Defining Fertilization Strategies for Sorghum (Sorghum bicolor (L.) Moench) Production Under Sudano-Sahelian Conditions: Options for Late Basal Fertilizer Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Experimental Design
2.3. Data Collection
2.4. Data Analysis
3. Results
3.1. Experimental Conditions
3.2. G*E*M Interaction Analysis
3.3. Late Fertilization to Boost Stressed Plant
3.4. Late fertilization Benefit on Grain Yield
4. Discussion
4.1. Importance of Late Fertilization for Vegetative Growth, Especially for Hybrids
4.2. Importance of Late Fertilization for Grain Yield, Especially in Low Potential Sites
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gueye, T.; Sine, B.; Cisse, N.; Diatta, C.; Ndiaye, S. Characterization of Phenotypic Diversity of Sorghum Collection for Developing Breeding Material. Int. J. Sci. 2016, 5, 38–48. [Google Scholar] [CrossRef]
- Kulkarni, D.P.; Almodares, A.; Somani, R.B. Sweet sorghum-Supplementary sugar crop in Iran. Annu. Plant. Physiol. 1995, 9, 90–94. [Google Scholar]
- Legwaila, G.M.; Balole, T.V.; Karikari, S.K. Review of sweet sorghum: A potential cash and forage crop in Botswana. J. Agric. 2003, 12, 5–14. [Google Scholar] [CrossRef]
- Bantilan, M.C.S.; Deb, U.K.; Gowda, C.L.L.; Reddy, B.V.S.; Obilana, A.B.; Evenson, R. Sorghum Genetic Enhancement: Research Process, Dissemination and Impacts; International Crops Research Institute for the Semi-Arid Tropics: Andhra Pradesh, India, 2004. [Google Scholar]
- Geremew, G.; Adugna Asfaw, T.; Taye, T.; Tesfaye, B.; Ketema, B.; Michael, H.S. Development of sorghum varieties and hybrids for dryland areas of Ethiopia. Uganda J. Agric. Sci. 2004, 9, 594–605. [Google Scholar]
- Rattunde, H.F.W.; Weltzien, E.; Diallo, B.; Diallo, A.G.; Sidibe, M.; Touré, A.O.; Rathore, A.; Das, R.R.; Leiser, W.L.; Touré, A. Yield of Photoperiod-sensitive Sorghum Hybrids Based on Guinea-race Germplasm under Farmers’ Field Conditions in Mali. Crop. Sci. 2013, 53, 2454–2461. [Google Scholar] [CrossRef]
- Akata, E.A.; Diatta, C.; Faye, J.M.; Diop, A.; Maina, F.; Sine, B.; Tchala, W.; Ndoye, I.; Morris, G.P.; Cisse, N. Combining ability and heterotic pattern in West African sorghum landraces. Afr. Crop. Sci. J. 2017, 25, 491–508. [Google Scholar] [CrossRef]
- Cassman, K.K.G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. USA 1999, 96, 5952–5959. [Google Scholar] [CrossRef] [Green Version]
- Cassman, K.K.G. Ecological Intensification of Agriculture and Implications for Improved Water and Nutrient Management. In International Symposium on Fertigation: Optimizing the Utilization of Water and Nutrients; Imas, P., Price, R., Eds.; IPI-NATESC-CAU-CAAS: Beijing, China, 2005; pp. 23–34. [Google Scholar]
- Wylie, P. Managing Sorghum for High Yields; Cribb, M., Ed.; Grain Research and Development Corporation (GRDC): Kingston, Jamaic, 2008. [Google Scholar]
- Hansen, J.W. Realizing the potential benefits of climate prediction to agriculture: Issues, approaches, challenges. Agric. Syst. 2002, 74, 309–330. [Google Scholar] [CrossRef]
- Hulme, M.; Doherty, R.; Ngara, T.; New, M.; Lister, D. African climate change: 1900–2100. Clim. Res. 2001, 17, 145–168. [Google Scholar] [CrossRef]
- Ingram, K.T.; Roncoli, M.C.; Kirshen, P.H. Opportunities and constraints for farmers of west Africa to use seasonal precipitation forecasts with Burkina Faso as a case study. Agric. Syst. 2002, 74, 331–349. [Google Scholar] [CrossRef]
