess, H.; Arbizu, C.I.; Rodríguez, F.; Solís-Lemus, C. Greatly reduced phylogenetic structure in the cultivated potato clade (Solanum section Petota pro parte). Am. J. Bot. 2018, 105, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Spooner, D.M.; McLean, K.; Ramsay, G.; Waugh, R.; Bryan, G.J. A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc. Natl. Acad. Sci. USA 2005, 102, 14694–14699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwanaga, M.; Peloquin, S.J. Origin and evolution of cultivated tetraploid potatoes via 2n gametes. Theor. Appl. Genet. 1982, 61, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Camadro, E.; Peloquin, S.J. Polyploid evolution of wild potatoes via genetically determined 2n gametes. Am. Potato J. 1980, 57, 473. [Google Scholar]
- Spooner, D.M.; Ghislain, M.; Simon, R.; Jansky, S.H.; Gavrilenko, T. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot. Rev. 2014, 80, 283–383. [Google Scholar] [CrossRef]
- Rodríguez, F.; Ghislain, M.; Clausen, A.M.; Jansky, S.H.; Spooner, D.M. Hybrid origins of cultivated potatoes. Theor. Appl. Genet. 2010, 121, 1187–1198. [Google Scholar] [CrossRef] [PubMed]
- Brush, S.B.; Carney, H.J.; Huaman, Z. Dynamics of Andean potato agriculture. Econ. Bot. 1981, 35, 70–88. [Google Scholar] [CrossRef]
- Quiros, C.F.; Brush, S.B.; Douches, D.S.; Zimmerer, K.S.; Huestis, G. Biochemical and folk assessment of variability of Andean cultivated potatoes. Econ. Bot. 1990, 44, 254–266. [Google Scholar] [CrossRef]
- Spooner, D.M.; Gavrilenko, T.; Jansky, S.H.; Ovchinnikova, A.; Krylova, E.; Knapp, S.; Simon, R. Ecogeography of ploidy variation in cultivated potato (Solanum sect. Petota). Am. J. Bot. 2012, 97, 2049–2060. [Google Scholar] [CrossRef]
- Hardigan, M.A.; Laimbeer, F.P.E.; Newton, L.; Crisovan, E.; Hamilton, J.P.; Vaillancourt, B.; Wiegert-Rininger, K.; Wood, J.C.; Douches, D.S.; Farré, E.M.; et al. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proc. Natl. Acad. Sci. USA 2017, 114, E9999–E10008. [Google Scholar] [CrossRef]
- Grun, P. The evolution of cultivated potatoes. Econ. Bot. 1990, 44, 39–55. [Google Scholar] [CrossRef]
- Soyk, S.; Müller, N.A.; Park, S.J.; Schmalenbach, I.; Jiang, K.; Hayama, R.; Zhang, l.; van Eck, J.; Jiménez-Gomez, J.M.; Lippman, Z.B. Variation in the flowering gene Self Pruning 5G promotes day-neutrality and early yield in tomato. Nat. Genet. 2017, 49, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Kittipadukal, P.; Bethke, P.C.; Jansky, S.H. The effect of photoperiod on tuberisation in cultivated x wild potato species hybrids. Potato Res. 2012, 55, 27–40. [Google Scholar] [CrossRef]
- O’Brien, P.; Allen, E.; Firman, D. A review of some studies into tuber initiation in potato (Solanum tuberosum) crops. J. Agric. Sci. 1998, 130, 251–270. [Google Scholar] [CrossRef]
- Kloosterman, B.; Abelenda, J.A.; Gomez, M.D.M.C.; Oortwijn, M.; De Boer, J.M.; Kowitwanich, K.; Horvath, B.M.; Van Eck, H.J.; Smaczniak, C.; Prat, S.; et al. Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature 2013, 495, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Ríos, D.; Ghislain, M.; Rodriguez, F.; Spooner, D.M. What is the origin of the European potato? Evidence from Canary Island landraces. Crop Sci. 2007, 47, 1271–1280. [Google Scholar] [CrossRef]
- Ames, M.; Spooner, D.M. DNA from herbarium specimens settles a controversy about origins of the European potato. Am. J. Bot. 2008, 95, 252–257. [Google Scholar] [CrossRef] [Green Version]
- Peralta, I.; Spooner, D.; Knapp, S. Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae. Syst. Bot. Monogr. 2008, 84, 186. [Google Scholar]
- Knapp, S.; Peralta, I. The tomato (Solanum lycopersicum L.) and its botanical relatives. In The Tomato Genome; Causse, M., Giovannoni, J., Bouzayen, M., Zouine, M., Eds.; Springer: Berlin, Germany, 2016; pp. 7–21. [Google Scholar]
- Gutaker, R.M.; Weiß, C.L.; Ellis, D.; Anglin, N.L.; Knapp, S.; Fernández-Alonso, J.L.; Prat, S.; Burbano, H.A. The origins and adaptation of European potatoes reconstructed from historical genomes. Nat. Ecol. Evol. 2019, 3, 1093–1101. [Google Scholar] [CrossRef]
- Pavek, J.J.; Corsini, D.L. Utilization of potato genetic resources in variety development. Am. J. Potato Res. 2001, 78, 433–441. [Google Scholar] [CrossRef]
- Glendinning, D.R. Potato introductions and breeding up to the early 20th century. New Phytol. 1983, 94, 479–505. [Google Scholar] [CrossRef]
- Clark, C. Potato breeding investigations in 1938: Review of literature. Am. Potato J. 1938, 16, 212–220. [Google Scholar] [CrossRef]
- Stevenson, F.J.; Clark, C.F. Breeding and genetics in potato improvement. Yearb. Agric. USDA 1937, 405–444. [Google Scholar]
