Grain Yield and Resource Use Efficiencies of Upland and Lowland Rice Cultivars under Aerobic Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimentation
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Precipitation and Irrigation
3.2. Crop Growth and Phenological Traits
3.3. Grain Yield, Water and Nitrogen Use Efficiencies for Grain Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IRRI. Rice Almanac: Source Book for the Most Important Economic Activity on Earth, 3rd ed.; CABI Publishing: Oxon, UK, 2002. [Google Scholar]
- Coats, B. Global rice production. In Rice Origin, History, Technology and Production; Smith, C., Dilday, R., Eds.; Wiley: Hoboken, NJ, USA, 2003; pp. 247–470. [Google Scholar]
- Liu, H.; Saddam, H.; Zheng, M.; Sun, L.; Shah, F.; Huang, J.; Cui, K.; Nie, L. Progress and constraints of dry direct-seeded rice in China. J. Food Agric. Environ. 2014, 12, 465–472. [Google Scholar]
- Farooq, M.; Siddique, K.H.; Rehman, H.; Aziz, T.; Lee, D.-J.; Wahid, A. Rice direct seeding: Experiences, challenges and opportunities. Soil Tillage Res. 2011, 111, 87–98. [Google Scholar] [CrossRef]
- Chauhan, B.; Opeña, J. Effect of tillage systems and herbicides on weed emergence, weed growth, and grain yield in dry-seeded rice systems. Field Crop. Res. 2012, 137, 56–69. [Google Scholar] [CrossRef]
- Cai, H.; Chen, Q. Rice research in China in the early 21st century. Chin. Rice Res. Newsl. 2000, 8, 14–16. [Google Scholar]
- Tuong, T.P.; Bouman, B.A.M. Rice production in water-scarce environments. Water Product. Agric. Limits Oppor. Improv. 2003, 4, 53–67. [Google Scholar]
- Liu, J.; Diamond, J. China’s environment in a globalizing world. Nature 2005, 435, 1179. [Google Scholar] [CrossRef]
- Yao, F.; Huang, J.; Cui, K.; Nie, L.; Xiang, J.; Liu, X.; Wu, W.; Cheng, M.; Peng, S. Agronomic performance of high-yielding rice cultivar grown under alternate wetting and drying irrigation. Field Crop. Res. 2012, 126, 16–22. [Google Scholar] [CrossRef]
- Kato, Y.; Katsura, K. Rice Adaptation to Aerobic Soils: Physiological Considerations and Implications for Agronomy. Plant Prod. Sci. 2014, 17, 1–12. [Google Scholar] [CrossRef]
- Buckle, S. Mitigation of climate change. Weather 2010, 64, 165–166. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K. Climate change 2007: The physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. summary for policymakers. Intergov. Panel Clim. Chang. Clim. Chang. 2007, 18, 95–123. [Google Scholar]
- Wassmann, R.; Neue, H.U.; Ladha, J.K.; Aulakh, M.S. Mitigating Greenhouse Gas Emissions from Rice-Wheat Cropping Systems in Asia. Environ. Dev. Sustain. 2004, 6, 65–90. [Google Scholar] [CrossRef]
- Shang, Q.; Yang, X.; Gao, C.; Wu, P.; Liu, J.; Xu, Y.; Shen, Q.; Zou, J.; Guo, S. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Global Chang. Biol. 2011, 17, 2196–2210. [Google Scholar] [CrossRef]
- Tao, Y.; Chen, Q.; Peng, S.; Wang, W.; Nie, L. Lower global warming potential and higher yield of wet direct-seeded rice in Central China. Agron. Sustain. Dev. 2016, 36, 24. [Google Scholar] [CrossRef]
- Kang, S.; Eltahir, E.A.B. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 2018, 9, 2894. [Google Scholar] [CrossRef] [PubMed]
- Belder, P.; Bouman, B.A.M.; Spiertz, J.H.J.; Peng, S.; Castaneda, A.R.; Visperas, R.M. Crop performance, nitrogen and water use in flooded and aerobic rice. Plant Soil 2005, 273, 167–182. [Google Scholar] [CrossRef]
- Bouman, B.; Peng, S.; Castaneda, A.; Visperas, R. Yield and water use of irrigated tropical aerobic rice systems. Agric. Water Manag. 2005, 74, 87–105. [Google Scholar] [CrossRef]