- Defrance, D.; Ramstein, G.; Charbit, S.; Vrac, M.; Famien, A.M.; Sultan, B.; Swingedouw, D.; Dumas, C.; Gemenne, F.; Alvarez-Solas, J.; et al. Consequences of rapid ice-sheet melting on the Sahelian population vulnerability. Proc. Natl. Acad. Sci. USA 2017, 114, 6533–6538. [Google Scholar] [CrossRef] [PubMed]
- Casenave, A.; Valentin, C. Les États de Surface de la Zone Sahélienne : Influence Sur L’infiltration; Institut Français de Recherche Scientifique Pour le Développement en Coopération, ORSTOM, Ministère de la Recherche et de la Technologie: Paris, France, 1989. [Google Scholar]
- IPCC. Summary for policymakers. Climate change 2007: Impacts, Adaptations and Vulnerability. In Contribution of Working Group II to the Fourth Assessment of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Core Writing Team; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Schmidhuber, J.; Tubiello, F.N. Global food security under climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19703–19708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amadou, M.; Gandah, M.; Bielders, C.L.; van Duivenbooden, N. Optimizing soil water use in Niger: Research, development, and perspectives. In Efficient Soil Water Use: The Key to Sustainable Crop Production in Dry Areas of West Asia, and North and Sub-Saharan Africa. Niamey, Niger 26–30 April 1998 and Oman, Jordan 9–13 May 1998; van Duivenbooden, N., Pala, M., Studer, C., Bielders, C.L., Eds.; ICARDA and ICRISAT: Aleppo, Syria, 1999; pp. 143–164. [Google Scholar]
- Gheysari, M.; Mirlatifi, M.S.; Bannayan, M.; Homaee, M.; Hoogenboom, G. Interaction of water and nitrogen on maize grown for silage. Agric. Water Manag. 2009, 96, 809–821. [Google Scholar] [CrossRef]
- Kiani, M.; Gheysari, M.; Mostafazadeh-Fard, B.; Majidi, M.M.; Karchani, K.; Hoogenboom, G. Effect of the interaction of water and nitrogen on sunflower under drip irrigation in an arid region. Agric. Water Manag. 2016, 171, 162–172. [Google Scholar] [CrossRef]
- Mon, J.; Bronson, K.F.; Hunsaker, D.J.; Thorp, K.R.; White, J.W.; French, A.N. Interactive effects of nitrogen fertilization and irrigation on grain yield, canopy temperature, and nitrogen use efficiency in overhead sprinkler-irrigated durum wheat. Field Crop. Res. 2016, 191, 54–65. [Google Scholar] [CrossRef]
- Sultan, B.; Barbier, B.; Fortilus, J.; Mbaye, S.M.; Leclerc, G. Estimating the potential economic value of seasonal forecasts in West Africa: A long-term Ex-Ante assessment in Senegal. Am. Meteorol. Soc. 2010, 2, 69–87. [Google Scholar] [CrossRef]
- Roudier, P.; Sultan, B.; Quirion, P.; Baron, C.; Alhassane, A.; Traoré, S.B.; Muller, B. An ex-ante evaluation of the use of seasonal climate forecasts for millet growers in SW Niger. Int. J. Climatol. 2011, 32, 759–771. [Google Scholar] [CrossRef]
- Sultan, B.; Gaetani, M. Agriculture in West Africa in the Twenty-first Century: Climate change and impacts scenarios, and potential for adaptation. Front. Plant Sci. 2016, 7, 1–20. [Google Scholar] [CrossRef]
- Abad, A.; Lloveras, J.; Michelena, A. Nitrogen fertilization and foliar urea effects on durum wheat yield and quality and on residual soil nitrate in irrigated Mediterranean conditions yield and quality and on residual soil nitrate in. Field Crop. Res. 2004, 87, 257–269. [Google Scholar] [CrossRef]
