Impact of Plant Density and Mepiquat Chloride on Growth, Yield, and Silymarin Content of Silybum marianum Grown under Mediterranean Semi-Arid Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Sampling, Measurements and Methods
2.2.1. Measurements during Crop Growth
2.2.2. Measurements at Harvest
2.2.3. Oil and Silymarin Content Determination
2.3. Statistical Analysis
3. Results
3.1. Crop Parameters
3.2. Seed Yield and Components
3.3. Oil Content and Yield
3.4. Silymarin Content and Yield
4. Discussion
4.1. Crop Parameters
4.2. Seed Yield and Components
4.3. Oil Content and Yield
4.4. Silymarin Content and Yield
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Karkanis, A.; Efthimadou, A.; Bilalis, D. Cultivation of milk thistle (Silybum marianum L. Gaertn.), a medicinal weed. Ind. Crops Prod. 2011, 34, 825–830. [Google Scholar] [CrossRef]
- Bijak, M. Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaertn.)—Chemistry, bioavailability, and metabolism. Molecules 2017, 22, 1942. [Google Scholar] [CrossRef] [PubMed]
- Kosina, P.; Paloncyova, M.; Rajnochova Svobodova, A.; Zalesak, B.; Biedermann, D.; Ulrichova, L.; Vostalova, J. Dermal delivery of selected polyphenols from Silybum marianum. Theoretical and experimental study. Molecules 2019, 24, 61. [Google Scholar]
- Anthony, K.; Subramanya, G.; Uprichard, S.; Hammouda, F.; Saleh, M. Antioxidant and anti-hepatitis C viral activities of commercial milk thistle food supplements. Antioxidants 2013, 2, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Rosińska, A.; Dorna, H.; Szopińska, D.; Irzykowska, L.; Seidler-Łożykowska, K. Evaluation of milk thistle (Silybum marianum (L.) Gaertn.) seed germination in relation to seed health and seedling emergence. Herb. Pol. 2018, 64, 1–10. [Google Scholar] [CrossRef]
- Biedermann, D.; Vavříková, E.; Cvak, L.; Křen, V. Chemistry of silybin. Nat. Prod. Rep. 2014, 31, 1138–1157. [Google Scholar] [CrossRef]
- Giuliani, C.; Tani, C.; Maleci Bini, L.; Fico, G.; Colombo, R.; Martinelli, T. Localization of phenolic compounds in the fruits of Silybum marianum characterized by different silymarin chemotype and altered colour. Fitoterapid 2018, 130, 210–218. [Google Scholar] [CrossRef]
- Arampatzis, D.A.; Karkanis, A.C.; Tsiropoulos, N.G. Silymarin content and antioxidant activity of seeds of wild Silybum marianum populations growing in Greece. Ann. Appl. Biol. 2019, 174, 61–73. [Google Scholar] [CrossRef]
- Zavoi, S.; Fetea, F.; Ranga, F.; Pop, R.M.; Baciu, A.; Socaciu, C. Comparative fingerprint and extraction yield of medicinal herb phenolics with hepatoprotective potential, as determined by UV-Vis and FT-MIR spectroscopy. Not. Bot. Horti Agrobot. 2011, 39, 82–89. [Google Scholar] [CrossRef]
- Mastron, J.K.; Siveen, K.S.; Sethi, G.; Bishayee, A. Silymarin and hepatocellular carcinoma: A systematic, comprehensive, and critical review. Anticancer Drugs 2015, 26, 475–486. [Google Scholar] [CrossRef]
- Abenavoli, L.; Izzo, A.A.; Milić, N.; Cicala, C.; Santini, A.; Capasso, R. Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother. Res. 2018, 32, 2202–2213. [Google Scholar] [CrossRef] [PubMed]