- Patel, D.P.; Das, A.; Munda, G.C.; Ghosh, P.K.; Bordoloi, J.S.; Kumar, M. Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem. Agric. Water Manag. 2010, 97, 1269–1276. [Google Scholar] [CrossRef]
- Wang, H.; Bouman, B.A.M.; Zhao, D.; Wang, C.; Moya, P.F. Aerobic rice in northern China: Opportunities and challenges. In Water-Wise Rice Production, Proceedings of the International Workshop on Water-Wise Rice Production, Los Baños, Philippines, 8–11 April 2002; Bouman, B.A.M., Hengsdijk, H., Hardy, B., Bindraban, P.S., Tuong, T.P., Ladha, J.K., Eds.; International Rice Research Institute: Los Baños, Philippines, 2002; pp. 143–154. [Google Scholar]
- George, T.; Magbanua, R.; Garrity, D.P.; Tubana, B.S.; Quiton, J. Rapid Yield Loss of Rice Cropped Successively in Aerobic Soil. Agron. J. 2002, 94, 981. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Yang, X.; Wang, H.; Wang, Z.; Zhao, J.; Chen, B. Performance of aerobic rice cultivars under irrigated conditions in North China. Field Crop. Res. 2006, 97, 53–65. [Google Scholar] [CrossRef]
- Peng, S.; Bouman, B.; Visperas, R.M.; Castañeda, A.; Nie, L.; Park, H.-K. Comparison between aerobic and flooded rice in the tropics: Agronomic performance in an eight-season experiment. Field Crop. Res. 2006, 96, 252–259. [Google Scholar] [CrossRef]
- Castaneda, A.R.; Bouman, B.A.M.; Peng, S.; Visperas, R.M. The potential of aerobic rice to reduce water use in water-scarce irrigated lowlands in the tropics: Opportunities and challenges. In Water-Wise Rice Production, Proceedings of the International Workshop on Water-Wise Rice Production, Los Baños, Philippines, 8–11 April 2002; Bouman, B.A.M., Hengsdijk, H., Hardy, B., Bindraban, P.S., Tuong, T.P., Ladha, J.K., Eds.; International Rice Research Institute: Los Baños, Philippines, 2002; pp. 165–176. [Google Scholar]
- Kato, Y.; Okami, M.; Katsura, K. Yield potential and water use effciency of aerobic rice (Oryza sativa L.) in Japan. Field Crop. Res. 2009, 113, 328–334. [Google Scholar] [CrossRef]
- Kato, Y.; Kamoshita, A.; Yamagishi, J.; Imoto, H.; Abe, J. Growth of three rice (Oryza sativa L.) cultivars under upland conditions with different levels of water supply. 2. Grain yield. Plant Prod. Sci. 2006, 9, 435–445. [Google Scholar] [CrossRef]
- Zou, G.H.; Mei, H.W.; Liu, H.Y.; Liu, G.L.; Hu, S.P.; Yu, X.Q.; Li, M.S.; Wu, J.H.; Luo, L.J. Grain yield responses to moisture regimes in a rice population: Association among traits and genetic markers. Theor. Appl. Genet. 2005, 112, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Boonjung, H.; Fukai, S. Effects of soil water deficit at different growth stages on rice growth and yield under upland conditions. 2. Phenology, biomass production and yield. Field Crop. Res. 1996, 48, 47–55. [Google Scholar] [CrossRef]
- Liu, K.; Yang, R.; Lu, J.; Wang, X.; Lu, B.; Tian, X.; Zhang, Y. Radiation Use Efficiency and Source-Sink Changes of Super Hybrid Rice under Shade Stress during Grain-Filling Stage. Agron. J. 2019, 111, 1788. [Google Scholar] [CrossRef]
- Liu, H.; Hussain, S.; Zheng, M.; Peng, S.; Huang, J.; Cui, K.; Nie, L. Dry direct-seeded rice as an alternative to transplanted-flooded rice in Central China. Agron. Sustain. Dev. 2015, 35, 285–294. [Google Scholar] [CrossRef]
- Liu, H.; Won, P.L.; Banayo, N.P.; Nie, L.; Peng, S.; Kato, Y. Late-season nitrogen applications improve grain yield and fertilizer-use efficiency of dry direct-seeded rice in the tropics. Field Crop. Res. 2019, 233, 114–120. [Google Scholar] [CrossRef]