- Velasco, J.L.; Rozas, H.S.; Echeverrıa, E.; Barbieri, A.P. Optimizing fertilizer nitrogen use efficiency by intensively managed spring wheat in humid regions: Effect of split application. Can. J. Plant. Sci. 2012, 92, 847–856. [Google Scholar] [CrossRef] [Green Version]
- Amiri, M.; Mojaddam, M.; Shokouhfar, A.; Bakhtiarinejad, N. The effect of different levels and time of nitrogen application on grain yield, some physiological traits and nitrogen use effiency in grain sorghum. Indian J. Fundam. Appl. Life Sci. 2014, 4, 223–227. [Google Scholar]
- Blandino, M.; Vaccino, P.; Reyneri, A. Late-season nitrogen increases improver common and durum wheat quality. Agron. J. 2015, 107, 680–690. [Google Scholar] [CrossRef]
- Xue, C.; Erley, S.A.G.; Rossmann, A.; Schuster, R.; Koehler, P.; Mühling, K.-H. Split nitrogen application improves wheat baking quality by influencing protein composition rather than concentration. Front. Plant Sci. 2016, 7, 1–11. [Google Scholar] [CrossRef]
- Wuest, S.B.; Cassman, K.K.G. Fertilizer-Nitrogen use efficiency of irrigated wheat: I. Uptake efficiency of preplant versus late-season application. Agron. J. 1992, 84, 682–688. [Google Scholar] [CrossRef]
- Perez, C.M.; Juliano, B.; Liboon, S.P.; Alcantara, J.M.; Cassman, K.K.G. Effects of late nitrogen fertilizer application on head rice yield, protein content, and grain quality of rice. Cereal Chem. 1996, 73, 556–560. [Google Scholar]
- Bodson, B.; Vancutsem, F.; Destain, J.; Herman, J.; Monfort, B.; Couvreur, L. Evolution du fractionnement de la fumure azotée. In Livre Blanc Céréales; CRA, Ed.; FUSAGx: Gembloux, Belgique, 2003; pp. 1–8. [Google Scholar]
- Spiertz, J.H.J.; Ellen, J. Effects of nitrogen on crop development and grain growth of winter wheat in relation to assimilation and utilization of assimilates and nutrients. Neth. J. Agric. Sci. 1978, 26, 210–231. [Google Scholar]
- Hucklesby, D.P.; Brown, C.M.; Howell, S.E.; Hageman, R.H. Late Spring applications of nitrogen for efficient utilization and enhanced production of grain and grain protein of wheat1. Agron. J. 1971, 63, 274–276. [Google Scholar] [CrossRef]
- Pushman, F.M.; Bingham, J. The effects of a granular nitrogen fertilizer and a foliar spray of urea on the yield and bread-making quality of ten winter wheats. J. Agric. Sci. 1976, 87, 281–292. [Google Scholar] [CrossRef]
- Strong, W.M. Effect of late application of nitrogen on the yield and protein content of wheat. Aust. J. Exp. Agric. 1982, 22, 54–61. [Google Scholar] [CrossRef]
- Rötter, R.; Van Keulen, H. Variations in yield response to fertilizer application in the tropics: II. Risks and opportunities for smallholders cultivating maize on Kenya’s arable land. Agric. Syst. 1997, 53, 69–95. [Google Scholar] [CrossRef]
- Keating, B.A.; Wafula, B.M.; Watiki, J.M.; Karanja, D.R. Dealing with Climatic Risk in Agricultural Research- A Case Study Modelling Maize in Semi-arid Kenya. In Soil Fertility and Climatic Constraints in Dryland Agriculture; Craswell, E.T., Simpson, J., Eds.; ACIAR: Harare, Zimbabwe, 1993; pp. 105–114. [Google Scholar]
- McCown, R.L.; Wafula, B.M.; Mohammed, L.; Ryan, J.G.; Hargreaves, J.N.G. Assessing the value of a seasonal rainfall predictor to agronomic decisions: The case of response farming in Kenya. In Climatic Risk in Crop Production. Models and Management for the Semi-Arids Tropics and Subtropics; Muchow, R.C., Bellamy, J.A., Eds.; CAB Internatioanl: Wallingford, UK, 1991; pp. 383–409. [Google Scholar]