- Bradshaw, J.E.; MacKay, G.R. Breeding strategies for clonally propagated crops. In Potato Genetics; Bradshaw, J.E., MacKay, G.R., Eds.; CAB International: Wallingford, UK, 1994; pp. 467–497. [Google Scholar]
- Jansky, S.H. Breeding for disease resistance in potato. Plant Breed. Rev. 2000, 19, 69–155. [Google Scholar]
- Lenne, J.M.; Wood, D. Plant diseases and the use of wild germplasm. Annu. Rev. Phytopathol. 1991, 29, 35–63. [Google Scholar] [CrossRef]
- Li, Y.; Colleoni, C.; Zhang, J.; Liang, Q.; Hu, Y.; Ruess, H.; Simon, R.; Liu, Y.; Liu, H.; Yu, G.; et al. Genomic analyses yield markers for identifying agronomically important genes in potato. Mol. Plant 2018, 11, 473–484. [Google Scholar] [CrossRef]
- Jansky, S. Overcoming hybridization barriers in potato. Plant Breed. 2006, 125, 1–12. [Google Scholar] [CrossRef]
- Camadro, E.L.; Carputo, D.; Peloquin, S.J. Substitutes for genome differentiation in tuber-bearing Solanum: Interspecific pollen-pistil incompatibility, nuclear-cytoplasmic male sterility, and endosperm. Theor. Appl. Genet. 2004, 109, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- Hanneman, R.E., Jr. The potato germplasm resource. Am. Potato J. 1989, 66, 655–667. [Google Scholar] [CrossRef]
- Vincent, H.; Wiersema, J.; Kell, S.; Fielder, H.; Dobbie, S.; Castañeda-Álvarez, N.P.; Guarino, L.; Eastwood, R.; Leόn, B.; Maxted, N. A prioritized crop wild relative inventory to help underpin global food security. Biol. Conserv. 2013, 167, 265–275. [Google Scholar] [CrossRef]
- Jansky, S.; Spooner, D. Evolution of potato breeding. Plant Breed. Rev. 2018, 41, 169–214. [Google Scholar]
- Bethke, P.; Halterman, D.; Jansky, S. Are we getting better at using wild potato species in light of new tools? Crop Sci. 2017, 57, 1–18. [Google Scholar] [CrossRef]
- Hawkes, J.G. The Potato: Evolution, Biodiversity, and Genetic Resources; Smithsonian Institution Press: Washington, DC, USA, 1990; p. 259. [Google Scholar]
- Castaeda-Alvarez, N.P.; de Haan, S.; Juarez, H.; Khoury, C.K.; Achicanoy, H.A.; Sosa, C.C.; Bernau, V.; Salas, A.; Heider, B.; Simon, R.; et al. Ex situ conservation priorities for the wild relatives of potato (Solanum L. section Petota). PLoS ONE 2015, 10, e0129873. [Google Scholar] [CrossRef]
- Johnson, D.A.; Cummings, T.F.; Rower, R.C.; Miller, J.S.; Thornton, R.E.; Pelter, G.Q.; Sorensen, E.J. Potato late blight in the Columbia Basin: An economic analysis of the 1995 epidemic. Plant Dis. 2007, 81, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Fry, W.E.; Myer, K.; Roberts, P.; McGrath, M.T.; Everts, K.; Secor, G.; Seaman, A.; Gevens, A.J.; Seebold, K., Jr.; Zigger, T.A.; et al. The 2009 late blight pandemic in the Eastern United States—causes and results. Plant Dis. 2012, 97, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Novy, R.; Love, S.L.; Corsini, D.L.; Pavek, J.J.; Whitworth, J.L.; Mosley, A.R.; James, S.R.; Hane, D.C.; Shock, C.C.; Rykbost, K.A.; et al. Defender: A high-yielding, processing potato cultivar with foliar and tuber resistance to late blight. Am. J. Potato Res. 2006, 83, 9–19. [Google Scholar] [CrossRef]
- Douches, D.; Jastrzebski, K.; Coombs, J.; Kirk, W.W.; Felcher, K.K.; Hammerschmidt, R.; Chase, R.W. Jacqueline Lee: A late-blight-resistant tablestock variety. Am. J. Potato Res. 2001, 78, 413–419. [Google Scholar] [CrossRef]
- Sanchez-Perez, A.; Halterman, D.; Jordan, S.; Chen, Y.; Gevens, A.J. RB and Ph resistance genes in potato and tomato minimize risk for oospore production in the presence of mating pairs of Phytophthora infestans. Eur. J. Plant Pathol. 2017, 149, 853–864. [Google Scholar] [CrossRef]
- Ramakrishnan, A.P.; Ritland, C.E.; Blas Sevillano, R.H.; Riseman, A. Review of potato molecular markers to enhance trait selection. Am. J. Potato Res. 2015, 92, 455–472. [Google Scholar] [CrossRef]
- Jansky, S.H.; Charkowski, A.O.; Douches, D.S.; Gusmini, G.; Richael, C.; Bethke, P.C.; Spooner, D.M.; Novy, R.G.; De Jong, H.; De Jong, W.S.; et al. Reinventing potato as a diploid inbred line–based crop. Crop Sci. 2016, 11, 1–11. [Google Scholar] [CrossRef]
- Stokstad, E. The new potato. Science 2019, 363, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Lindhout, P.; Meijer, D.; Schotte, T.; Hutten, R.C.B.; Visser, R.G.F.; Van Eck, H.J.; Eck, H.J. Towards F1 hybrid seed potato breeding. Potato Res. 2011, 54, 301–312. [Google Scholar] [CrossRef]
- Draffehn, A.M.; Meller, S.; Li, L.; Gebhardt, C. Natural diversity of potato (Solanum tuberosum) invertases. BMC Plant Biol. 2012, 10, 271. [Google Scholar] [CrossRef] [PubMed]
- McCann, L.C.; Bethke, P.C.; Simon, P.W. Extensive variation in fried chip color and tuber composition in cold-stored tubers of wild potato (Solanum) germplasm. J. Agric. Food Chem. 2010, 58, 2368–2376. [Google Scholar] [CrossRef] [PubMed]