- Sadowska, K.; Andrzejeska, J. Effect of the date and harvest method on the yield and quality of milk thistle (Silybum marianum L. Gaertn.) cultivated on light soil. Herb. Pol. 2009, 55, 47–54. [Google Scholar]
- Katar, D.; Arslan, Y.; Subasi, I. Effect of different plant densities on growth and yield of milk thistle [Silybum marianum (L.) Gaertn.] grown under ecological conditions of Ankara, Turkey. Res. Crops 2013, 14, 304–310. [Google Scholar]
- Andrzejewska, J.; Sadowska, K.; Mielcarek, S. Effect of sowing date and rate on the yield and flavonolignan content of the fruits of milk thistle (Silybum marianum L. Gaertn.) grown on light soil in a moderate climate. Ind. Crops Prod. 2011, 33, 462–468. [Google Scholar] [CrossRef]
- Zangani, E.; Zehtab-Salmasi, S.; Andalibi, B.; Zamani, A.A. Protective effects of nitric oxide on photosynthetic stability and performance of Silybum marianum under water deficit conditions. Agron. J. 2018, 110, 555–564. [Google Scholar] [CrossRef]
- Afshar, K.R.; Chaichi, M.R.; Ansari Jovini, M.; Jahanzad, E.; Hashemi, M. Accumulation of silymarin in milk thistle seeds under drought stress. Planta 2015, 242, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, T. Towards Silybum marianum’s domestication: Establishment and screening of a mutagenized population. In Proceedings of the 20th EUCARPIA General Congress. Plant Breeding: The Art of Bringing Science to Life, ETH Zurich, Zurich, Switzerland, 29 August–1 September 2016; p. 314. [Google Scholar]
- Nichols, S.P.; Snipes, C.E.; Jones, M.A. Evaluation of row spacing and mepiquat chloride in cotton. J. Cotton Sci. 2003, 7, 148–155. [Google Scholar]
- Suzuki, A.B.P.; Alves, G.A.C.; Junior, D.B.; Stulzer, G.C.G.; Osawa, M.S.; de Faria, R.T. Growth regulators for reduction of height in potted red-yellow sunflower Helianthus annuus cv. ‘Florenza’. Aust. J. Crop Sci. 2018, 12, 393–399. [Google Scholar] [CrossRef]
- Geneva, M.; Zehirov, G.; Stancheva, I.; Iliev, L.; Georgiev, G. Effect of soil fertilizer, foliar fertilizer, and growth regulator application on milk thistle development, seed yield, and silymarin content. Commun. Soil Sci. Plant Anal. 2008, 39, 17–24. [Google Scholar] [CrossRef]
- Stancheva, I.; Youssef, A.E.G.; Geneva, M.; Iliev, L.; Georgiev, G. Regulation of milk thistle (Silybum marianum L.) growth, seed yield and silymarin content with fertilization and thidiazuron application. Eur. J. Plant Sci. Biotechnol. 2008, 2, 94–98. [Google Scholar]
- Martinelli, T.; Andrzejewska, J.; Salis, M.; Sulas, L. Phenological growth stages of Silybum marianum according to the extended BBCH scale. Ann. Appl. Biol. 2015, 166, 53–66. [Google Scholar] [CrossRef]
- Ledda, L.; Deligios, P.A.; Farci, R.; Sulas, L. Biomass supply for energetic purposes from some Cardueae species grown in Mediterranean farming systems. Ind. Crops Prod. 2013, 47, 218–226. [Google Scholar] [CrossRef]
- Rajala, A.; Peltonen-Sainio, P. Grain and oil crops: Plant growth regulator effects on spring cereal root and shoot growth. Agron. J. 2001, 93, 936–943. [Google Scholar] [CrossRef]
- Çopur, O.; Demirel, U.; Karakuş, M. Effects of several plant growth regulators on the yield and fiber quality of cotton (Gossypium hirsutum L.). Not. Bot. Horti Agrobot. 2010, 38, 104–110. [Google Scholar]