- Fangueiro, D.; Becerra, D.; Albarrán, Á.; Peña, D.; Sanchez-Llerena, J.; Rato-Nunes, J.M.; López-Piñeiro, A. Effect of tillage and water management on GHG emissions from Mediterranean rice growing ecosystems. Atmos. Environ. 2017, 150, 303–312. [Google Scholar] [CrossRef]
- Feizienė, D.; Feiza, V.; KadžIenė, G. The influence of meteorological conditions on soil water vapour exchange rate and co2 emission under different tillage systems. Zemdirb. Agric. 2009, 96, 3–22. [Google Scholar]
- Alberto, M.C.R.; Wassmann, R.; Hirano, T.; Miyata, A.; Hatano, R.; Kumar, A.; Padre, A.; Amante, M. Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines. Agric. Water Manag. 2011, 98, 1417–1430. [Google Scholar] [CrossRef]
- Haque, M.M.; Mackill, D.J.; Ingram, K.T. Inheritance of Leaf Epicuticular Wax Content in Rice. Crop. Sci. 1992, 32, 865. [Google Scholar] [CrossRef]
- Asch, F.; Dingkuhn, M.; Sow, A.; Audebert, A. Drought-induced changes in rooting patterns and assimilate partitioning between root and shoot in upland rice. Field Crop. Res. 2005, 93, 223–236. [Google Scholar] [CrossRef]
- Zhao, D.L.; Amante, M.; Cruz, M.T.S.; Atlin, G.N.; Kumar, A. Developing Aerobic Rice Cultivars for Water-Short Irrigated and Drought-Prone Rainfed Areas in the Tropics. Crop. Sci. 2010, 50, 2268–2276. [Google Scholar] [CrossRef]
- Fukai, S.; Cooper, M. Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crop. Res. 1995, 40, 67–86. [Google Scholar] [CrossRef]
- Sharkey, T.D.; Seemann, J.R. Mild water stress effects on carbon-reduction-cycle intermediates, ribulose biphosphate carboxylase activity, and spatial homogeneity of photosynthesis in intact leaves. Plant Physiol. 1989, 89, 1060–1065. [Google Scholar] [CrossRef]
- Chaves, M.M.; Pereira, J.S.; Maroco, J.; Rodrigues, M.L.; Ricardo, C.P.P.; Osório, M.L.; Carvalho, I.; Faria, T.; Pinheiro, C. How Plants Cope with Water Stress in the Field? Photosynthesis and Growth. Ann. Bot. 2002, 89, 907–916. [Google Scholar] [CrossRef] [Green Version]
- Jérôme, B.; Garyn, A.; Rachid, S.; Arvind, K.; Dean, S. Breeding upland rice for drought resistance. J. Sci. Food Agric. 2010, 88, 927–939. [Google Scholar]
- Yoshida, S. Physiological Aspects of Grain Yield. Annu. Rev. Plant Physiol. 1972, 23, 437–464. [Google Scholar] [CrossRef]
- Rao, A.; Johnson, D.; Sivaprasad, B.; Ladha, J.; Mortimer, A. Weed Management in Direct-Seeded Rice. Adv. Agron. 2007, 93, 153–255. [Google Scholar]
- Zhou, S.; Li, H.; Huang, D.; Lu, D.; Lai, S.; Wang, Z.; Zhou, D.; Li, K.; Wang, Z.; Li, H. Breeding and Application of Huanghuzhan—A New Cultivar with 1st Class Rice Quality of National Standard. Hubei Agric. Sci. 2012, 51, 1960–1964, (In Chinese with English abstract). [Google Scholar]
- Tan, C.; Zhang, H.; Dai, Z.; Li, A.; Xu, M.; Liu, G.; Liu, X.; Huang, N.; Liu, X.; Wang, B.; et al. A New Two-line Hybrid Rice wtih High Quality and High Yield—Yangliangyou 6. Jiangsu J. Agric. Sci. 2003, 19, 227, (In Chinese with English abstract). [Google Scholar]
- Zhou, S.; Li, H.; Huang, D.; Lu, D.; Li, K.; Zhou, D.; Lai, S.; Wang, Z. Breeding and application of huanghuazhan, a new early, middle or late rice cultivar with good quality and wide adaptability. J. Agric. Sci. Technol. 2010, 12, 12–17, (In Chinese with English abstract). [Google Scholar]
- Nie, L.; Peng, S.; Chen, M.; Shah, F.; Huang, J.; Cui, K.; Xiang, J. Aerobic rice for water-saving agriculture. a review. Agron. Sustain. Dev. 2012, 32, 411–418. [Google Scholar] [CrossRef]