- R Development Core Team. R: A language and Environment for statistical computing. In R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2017. [Google Scholar]
- McIntosh, M.S. Analysis of combined experiments. Agron. J. 1983, 75, 153–155. [Google Scholar] [CrossRef]
- Stals, H.; Inzé, D. When plant cells decide to divide. Trends Plant Sci. 2001, 6, 359–364. [Google Scholar] [CrossRef]
- Vanderlip, R.L. How a Sorghum Plant Develops; Kansas State University: Manhattan, KS, USA, 1993. [Google Scholar]
- Kante, M.; Rattunde, H.F.W.; Leiser, W.L.; Nebié, B.; Diallo, B.; Diallo, A.; Touré, A.O.; Weltzien, E.; Haussmann, B.I.G. Can tall guinea-race sorghum hybrids deliver yield advantage to smallholder farmers in West and Central Africa? Crop Sci. 2017, 57, 833–842. [Google Scholar] [CrossRef]
- Ndiaye, M.; Adam, M.; Muller, B.; Guissé, A.; Cissé, N. Performances agronomiques et stabilité phénotypique de génotypes de Sorgho (Sorghum bicolor L. Moench) au Sénégal : Une étude des interactions génotypes-environnement. J. Appl. Biosci. 2018, 125, 12617–12629. [Google Scholar] [CrossRef]
- Ndiaye, M. Modélisation D’idéotypes Variétaux de Sorgho (Sorghum bicolor L. Moench) Sur la Base de la Caractérisation du Fonctionnement et du Potentiel de Sorghos Multi-Usage au Sénégal et Utilisation Pour Raisonner Des Choix Variétaux en Relation aux Environnemen; Cheikh Anta Diop: Dakar, Sénégal, 2018. [Google Scholar]
- Sitthaphanit, S.; Limpinuntana, V.; Toomsan, B.; Panchaban, S.; Bell, R.W. Growth and yield responses in maize to split and delayed fertilizer applications on sandy soils under high rainfall regimes. Kasetsart J. 2010, 44, 991–1003. [Google Scholar]
- Woolfolk, C.W.; Raun, W.R.; Johnson, G.V.; Thomason, W.E.; Mullen, R.W.; Wynn, K.J.; Freeman, K.W. Influence of late-season foliar nitrogen application on yield and grain nitrogen in winter wheat. Agron. J. 2002, 94, 429–434. [Google Scholar] [CrossRef]
- Sanz Rozas, H.R.; Echeverria, H.E.; Barbieri, P.A. Nitrogen balance as affected by application time and nitrogen fertilizer rate in irrigated no-tillage maize. Agron. J. 2004, 96, 1622–1631. [Google Scholar] [CrossRef]
Location | Experiments | Horizon (cm) | Clay (%) | Silt (%) | Sand (%) | pH | Total P (ppm) | Available P (ppm) a | Total Carbon (%) b | Total N (%) c | Organic Matter (%) | C/N |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Nioro du Rip | N15-R | 0-10 | 1.45 | 3.43 | 95.12 | 5.78 | 19.88 | 8.686 | 0.636 | 0.052 | 1.10 | 12.19 |
10-20 | 5.23 | 3.72 | 91.06 | 5.17 | 10.72 | 4.685 | 0.580 | 0.038 | 1.00 | 15.25 | ||
20-30 | 4.49 | 2.82 | 92.69 | 5.68 | 12.05 | 5.264 | 0.615 | 0.065 | 1.06 | 9.41 | ||
N15-I | 0-10 | 1.92 | 3.46 | 94.62 | 6.09 | 15.54 | 6.791 | 0.748 | 0.042 | 1.29 | 17.62 | |
10-20 | 2.54 | 4.52 | 92.95 | 5.98 | 13.13 | 5.738 | 0.595 | 0.050 | 1.03 | 11.81 | ||
20-30 | 3.95 | 2.84 | 93.21 | 5.94 | 15.78 | 6.896 | 0.636 | 0.049 | 1.10 | 13.07 | ||
0-10 | 1.94 | 3.78 | 94.28 | 6 | 10.35 | 4.520 | 0.508 | 0.047 | 0.88 | 11.31 | ||
N16-I | 10-20 | 5.14 | 5.76 | 89.10 | 5.46 | 7.00 | 3.059 | 0.508 | 0.033 | 0.88 | 11.88 | |
20-30 | 8.31 | 4.90 | 86.79 | 5.54 | 6.29 | 2.748 | 0.457 | 0.046 | 0.79 | 9.85 | ||
N16-R | 0-10 | 2.49 | 3.85 | 93.67 | 6.98 | 12.68 | 5.541 | 0.611 | 0.064 | 1.05 | 9.55 | |