- Choudhary, J.; Sharma, M.K.; Sumeriya, H.K. Growth and yield of Cotton (Gossypium hirsutum L.) influenced by plant growth regulators. Ann. Biol. 2014, 30, 498–502. [Google Scholar]
- Tung, S.A.; Huang, Y.; Ali, S.; Hafeez, A.; Shah, A.N.; Ma, X.; Ahmad, S.; Chattha, M.S.; Liu, A.; Liu, J.; et al. Mepiquat chloride effects on potassium acquisition and functional leaf physiology as well as lint yield in highly dense late-sown cotton. Ind. Crops Prod. 2019, 129, 142–155. [Google Scholar] [CrossRef]
- Afshar, K.R.; Chaichi, M.R.; Assareh, M.H.; Hashemi, M.; Liaghat, A. Interactive effect of deficit irrigation and soil organic amendments on seed yield and flavonolignan production of milk thistle (Silybum marianum L. Gaertn.). Ind. Crops Prod. 2014, 58, 166–172. [Google Scholar] [CrossRef]
- Takase, M.; Pappoe, A.N.M.; Afrifa, E.A.; Miyittah, M. High performance heterogeneous catalyst for biodiesel production from non-edible oil. Renew. Energy Focus 2018, 25, 24–30. [Google Scholar] [CrossRef]
- Fathi-Achachlouei, B.; Azadmard-Damirchi, S.; Zahedi, Y.; Shaddel, R. Microwave pretreatment as a promising strategy for increment of nutraceutical content and extraction yield of oil from milk thistle seed. Ind. Crops Prod. 2019, 128, 527–533. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Vick, B.A.; Ebelhar, M.W.; Buehring, N.; Baldwin, B.S.; Astatkie, T.; Miller, J.F. Yield, oil content, and composition of sunflower grown at multiple locations in Mississippi. Agron. J. 2008, 100, 635–642. [Google Scholar] [CrossRef]
- Patanè, C.; Cosentino, S.L.; Anastasi, U. Sowing time and irrigation scheduling effects on seed yield and fatty acids profile of sunflower in semi-arid climate. Int. J. Plant Prod. 2017, 11, 17–32. [Google Scholar]
Treatments | Height (cm) | |||||
---|---|---|---|---|---|---|
8 DAA1 | 24 DAA | 38 DAA | ||||
2015/2016 | 2017/2018 | 2015/2016 | 2017/2018 | 2015/2016 | 2017/2018 | |
Plant density (D) | ||||||
Density A | 67.5 a | 70.4 a | 142.1 a | 129.7 a | 188.4 a | 156.1 a |
Density Β | 64.8 a | 60.3 b | 134.0 b | 114.5 b | 178.1 b | 133.6 b |
LSD5% | - | 4.20 | 6.70 | 5.01 | 5.89 | 9.52 |
Mepiquat chloride (MC) | ||||||
Control | 68.1 a | 68.5 a | 152.0 a | 135.8 a | 196.7 a | 158.5 a |
MC75 | 66.6 a | 62.1 a | 137.3 b | 122.5 b | 181.2 b | 145.2 ab |
MC100 | 64.1 a | 64.1 a | 131.2 b | 114.2 c | 175.6 b | 140.8 bc |
MC112 | 65.9 a | 66.7 a | 131.6 b | 115.9 c | 179.6 b | 135.0 bc |
LSD5% | - | - | 9.48 | 7.09 | 8.34 | 13.46 |
p-value from ANOVA | ||||||
D | 0.051 | <0.001 | <0.001 | |||
MC | 0.766 | <0.001 | <0.001 | |||
Year | 0.788 | <0.001 | <0.001 | |||
D × MC | 0.990 | 0.288 | 0.104 | |||
D × Year | 0.249 | 0.082 | 0.027 | |||
MC × Year | 0.929 | 0.985 | 0.568 | |||
D × MC × Year | 0.989 | 0.836 | 0.192 |
Treatments | Dry Weight (kg ha−1) | |||||
---|---|---|---|---|---|---|
8 DAA1 | 24 DAA | 38 DAA | ||||
2015/2016 | 2017/2018 | 2015/2016 | 2017/2018 | 2015/2016 | 2017/2018 | |
Plant density (D) | ||||||
Density A | 10,199 b | 9615 b | 21,947 b | 16,204 b | 23,537 b | 19,089 b |
Density Β | 11,182 a | 10,681 a | 24,017 a | 18,074 a | 25,440 a | 21,509 a |