- Jansky, S.H.; Hamernik, A.; Bethke, P.C. Germplasm release: Tetraploid clones with resistance to cold-induced sweetening. Am. J. Potato Res. 2011, 88, 218–225. [Google Scholar] [CrossRef]
- Bhaskar, P.; Wu, L.; Busse, J.S.; Whitty, B.R.; Hamernik, A.J.; Jansky, S.H.; Buell, C.R.; Bethke, P.C.; Jiang, J. Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato. Plant Physiol. 2010, 154, 939–948. [Google Scholar] [CrossRef] [PubMed]
- Hamernik, A.J.; Hanneman, R.E., Jr.; Jansky, S.H. Introgression of wild species germplasm with extreme resistance to cold sweetening into the cultivated potato. Crop Sci. 2009, 49, 529–542. [Google Scholar] [CrossRef]
- Jansky, S.; Hamernik, A.; Chung, Y.S. M7 Germplasm Release: A tetraploid clone derived from Solanum infundibuliforme for use in expanding the germplasm base for french fry processing. Am. J. Potato Res. 2012, 89, 448–452. [Google Scholar] [CrossRef]
- Hirsch, C.C.; Hirsch, C.D.; Felcher, K.; Coombs, J.; Zarka, D.; van Deynze, A.; de Jong, W.; Veilleux, R.E.; Jansky, S.; Bethke, P.; et al. Retrospective view of North American potato (Solanum tuberosum L.) breeding in the 20th and 21st centuries. G3 Genes Genomes Genet. 2013, 3, 1003–1013. [Google Scholar]
- Endelman, J.B.; Carley, C.A.S.; Bethke, P.C.; Coombs, J.J.; Clough, M.E.; Da Silva, W.L.; De Jong, W.S.; Douches, D.S.; Frederick, C.M.; Haynes, K.G.; et al. Genetic variance partitioning and genome-wide prediction with allele dosage information in autotetraploid potato. Genetics 2018, 209, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Sverrisdóttir, E.; Byrne, S.; Sundmark, E.H.R.; Johnsen, H.Ø.; Kirk, H.G.; Asp, T.; Janss, L.; Nielsen, K.L. Genomic prediction of starch content and chipping quality in tetraploid potato using genotyping-by-sequencing. Theor. Appl. Genet. 2017, 130, 2091–2108. [Google Scholar] [CrossRef] [PubMed]
- Hijmans, R.J.; Spooner, D.M. Geographic distribution of wild potato species. Am. J. Bot. 2001, 88, 2101–2112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkes, J.G.; Hjerting, J.P. The Potatoes of Argentina, Brazil, Paraguay, and Uruguay. A Biosystematic Study; Oxford University Press: Oxford, UK, 1969; p. 525. [Google Scholar]
- Hijmans, R.J.; Spooner, D.M.; Salas, A.R.; Guarino, L.; de la Cruz, J. Atlas of Wild Potatoes; International Plant Genetic Resources Institute: Maccarese, Italy, 2002; p. 130. [Google Scholar]
- Koenig, D.; Jiménez-Gómez, J.M.; Kimura, S.; Fulop, D.; Chitwood, D.H.; Headland, L.R.; Kumar, R.; Covington, M.F.; Devisetty, U.K.; Tat, A.V.; et al. Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proc. Natl. Acad. Sci. USA 2013, 110, E2655–E2662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hijmans, R.J. The effect of climate change on global potato production. Am. J. Potato Res. 2003, 80, 271–280. [Google Scholar] [CrossRef]
- Slater, A.T.; Cogan, N.O.I.; Hayes, B.J.; Schultz, L.; Dale, M.F.B.; Bryan, G.J.; Forster, J.W. Improving breeding efficiency in potato using molecular and quantitative genetics. Theor. Appl. Genet. 2014, 127, 2279–2292. [Google Scholar] [CrossRef] [PubMed]
- Annunziata, M.G.; Ciarmiello, L.F.; Woodrow, P.; Dell’Aversana, E.; Carillo, P. Spatial and temporal profile of glycine betaine accumulation in plants under abiotic stresses. Front. Plant Sci. 2019, 10, 1–13. [Google Scholar] [CrossRef]
- Zhang, N.; Si, H.-J.; Wen, G.; Du, H.-H.; Liu, B.-L.; Wang, D. Enhanced drought and salinity tolerance in transgenic potato plants with a BADH gene from spinach. Plant Biotechnol. Rep. 2011, 5, 71–77. [Google Scholar] [CrossRef]
- Zhu, M.; Meng, X.; Cai, J.; Li, G.; Dong, T.; Li, Z. Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC Plant Biol. 2018, 18, 83. [Google Scholar] [CrossRef]
- Navarre, D.A.; Brown, C.R.; Sathuvalli, V.R. Potato vitamins, minerals and phytonutrients from a plant biology perspective. Am. J. Potato Res. 2019, 96, 111–126. [Google Scholar] [CrossRef]
- Bamberg, J.; Greenway, G. Nutritional and economic prospects for expanded potato outlets. Am. J. Potato Res. 2019, 96, 206–215. [Google Scholar] [CrossRef]
- Hameed, A.; Zaidi, S.A.; Shakir, S.; Mansoor, S. Applications of new breeding technologies for potato improvement. Front. Plant Sci. 2018, 9, 1–15. [Google Scholar] [CrossRef]
- Glendinning, D. Neo-Tuberosum: New potato breeding material. 3. Characteristics and variability of Neo-Tuberosum, and its potential value in breeding. Potato Res. 1975, 18, 351–362. [Google Scholar] [CrossRef]
- Glendinning, D.R. Neo-Tuberosum: New potato breeding material. 1. The origin, composition, and development of the Tuberosum and Neo-Tuberosum gene pools. Potato Res. 1975, 18, 343–350. [Google Scholar] [CrossRef]