- Nishizawa, T.; Ohshima, Y.; Kurihara, H. Survey of the nematode population in the experimental fields of successive or rotative plantation. Proc. Kanto-Tosan Plant Prot. Soc. 1971, 18, 121–122. [Google Scholar]
- Kreye, C.; Bouman, B.; Castaneda, A.; Lampayan, R.; Faronilo, J.; Lactaoen, A.; Fernandez, L. Possible causes of yield failure in tropical aerobic rice. Field Crop. Res. 2009, 111, 197–206. [Google Scholar] [CrossRef]
- Nie, L.; Peng, S.; Bouman, B.A.M.; Huang, J.; Cui, K.; Visperas, R.; Xiang, J. Alleviating soil sickness caused by aerobic monocropping: Responses of aerobic rice to various nitrogen sources. Soil Sci. Plant Nutr. 2010, 55, 150–159. [Google Scholar] [CrossRef]
Year | Solar Radiation (MJ m−2 d−1) | Average Temperature (°C) | Average Relative Humidity (%) | Average VPD (kPa) | Average Wind Speed (m s−1) |
---|---|---|---|---|---|
2012 | 15.9 | 25.6 | 75.0 | 2.41 | 1.32 |
2013 | 16.2 | 26.0 | 74.3 | 2.51 | 0.12 |
2014 | 13.4 | 24.7 | 79.2 | 2.48 | 0.40 |
Cultivar | Days to Heading | Growth Duration (Day) | ||||
---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2012 | 2013 | 2014 | |
Lvhan1 | 74 | 80 | 82 | 110 | 108 | 108 |
Hanyou3 | 91 | 92 | 95 | 125 | 124 | 127 |
Huanghuazhan | 91 | 91 | 95 | 125 | 124 | 127 |
Yangliangyou6 | 99 | 102 | 105 | 142 | 138 | 141 |
Factors | Grain Yield (Mg ha−1) | Aboveground Biomass (g m−2) | Harvest INDEX |
---|---|---|---|
Cultivar | |||
Lvhan1 | 6.58 | 1262 | 0.48 |
Hanyou3 | 7.56 | 1679 | 0.42 |
Huanghuazhan | 8.16 | 1504 | 0.49 |
Yangliangyou6 | 9.78 | 1824 | 0.48 |
Cultivar group (C) | |||
Upland cultivars | 7.07 | 1471 | 0.45 |
Lowland cultivars | 8.97 | 1664 | 0.48 |
Year (Y) | |||
2012 | 8.52 | 1881 | 0.41 |
2013 | 8.02 | 1574 | 0.49 |
2014 | 7.51 | 1246 | 0.50 |
LSD (0.05) | |||
Cultivar group (C) | 0.57 | 151 | 0.04 |
Year (Y) | 0.70 | 185 | 0.02 |
C × Y | ns | ns | ns |
Factors | Panicle Number (m−2) | Spikelets Per Panicle | Spikelets (m−2) | Grain Filling Percentage (%) | 1000-Grain Weight (g) |
---|---|---|---|---|---|
Cultivar | |||||
Lvhan1 | 340 | 88 | 29,977 | 80.4 | 25.2 |
Hanyou3 | 300 | 95 | 27,917 | 81.7 | 30.5 |
Huanghuazhan | 390 | 118 | 46,339 | 79.8 | 20.2 |
Yangliangyou6 | 319 | 116 | 36,696 | 84.7 | 28.2 |
Cultivar group (C) | |||||
Upland cultivars | 320 | 91 | 28,947 | 81.0 | 27.9 |
Lowland cultivars | 354 | 117 | 41,517 | 82.2 | 24.2 |
Year (Y) | |||||
2012 | 405 | 106 | 43,337 | 71.8 | 25.7 |
2013 | 320 | 110 | 35,391 | 86.3 | 25.6 |
2014 | 286 | 96 | 26,968 | 86.7 | 26.8 |
LSD (0.05) | |||||
Cultivar group (C) | 32 | 11 | 3665 | Ns | 2.6 |
Year (Y) | 39 | 11 | 4489 | 4.1 | ns |
C×Y | ns | 11 | ns | ns | ns |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zhan, J.; Hussain, S.; Nie, L. Grain Yield and Resource Use Efficiencies of Upland and Lowland Rice Cultivars under Aerobic Cultivation. Agronomy 2019, 9, 591. https://doi.org/10.3390/agronomy9100591
Liu H, Zhan J, Hussain S, Nie L. Grain Yield and Resource Use Efficiencies of Upland and Lowland Rice Cultivars under Aerobic Cultivation. Agronomy. 2019; 9(10):591. https://doi.org/10.3390/agronomy9100591
Chicago/Turabian StyleLiu, Hongyan, Junhui Zhan, Saddam Hussain, and Lixiao Nie. 2019. "Grain Yield and Resource Use Efficiencies of Upland and Lowland Rice Cultivars under Aerobic Cultivation" Agronomy 9, no. 10: 591. https://doi.org/10.3390/agronomy9100591
APA StyleLiu, H., Zhan, J., Hussain, S., & Nie, L. (2019). Grain Yield and Resource Use Efficiencies of Upland and Lowland Rice Cultivars under Aerobic Cultivation. Agronomy, 9(10), 591. https://doi.org/10.3390/agronomy9100591