LSD5% | 911 | 734 | 1,446 | 925 | 1497 | 1743 |
Mepiquat chloride (MC) | ||||||
Control | 11,522 a | 10,256 a | 22,460 a | 17,012 a | 23,843 a | 20,288 a |
MC75 | 10,710 a | 9982 a | 23,235 a | 17,060 a | 25,062 a | 19,647 a |
MC100 | 10,020 a | 10,173 a | 22,853 a | 16,941 a | 24,950 a | 20,489 a |
MC112 | 10,510 a | 10,180 a | 23,380 a | 17,544 a | 24,099 a | 20,772 a |
LSD | - | - | - | - | - | - |
p-value from ANOVA | ||||||
D | <0.001 | <0.001 | <0.001 | |||
MC | 0.242 | 0.612 | 0.863 | |||
Year | 0.058 | <0.001 | <0.001 | |||
D × MC | 0.734 | 0.682 | 0.954 | |||
D × Year | 0.883 | 0.806 | 0.637 | |||
MC × Year | 0.330 | 0.937 | 0.518 | |||
D × MC × Year | 0.986 | 0.947 | 0.718 |
Treatments | Chlorophyll Content (SPAD values) | |||
---|---|---|---|---|
24 DAA1 | 38 DAA | |||
2015/2016 | 2017/2018 | 2015/2016 | 2017/2018 | |
Plant density (D) | ||||
Density A | 39.7 a | 40.2 a | 38.0 a | 38.7 a |
Density Β | 37.1 b | 37.9 b | 33.1 b | 35.8 b |
LSD5% | 1.84 | 0.74 | 1.99 | 0.86 |
Mepiquat chloride (MC) | ||||
Control | 38.7 a | 39.2 a | 36.6 a | 37.1 a |
MC75 | 38.2 a | 38.4 a | 37.2 a | 36.5 a |
MC100 | 37.6 a | 39.8 a | 34.5 a | 37.5 a |
MC112 | 39.1 a | 38.9 a | 34.0 a | 38.0 a |
LSD5% | - | - | - | - |
p-value from ANOVA | ||||
D | <0.001 | <0.001 | ||
MC | 0.702 | 0.445 | ||
Year | 0.156 | 0.002 | ||
D × MC | 0.701 | 0.871 | ||
D × Year | 0.796 | 0.064 | ||
MC × Year | 0.345 | 0.009 | ||
D × MC × Year | 0.513 | 0.869 |
Treatments | Head Number (No plant−1) | 1000-Seed Weight (g) | Seed Yield (kg ha−1) | |||
---|---|---|---|---|---|---|
2015/2016 | 2017/2018 | 2015/2016 | 2017/2018 | 2015/2016 | 2017/2018 | |
Plant density (D) | ||||||
Density A | 5.95 a | 5.53 a | 20.37 a | 22.29 a | 1929 b | 1790 a |
Density Β | 4.97 a | 4.19 b | 20.44 a | 21.40 b | 2222 a | 1444 b |
LSD5% | - | 0.712 | - | 0.769 | 186 | 290 |
Mepiquat chloride (MC) | ||||||
Control | 5.79 a | 5.00 a | 20.18 a | 21.46 a | 2058 a | 1723 a |
MC75 | 5.50 a | 4.79 a | 20.33 a | 21.93 a | 2074 a | 1497 a |
MC100 | 5.33 a | 4.72 a | 20.89 a | 22.26 a | 2075 a | 1585 a |
MC112 | 5.22 a | 4.92 a | 20.22 a | 21.73 a | 2090 a | 1663 a |
LSD5% | - | - | - | - | - | - |
p-value from ANOVA | ||||||
D | <0.001 | 0.158 | 0.742 | |||
MC | 0.808 | 0.279 | 0.792 | |||
Year | 0.045 | <0.001 | <0.001 | |||
D × MC | 0.900 | 0.414 | 0.817 | |||
D × Year | 0.539 | 0.094 | <0.001 | |||
MC × Year | 0.939 | 0.980 | 0.758 | |||
D × MC × Year | 0.885 | 0.856 | 0.941 |
Treatments | Oil Content (%) | Oil Yield (kg ha−1) | ||
---|---|---|---|---|
2015/2016 | 2017/2018 | 2015/2016 | 2017/2018 | |
Plant density (D) | ||||
Density A | 27.0 a | 24.8 a | 521 b | 444 a |
Density Β | 26.6 a | 24.5 a | 591 a | 353 b |
LSD5% | - | - | 52.48 | 71.26 |
Mepiquat chloride (MC) | ||||
Control | 26.7 a | 25.0 a | 550 a | 428 a |
MC75 | 26.4 a | 24.2 a | 548 a | 362 a |
MC100 | 27.3 a | 24.8 a | 566 a | 392 a |
MC112 | 26.9 a | 24.6 a | 560 a | 412 a |
LSD5% | - | - | - | - |
p-value from ANOVA | ||||
D | 0.268 | 0.805 | ||
MC | 0.373 | 0.657 | ||
Year | <0.001 | <0.001 | ||
D × MC | 0.119 | 0.964 | ||
D × Year | 0.917 | <0.001 | ||
MC × Year | 0.812 | 0.716 | ||
D × MC × Year | 0.819 | 0.920 |