- Glendinning, D.R. Neo-Tuberosum: New potato breeding material. 4. The breeding system of Neo-Tuberosum, and the structure and composition of the Neo-Tuberosum. Potato Res. 1976, 19, 27–36. [Google Scholar] [CrossRef]
- Glendinning, D.R. Neo-Tuberosum: New potato breeding material. 2. A comparison of Neo-Tuberosum with unselected Andigena and Tuberosum. Potato Res. 1975, 18, 343–350. [Google Scholar] [CrossRef]
- Munoz, F.J.; Plaisted, R. Yield and combining abilities in andigena potato after six cycles of recurrent phenotypic selection for adaptation to long day conditions. Am. J. Potato Res. 1981, 58, 469–479. [Google Scholar] [CrossRef]
- Rasco, E.T.; Plaisted, R.L.; Ewing, E.E. Photoperiod response and earliness of S. tuberosum ssp. Andigena after six cycles of recurrent selection for adaptation to long days. Am. Potato J. 1980, 57, 435–447. [Google Scholar] [CrossRef]
- Haynes, F. The use of cultivated diploid Solanum species in potato breeding. In Prospects for the Potato in the Developing World; French, E., Ed.; International Potato Center: Lima, Peru, 1972; pp. 100–110. [Google Scholar]
- Carroll, C.P. A mass-selection method for the acclimatization and improvement of edible diploid potatoes in the United Kingdom. J. Agric. Sci. 1982, 99, 631–640. [Google Scholar] [CrossRef]
- Tarn, T.R.; Tai, G.C.C. Tuberosum x Tuberosum and Tuberosum x Andigena potato hybrids: Comparisons of families and parents, and breeding strategies for Andigena potatoes in long-day temperate environments. Theor. Appl. Genet. 1983, 66, 87–91. [Google Scholar] [CrossRef]
- Jansky, S.H.; Peloquin, S.J. Advantages of wild diploid Solanum species over cultivated diploid relatives in potato breeding programs. Genet. Resour. Crop Evol. 2005, 53, 669–674. [Google Scholar] [CrossRef]
- Ross, H. The use of wild Solanum species in German potato breeding of the past and today. Am. Potato J. 1966, 43, 63–80. [Google Scholar] [CrossRef]
- Morris, W.L.; Taylor, M.A. Improving flavor to increase consumption. Am. J. Potato Res. 2019, 96, 195–200. [Google Scholar] [CrossRef]
- Andre, C.M.; Ghislain, M.; Bertin, P.; Oufir, M.; Herrera, M.D.R.; Hoffmann, L.; Hausman, J.-F.; Larondelle, Y.; Evers, D. Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. J. Agric. Food Chem. 2007, 55, 366–378. [Google Scholar] [CrossRef]
- De Haan, S.; Burgos, G.; Liria, R.; Rodriguez, F.; Creed-Kanashiro, H.M.; Bonierbale, M. The nutritional contribution of potato varietal diversity in Andean food systems: A case study. Am. J. Potato Res. 2019, 96, 151–163. [Google Scholar] [CrossRef]
- Bevan, M.W.; Uauy, C.; Wulff, B.B.H.; Zhou, J.; Krasileva, K.; Clark, M.D. Genomic innovation for crop improvement. Nature 2017, 543, 346–354. [Google Scholar] [CrossRef]
- Uauy, C.; Wulff, B.B.H.; Dubcovsky, J. Combining traditional mutagenesis with new high-throughput sequencing and genome editing to reveal hidden variation in polyploid wheat. Annu. Rev. Genet. 2017, 51, 435–454. [Google Scholar] [CrossRef]
- Tardivel, A.; Sonah, H.; Belzile, F.; O’Donoughue, L.S. Rapid identification of alleles at the soybean maturity gene E3 using genotyping by sequencing and a haplotype-based approach. Plant Genome 2014, 7, 2. [Google Scholar] [CrossRef]
- Ortiz, R.; Simon, P.; Jansky, S.; Stelly, D. Ploidy manipulation of the gametophyte, endosperm and sporophyte in nature and for crop improvement: A tribute to Professor Stanley J. Peloquin (1921–2008). Ann. Bot. 2009, 104, 795–807. [Google Scholar] [CrossRef]
- Ortega, F.; Carrasco, A. Germplasm enhancement with wild tuber-bearing species: introgression of PVY resistance and high dry matter content from Solanum berthaultii, S. gourlayi, S. tarijense, and S. vernei. Potato Res. 2005, 48, 97–104. [Google Scholar] [CrossRef]
- Camadro, E.L.; Erazzú, L.E.; Maune, J.F.; Bedogni, M.C. A genetic approach to the species problem in wild potato. Plant Biol. 2012, 14, 543–554. [Google Scholar] [CrossRef]
- Hermsen, J.G.T. Introgression of genes from wild species, including molecular and cellular approaches. In Potato Genetics; Bradshaw, J.E., Mackay, G.R., Eds.; CAB International: Cambridge, UK, 1994; pp. 515–538. [Google Scholar]
- Carputo, D.; Barone, A. Ploidy level manipulations in potato through sexual hybridisation. Ann. Appl. Biol. 2005, 146, 71–79. [Google Scholar] [CrossRef]
- Bradshaw, J.E.; Ramsay, G. Utilisation of the Commonwealth Potato Collection in potato breeding. Euphytica 2005, 146, 9–19. [Google Scholar] [CrossRef]
- Hanneman, R.E., Jr. The reproductive biology of the potato and its implications for breeding. Potato Res. 1999, 42, 283–312. [Google Scholar] [CrossRef]