Treatments | Silymarin Content (%) | Silymarin Yield (kg ha−1) | ||
---|---|---|---|---|
2015/2016 | 2017/2018 | 2015/2016 | 2017/2018 | |
Plant density (D) | ||||
Density A | 2.83 a | 2.69 a | 54.2 b | 48.2 a |
Density Β | 2.87 a | 2.26 b | 63.3 a | 33.0 b |
LSD5% | - | 0.42 | 4.77 | 10.74 |
Mepiquat chloride (MC) | ||||
Control | 2.73 a | 2.39 a | 55.6 a | 41.9 a |
MC75 | 2.84 a | 2.35 a | 58.8 a | 36.1 a |
MC100 | 2.81 a | 2.69 a | 58.3 a | 43.0 a |
MC112 | 3.01 a | 2.46 a | 62.2 a | 41.5 a |
LSD5% | - | - | - | - |
p-value from ANOVA | ||||
D | 0.137 | 0.285 | ||
MC | 0.642 | 0.687 | ||
Year | 0.006 | <0.001 | ||
D × MC | 0.843 | 0.647 | ||
D × Year | 0.072 | <0.001 | ||
MC × Year | 0.632 | 0.623 | ||
D × MC × Year | 0.943 | 0.898 |
Crop Parameters | RD | SPAD | H | DW | HN | SW | SY | SilC | SilY | OC | OY |
---|---|---|---|---|---|---|---|---|---|---|---|
Rosette diameter (RD) | 1 | −0.015 ns | 0.877 *** | 0.604 * | 0.721 ** | −0.581 * | 0.778 *** | 0.822 *** | 0.826 *** | 0.866 *** | 0.843 *** |
Chlorophyll content (SPAD) | - | 1 | 0.009 ns | −0.611 * | 0.554 * | 0.395 ns | −0.346 ns | −0.098 ns | −0.309 ns | −0.260 ns | −0.357 ns |
Height (H) | - | - | 1 | 0.525 * | 0.746 *** | −0.647 ** | 0.772 *** | 0.649 ** | 0.742 *** | 0.729 ** | 0.804 *** |
Dry weight (DW) | - | - | - | 1 | −0.030 ns | −0.780 *** | 0.647 ** | 0.420 ns | 0.600 * | 0.712 ** | 0.710 ** |
Heads number (HN) | - | - | - | - | 1 | −0.201 ns | 0.474 ns | 0.588 * | 0.506 * | 0.460 ns | 0.489 ns |
1000-seed weight (SW) | - | - | - | - | - | 1 | −0.525 * | −0.290 ns | −0.467 ns | -0.653 ** | −0.593 * |
Seed yield (SY) | - | - | - | - | - | - | 1 | 0.793 *** | 0.969 *** | 0.703 ** | 0.985 *** |
Silymarin content (SilC) | - | - | - | - | - | - | - | 1 | 0.913 *** | 0.655 ** | 0.802 *** |
Silymarin yield (SilY) | - | - | - | - | - | - | - | - | 1 | 0.718 ** | 0.963 *** |
Oil content (OC) | - | - | - | - | - | - | - | - | - | 1 | 0.814 *** |
Oil yield (OΥ) | - | - | - | - | - | - | - | - | - | - | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arampatzis, D.A.; Karkanis, A.C.; Tsiropoulos, N.G. Impact of Plant Density and Mepiquat Chloride on Growth, Yield, and Silymarin Content of Silybum marianum Grown under Mediterranean Semi-Arid Conditions. Agronomy 2019, 9, 669. https://doi.org/10.3390/agronomy9110669
Arampatzis DA, Karkanis AC, Tsiropoulos NG. Impact of Plant Density and Mepiquat Chloride on Growth, Yield, and Silymarin Content of Silybum marianum Grown under Mediterranean Semi-Arid Conditions. Agronomy. 2019; 9(11):669. https://doi.org/10.3390/agronomy9110669
Chicago/Turabian StyleArampatzis, Dimitrios A., Anestis C. Karkanis, and Nikolaos G. Tsiropoulos. 2019. "Impact of Plant Density and Mepiquat Chloride on Growth, Yield, and Silymarin Content of Silybum marianum Grown under Mediterranean Semi-Arid Conditions" Agronomy 9, no. 11: 669. https://doi.org/10.3390/agronomy9110669
APA StyleArampatzis, D. A., Karkanis, A. C., & Tsiropoulos, N. G. (2019). Impact of Plant Density and Mepiquat Chloride on Growth, Yield, and Silymarin Content of Silybum marianum Grown under Mediterranean Semi-Arid Conditions. Agronomy, 9(11), 669. https://doi.org/10.3390/agronomy9110669