- Watanabe, K.; Orrillo, M.; Golmirzaie, A.M. Potato germplasm enhancement for resistance to biotic stresses at CIP. Conventional and biotechnology-assisted approaches using a wide range of Solanum species. Euphytica 1995, 85, 457–464. [Google Scholar] [CrossRef]
- Jansky, S.H. Breeding, genetics, and cultivar development. In Advances in Potato Chemistry and Technology; Singh, J., Kaur, L., Eds.; Elsevier: Oxford, UK, 2009; pp. 27–61. [Google Scholar]
- Xu, X.; Pan, S.; Cheng, S.; Zhang, B.; Mu, D.; Ni, P.; Zhang, G.; Yang, S.; Li, R.; Wang, G.; et al. Genome sequence and analysis of the tuber crop potato. Nature 2011, 475, 189–195. [Google Scholar]
- Sato, S.; Tabata, S.; Hirakawa, H.; Asamizu, E.; Shirasawa, K.; Isobe, S.; Kaneko, T.; Nakamura, Y.; Shibata, D.; Aoki, K.; et al. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 2012, 485, 635–641. [Google Scholar] [Green Version]
- Liu, J.; Van Eck, J.; Cong, B.; Tanksley, S.D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc. Natl. Acad. Sci. USA 2002, 99, 13302–13306. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Zhang, B.; Keyhaninejad, N.; Rodríguez, G.R.; Kim, H.J.; Chakrabarti, M.; Illa-Berenguer, E.; Taitano, N.K.; Gonzalo, M.J.; Díaz, A.; et al. A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef]
- Lippman, Z.B.; Semel, Y.; Zamir, D. An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr. Opin. Genet. Dev. 2007, 17, 545–552. [Google Scholar] [CrossRef]
- Grube, R.; Radwanski, E.R.; Jahn, M. Comparative genetics of disease resistance within the Solanaceae. Genetics 2000, 155, 873–887. [Google Scholar]
- Mazourek, M.; Cirulli, E.T.; Collier, S.M.; Landry, L.G.; Kang, B.-C.; Quirin, E.A.; Bradeen, J.M.; Moffett, P.; Jahn, M.M. The fractionated orthology of Bs2 and Rx/Gpa2 supports shared synteny of disease resistance in the Solanaceae. Genetics 2009, 182, 1351–1364. [Google Scholar] [CrossRef]
- Gebhardt, C.; Valkonen, J.P.T. Organization of genes controlling disease resistance in the potato genome. Annu. Rev. Phytopathol. 2001, 39, 79–102. [Google Scholar] [CrossRef]
- Huang, S.; Van Der Vossen, E.A.; Kuang, H.; Vleeshouwers, V.G.; Zhang, N.; Borm, T.J.; Van Eck, H.J.; Baker, B.; Jacobsen, E.; Visser, R.G. Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. Plant J. 2005, 42, 251–261. [Google Scholar] [CrossRef]
- Song, J.Q.; Bradeen, J.M.; Naess, S.K.; Raasch, J.A.; Wielgus, S.M.; Haberlach, G.T.; Liu, J.; Kuang, H.; Austin-Phillips, S.; Buell, C.R.; et al. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc. Natl. Acad. Sci. USA 2003, 100, 9128–9133. [Google Scholar] [CrossRef]
- van der Vossen, E.; Sikkema, A.; Hekkert, B.T.L.; Gros, J.; Stevens, P.; Muskens, M.; Wouters, D.; Periera, A.; Stiekema, W.; Allefs, S. An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J. 2003, 36, 867–882. [Google Scholar] [CrossRef]
- Hammond-Kosack, K.E.; Tang, S.; Harrison, K.; Jones, J.D.G. The tomato Cf-9 disease resistance gene functions in tobacco and potato to confer responsiveness to the fungal avirulence gene product Avr9. Plant Cell 2007, 10, 1251–1266. [Google Scholar] [CrossRef]
- Cavatorta, J.; Perez, K.W.; Gray, S.M.; Van Eck, J.; Yeam, I.; Jahn, M. Engineering virus resistance using a modified potato gene. Plant Biotechnol. J. 2011, 9, 1014–1021. [Google Scholar] [CrossRef]
- McCouch, S.R.; McNally, K.L.; Wang, W.; Sackville Hamilton, R. Genomics of gene banks: A case study in rice. Am. J. Bot. 2012, 99, 407–423. [Google Scholar] [CrossRef] [Green Version]
- Camadro, E.L. Relevance of the genetic structure of natural populations, sampling and classification approaches for conservation and use of wild crop relatives: Potatoes as an example. Botany 2012, 90, 1065–1072. [Google Scholar] [CrossRef]
- Leisner, C.P.; Hamilton, J.P.; Crisovan, E.; Manrique-Carpintero, N.C.; Marand, A.P.; Newton, L.; Pham, G.M.; Jiang, J.; Douches, D.S.; Jansky, S.H.; et al. Genome sequence of M6, a diploid inbred clone of the high glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity. Plant J. 2018, 94, 562–570. [Google Scholar] [CrossRef]
- Aversano, R.; Contaldi, F.; Ercolano, M.R.; Grosso, V.; Iorizzo, M.; Tatino, F.; Xumerle, L.; Molin, A.D.; Avanzato, C.; Ferrarini, A.; et al. The Solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives. Plant Cell 2015, 27, 954–968. [Google Scholar] [CrossRef]
- Aflitos, S.; Schijlen, E.; de Jong, H.; de Ridder, D.; Smit, S.; Finkers, R.; Wang, H.; Zhang, G.; Li, N.; Mao, L.; et al. Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J. 2014, 80, 136–148. [Google Scholar]
- Van Treuren, R.; Magda, A.; Hoekstra, R.; Van Hintum, T.J.L. Genetic and economic aspects of marker-assisted reduction of redundancy from a wild potato germplasm collection. Genet. Resour. Crop Evol. 2004, 51, 277–290. [Google Scholar] [CrossRef]
- McGregor, C.E.; Van Treuren, R.; Hoekstra, R.; Van Hintum, T.J.L. Analysis of the wild potato germplasm of the series Acaulia with AFLPs: Implications for ex situ conservation. Theor. Appl. Genet. 2002, 104, 146–156. [Google Scholar] [CrossRef]
- Bryan, G.J.; McLean, K.; Waugh, R.; Spooner, D.M. Levels of intra-specific AFLP diversity in tuber-bearing potato species with different breeding systems and ploidy levels. Front. Genet. 2017, 8, 119. [Google Scholar] [CrossRef]
- Bamberg, J.B.; Del Rio, A.H. Genetic heterogeneity estimated by RAPD Polymorphism of four tuber-bearing potato species differing by breeding system. Am. J. Potato Res. 2004, 81, 377–383. [Google Scholar] [CrossRef]
- Bai, Y.; Lindhout, P. Domestication and breeding of tomatoes: What have we gained and what can we gain in the future? Ann. Bot. 2007, 100, 1085–1094. [Google Scholar] [CrossRef]
- Hardigan, M.A.; Bamberg, J.; Buell, C.R.; Douches, D.S. Taxonomy and genetic differentiation among wild and cultivated germplasm of Solanum sect. Petota. Plant Genome 2015, 8, 1–16. [Google Scholar] [CrossRef]
- Bedonni, M.C.; Camadro, E.L. Morphological and molecular evidence of natural interspecific hybridization in the diploid potato Solanum kurtizianum from Argentina. Botany 2009, 87, 78–87. [Google Scholar] [CrossRef]
- Hawkes, J.G. Introgression in certain wild potato species. Euphytica 1962, 11, 26–35. [Google Scholar] [CrossRef]
- Chung, Y.S.; Holmquist, K.; Spooner, D.M.; Jansky, S.H. A test of taxonomic and biogeographic predictivity: Resistance to soft rot in wild relatives of cultivated potato. Phytopathology 2011, 101, 205–212. [Google Scholar] [CrossRef]
- Jansky, S.H.; Simon, R.; Spooner, D.M. A test of taxonomic predictivity: Resistance to the Colorado potato beetle in wild relatives of cultivated potato. J. Econ. Entomol. 2009, 102, 422–431. [Google Scholar] [CrossRef]
- Jansky, S.H.; Simon, R.; Spooner, D.M. A test of taxonomic predictivity: Resistance to early blight in wild relatives of cultivated potato. Phytopathology 2008, 98, 680–687. [Google Scholar] [CrossRef]
- Spooner, D.M.; Jansky, S.H.; Simon, R. Tests of taxonomic and biogeographic predictivity: Resistance to disease and insect pests in wild relatives of cultivated potato. Crop Sci. 2009, 49, 1367–1376. [Google Scholar] [CrossRef]
- Jansky, S.H.; Simon, R.; Spooner, D.M. A test of taxonomic predictivity: Resistance to white mold in wild relatives of cultivated potato. Crop Sci. 2006, 46, 2561–2570. [Google Scholar] [CrossRef]
- Cai, X.; Spooner, D.; Jansky, S. A test of taxonomic and biogeographic predictivity: Resistance to potato virus Y in wild relatives of the cultivated potato. Phytopathology 2011, 101, 1074–1080. [Google Scholar] [CrossRef]
- Khiutti, A.; Spooner, D.M.; Jansky, S.H.; Halterman, D.A. Testing taxonomic predictivity of foliar and tuber resistance to Phytophthora infestans in wild relatives of potato. Phytopathology 2015, 105, 1198–1205. [Google Scholar] [CrossRef]
- Correll, D.S. The Potato and Its Wild Relatives; Texas Research Foundation: Renner, TX, USA, 1967; p. 606. [Google Scholar]
- Vega, S.; Bamberg, J. Screening the U.S. potato collection for frost hardiness. Am. Potato J. 1995, 72, 13–21. [Google Scholar] [CrossRef]
- Khazaei, H.; Street, K.; Bari, A.; Mackay, M.; Stoddard, F.L. The FIGS (Focused Identification of Germplasm Strategy) approach identifies traits related to drought adaptation in Vicia faba genetic resources. PLoS ONE 2013, 8, e63107. [Google Scholar] [CrossRef]
- Jansky, S.H.; Dawson, J.; Spooner, D.M. How do we address the disconnect between genetic and morphological diversity in germplasm collections? Am. J. Bot. 2015, 102, 1213–1215. [Google Scholar] [CrossRef] [Green Version]
- Traini, A.; Iorizzo, M.; Mann, H.; Bradeen, J.M.; Carputo, D.; Frusciante, L.; Chiusano, M.L. Genome microscale heterogeneity among wild potatoes revealed by diversity arrays technology marker sequences. Int. J. Genom. 2013, 2013, 1–9. [Google Scholar] [CrossRef]
- Van Weymers, P.S.M.; Baker, K.; Chen, X.; Harrower, B.; Cooke, D.E.L.; Gilroy, E.M.; Birch, P.R.J.; Thilliez, G.J.A.; Lees, A.K.; Lynott, J.S.; et al. Utilizing “Omic” technologies to identify and prioritize novel sources of resistance to the oomycete pathogen Phytophthora infestans in potato germplasm collections. Front. Plant Sci. 2016, 7, 672. [Google Scholar] [CrossRef]
- Armstrong, M.R.; Vossen, J.; Lim, T.Y.; Hutten, R.C.B.; Xu, J.; Strachan, S.M.; Harrower, B.; Champouret, N.; Gilroy, E.M.; Hein, I. Tracking disease resistance deployment in potato breeding by enrichment sequencing. Plant Biotechnol. J. 2019, 17, 540–549. [Google Scholar] [CrossRef]
- Chen, X.; Lewandowska, D.; Armstrong, M.R.; Baker, K.; Lim, T.-Y.; Bayer, M.; Harrower, B.; McLean, K.; Jupe, F.; Witek, K.; et al. Identification and rapid mapping of a gene conferring broad-spectrum late blight resistance in the diploid potato species Solanum verrucosum through DNA capture technologies. Theor. Appl. Genet. 2018, 131, 1287–1297. [Google Scholar] [CrossRef]
- Tyler, B.M.; Tripathy, S.; Zhang, X.; Dehal, P.; Dehal, P.; Jiang, R.H.; Aerts, A.; Arredondo, F.D.; Baxter, L.; Bensasson, D.; et al. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 2006, 313, 1261–1267. [Google Scholar] [CrossRef]
- Jiang, R.H.Y.; Tripathy, S.; Govers, F.; Tyler, B.M. RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proc. Natl. Acad. Sci. USA 2008, 105, 4874–4879. [Google Scholar] [CrossRef]
- Haas, B.J.; Kamoun, S.; Zody, M.C.; Jiang, R.H.Y.; Handsaker, R.E.; Cano, L.M.; Grabherr, M.; Kodira, C.D.; Raffaele, S.; Torto-Alalibo, T.; et al. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 2009, 461, 393–398. [Google Scholar] [CrossRef]
- Vleeshouwers, V.G.; Rietman, H.; Krenek, P.; Champouret, N.; Young, C.; Oh, S.-K.; Wang, M.; Bouwmeester, K.; Vosman, B.; Visser, R.G.F.; et al. Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS ONE 2008, 3, e2875. [Google Scholar] [CrossRef]
- Ali, A.; Jansky, S. Fine screening for resistance to cold-induced sweetening in potato hybrids containing Solanum raphanifolium germplasm. Adv. Agric. 2015, 2015, 1–4. [Google Scholar]
- Douches, D.S.; Bamberg, J.B.; Kirk, W.; Jastrzebski, K.; Niemira, B.A.; Coombs, J.; Bisognin, D.A.; Felcher, K.J. Evaluation of wild Solanum species for resistance to the US-8 genotype of Phytophthora infestans utilizing a fine-screening technique. Am. J. Potato Res. 2001, 78, 159–165. [Google Scholar] [CrossRef]
- Bamberg, J.; Palta, J.; Peterson, L.; Martin, M.; Kreuger, A.R. Fine screening potato (Solanum) species germplasm for tuber calcium. Am. J. Potato Res. 1998, 75, 181–186. [Google Scholar] [CrossRef]
- Bamberg, J.B.; Longtine, C.; Radcliffe, E.B. Fine screening Solanum (potato) germplasm accessions for resistance to Colorado potato beetle. Am. J. Potato Res. 1996, 73, 211–223. [Google Scholar] [CrossRef]
- Ross, H. Potato Breeding—Problems and Perspectives; Verlag Paul Parey: Berlin, Germany, 1986; p. 132. [Google Scholar]
- Tarn, T.R.; Tai, G.C.C.; de Jong, H.; Murphy, A.M.; Seabrook, J.E.A. Breeding potatoes for long-day, temperate climates. Plant Breed. Rev. 1992, 9, 217–232. [Google Scholar]
- Bradshaw, J.E. Potato Breeding at the Scottish Plant Breeding Station and the Scottish Crop Research Institute: 1920–2008. Potato Res. 2009, 52, 141–172. [Google Scholar] [CrossRef]
- Gopal, J. Challenges and way-forward in selection of superior parents, crosses and clones in potato breeding. Potato Res. 2015, 58, 165–188. [Google Scholar] [CrossRef]
- Allard, R.W. History of plant population genetics. Annu. Rev. Genet. 1999, 33, 1–27. [Google Scholar] [CrossRef]
- Rieman, G.; Hooker, W.; Krantz, F.; Werner, H. Potato improvement through parental line breeding. Am. Potato J. 1956, 33, 319–323. [Google Scholar]
- Krantz, F. Potato breeding methods III. A suggested procedure for potato breeding. Minn. Agric. Ext. Stn. Tech. Bull. 1924, 25, 3–32. [Google Scholar]
- Chase, S. Analytic breeding in Solanum tuberosum L.—A scheme utilizing parthenotes and other diploid stocks. Can. J. Genet. Cytol. 1963, 5, 359–363. [Google Scholar] [CrossRef]
- Marand, A.P.; Jansky, S.H.; Zhao, H.; Leisner, C.P.; Zhu, X.; Zeng, Z.; Crisovan, E.; Newton, L.; Hamernik, A.J.; Veilleux, R.E.; et al. Meiotic crossovers are associated with open chromatin and enriched with Stowaway transposons in potato. Genome Biol. 2017, 18, 203. [Google Scholar] [CrossRef] [Green Version]
- Duan, H.; Richael, C.; Rommens, C.M. Overexpression of the wild potato eIF4E-1 variant Eva1 elicits Potato virus Y resistance in plants silenced for native eIF4E-1. Transgenic Res. 2012, 21, 929–938. [Google Scholar] [CrossRef]
- Arcibal, E.; Gold, K.M.; Flaherty, S.; Jiang, J.; Jahn, M.; Rakotondrafara, A.M. A mutant eIF4E confers resistance to potato virus Y strains and is inherited in a dominant manner in the potato varieties Atlantic and Russet Norkotah. Am. J. Potato Res. 2016, 93, 64–71. [Google Scholar] [CrossRef]
- Ghislain, M.; Byarugaba, A.A.; Magember, E.; Njoroge, A.; Rivera, C.; Roman, M.L.; Tovar, J.C.; Gamboa, S.; Forbers, G.A.; Kreuze, J.F.; et al. Stacking three late blight resistance genes from wild species directly into African highland potato varieties confers complete field resistance to local blight races. Plant Biotechnol. J. 2019, 17, 1119–1129. [Google Scholar] [CrossRef]
- Clasen, B.M.; Stoddard, T.J.; Luo, S.; Demorest, A.L.; Li, J.; Cedrone, F.; Tibedu, R.; Davison, S.; Ray, E.E.; Daulhac, A.; et al. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol. J. 2016, 14, 169–176. [Google Scholar] [CrossRef]
- Enciso-Rodriguez, F.; Manrique-Carpintero, N.C.; Nadakuduti, S.S.; Buell, C.R.; Zarka, D.; Douches, D. Overcoming self-incompatibility in diploid potato using CRISPR-Cas9. Front. Plant Sci. 2019, 10, 1–12. [Google Scholar] [CrossRef]
- Collier, R.; Thomson, J.G.; Thilmony, R. A versatile and robust Agrobacterium-based gene stacking system generates high-quality transgenic Arabidopsis plants. Plant J. 2018, 95, 573–583. [Google Scholar] [CrossRef]
- Zhu, X.; Richael, C.; Chamberlain, P.; Busse, J.S.; Bussan, A.J.; Jiang, J.; Bethke, P.C. Vacuolar invertase gene silencing in potato (Solanum tuberosum L.) improves processing quality by decreasing the frequency of sugar-end defects. PLoS ONE 2014, 9, e93381. [Google Scholar] [CrossRef]
- Stich, B.; Van Inghelandt, D. Prospects and potential uses of genomic prediction of key performance traits in tetraploid potato. Front. Plant Sci. 2018, 9, 1–12. [Google Scholar] [CrossRef]
Trait Selected | Time | Consequence |
---|---|---|
Domestication traits (large tubers, short stolons, palatability) | 6000 BCE | A subset of wild germplasm becomes the foundation for landrace potatoes. |
Adaptation to long photoperiod in Southern Chile | Pre-Colombian | A subset of Andean potatoes serves as the founder of Chilean germplasm. |
Adaptation to growing conditions in Europe and other temperate regions | 1450–1900 | A subset of germplasm brought to Europe serves as the foundation for modern potato varieties. |
Late blight pandemics | Mid-1800′s; Mid 1900′s | Late blight eliminates many potato varieties. Resistance incorporated from S. demissum. |
Seed tuber-borne viruses | Persistent | Clonally propagated potato lines “run out” and are abandoned. |
Trade barriers | 19th and 20th century | Germplasm exchange between countries restricted by law and phytosanitary barriers. |
Germplasm | Use | Limitations | Genomics Tools |
---|---|---|---|
Potato cultivars (Solanum tuberosum) | Enrichment of rare and recessive alleles | Rare alleles are difficult to identify; recessive phenotype not apparent until homozygous | Sequencing and genetic markers used to efficiently find and track incorporation of rare and recessive alleles |
Landraces (Solanum tuberosum) | Restoration of alleles lost to bottlenecks | Landraces lack modern domestication traits such as photoperiod adaptation, long tuber dormancy and smooth tuber shape | Marker-assisted selection for major gene traits; dense marker arrays to reduce linkage drag |
Tuber-bearing wild potato relatives (Solanum section Petota) | Novel alleles lost to bottlenecks or never introgressed into cultivated germplasm | Numerous crosses to cultivated potato are required to restore commercial quality | |
Genus Solanum | Allelic variants outside the potato gene pool | Phenotype in commercial potato cannot be predicted accurately in silico | Sequence data identify allelic variants across a wide range of related species; gene editing to create new phenotypes |
Accession | Classification | Study | Location | Inoculated | Scoring Method |
---|---|---|---|---|---|
PI 225697 | Resistant | Ander84 | Field | yes | Number of propagules in stems |
Susceptible | Corsi84 | Field | no | Incidence and severity of symptoms | |
PI 230463 | Resistant | Corsi83 | Field | no | Symptoms and propagules in stems |
Susceptible | Corsi84 | Field | no | Incidence and severity of symptoms | |
PI 230473 | Resistant | Corsi84 | Field | no | Incidence and severity of symptoms |
Susceptible | Rowe85 | Greenhouse | yes | Symptoms | |
PI 230503 | Very susceptible | Ander83 | Field | yes | Number of propagules in stems |
Very resistant | Corsi83 | Field | no | Symptoms and propagules in stems |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bethke, P.C.; Halterman, D.A.; Jansky, S.H. Potato Germplasm Enhancement Enters the Genomics Era. Agronomy 2019, 9, 575. https://doi.org/10.3390/agronomy9100575
Bethke PC, Halterman DA, Jansky SH. Potato Germplasm Enhancement Enters the Genomics Era. Agronomy. 2019; 9(10):575. https://doi.org/10.3390/agronomy9100575
Chicago/Turabian StyleBethke, Paul C., Dennis A. Halterman, and Shelley H. Jansky. 2019. "Potato Germplasm Enhancement Enters the Genomics Era" Agronomy 9, no. 10: 575. https://doi.org/10.3390/agronomy9100575
APA StyleBethke, P. C., Halterman, D. A., & Jansky, S. H. (2019). Potato Germplasm Enhancement Enters the Genomics Era. Agronomy, 9(10), 575. https://doi.org/10.3390/agronomy9100575