10-20 | 5.16 | 3.73 | 91.11 | 7.01 | 11.97 | 5.231 | 0.536 | 0.046 | 0.92 | 11.76 | ||
20-30 | 8.34 | 4.61 | 87.06 | 6.62 | 13.19 | 5.763 | 0.499 | 0.050 | 0.86 | 10.06 | ||
Sinthiou Malème | S15-R | 0-10 | 2.71 | 4.21 | 93.08 | 5.69 | 6.79 | 2.968 | 0.411 | 0.040 | 0.71 | 10.36 |
10-20 | 2.63 | 4.15 | 93.22 | 5.29 | 6.37 | 2.785 | 0.372 | 0.035 | 0.64 | 10.63 | ||
20-30 | 2.94 | 3.46 | 93.60 | 5.51 | 5.75 | 2.511 | 0.359 | 0.037 | 0.62 | 9.62 | ||
S16-R | 0-10 | 7.21 | 8.43 | 84.36 | 6.16 | 8.01 | 3.502 | 0.676 | 0.060 | 1.17 | 11.27 | |
10-20 | 8.10 | 7.94 | 83.96 | 6.76 | 4.16 | 1.818 | 0.583 | 0.053 | 1.01 | 11.04 | ||
20-30 | 11.34 | 8.52 | 80.14 | 6.45 | 5.48 | 2.394 | 0.592 | 0.033 | 1.02 | 18.06 |
Emergence | Tillering | Stem Extension | Heading | |
---|---|---|---|---|
T1 (no fertilizer applied) | 0 | 0 | 0 | 0 |
T2 (recommended practice) | NPK * | N1 ** | N2 *** | |
T3 | ½NPK | ½N1 | ½N2 | |
T4 | NPK+N1 | N2 | ||
T5 | ½(NPK+N1) | ½N2 |
Name | Origin | Race | Cycle Duration | Photoperiod Sensitivity | Architecture | Use | Yield Potential (ton/ha) |
---|---|---|---|---|---|---|---|
Fadda * | Mali | Guinea-hybrid | Medium | Sensitive | Tall | Dual purpose | 4 |
Soumalemba | Mali | Guinea-OPV | Long | Sensitive | Tall | Grain | 2 |
Soumba | Mali | Caudatum-OPV | Medium | Slightly sensitive | Small | Dual purpose | 2.8 |
Faourou | Senegal | Caudatum-OPV | Short | Not sensitive | Small | Grain | 3 |
Environments | Range of WLAF25 (mm) | Soil N (kg/ha top 0–30 cm) | Environment Appreciation |
---|---|---|---|
N15-R | 307–488 | 231 | High N |
N15-I | 327–600 | 209 | High N |
N16-I | 648–726 | 186 | Low N |
N16-R | 360–600 | 235 | High N |
S15-R | 431 a | 167 | Low N |
S16-R | 181–241 | 228 | High N |
Source | Grain Yield (kg/ha) | Biomass (kg/ha) | ||
---|---|---|---|---|
B1 | B2 | YB | ||
Genotype (G) | ||||
Fadda | 1097 a | 95 b | 7897 a | 5855 b |
Soumalemba | 1038 a | 158 a | 7797 a | 6873 a |
Soumba | 901 b | 76 c | 5311 b | 3347 c |
Faourou | 1031 a | 91 bc | 3925 c | 2385 d |
Environment (E) | ||||
N15-I | 1170 b | 68 d | 6387 b | 5046 b |
N16-I | 837 c | 118 b | 5893 bc | 4597 bc |
N15-R | 915 c | 96 c | 5361 c | 5044 b |
N16-R | 604 d | - | 3728 d | 2658 d |
S15-R | 929 c | 15 e | 6315 bc | 4289 c |
S16-R | 1617 a | 160 a | 9422 a | 6072 a |
Fertilizer Management (M) | ||||
T1 | 753 c | 79 b | 5061 d | 3371 c |
T2 | 1297 a | 151 a | 7992 a | 5781 a |
T3 | 1085 b | 136 a | 6069 bc | 4895 b |
T4 | 1102 b | 89 b | 6512 b | 5270 ab |
T5 | 842 c | 71 b | 5395 cd | 3811 c |
Significance | ||||
G | * | *** | *** | *** |
E | *** | *** | *** | *** |
M | *** | *** | *** | *** |
E*M | ** | ** | * | *** |
G*E | *** | *** | *** | *** |
G*M | ns | * | * | ** |
G*E*M | * | ns | ns | ns |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganyo, K.K.; Muller, B.; Ndiaye, M.; Gaglo, E.K.; Guissé, A.; Adam, M. Defining Fertilization Strategies for Sorghum (Sorghum bicolor (L.) Moench) Production Under Sudano-Sahelian Conditions: Options for Late Basal Fertilizer Application. Agronomy 2019, 9, 697. https://doi.org/10.3390/agronomy9110697
Ganyo KK, Muller B, Ndiaye M, Gaglo EK, Guissé A, Adam M. Defining Fertilization Strategies for Sorghum (Sorghum bicolor (L.) Moench) Production Under Sudano-Sahelian Conditions: Options for Late Basal Fertilizer Application. Agronomy. 2019; 9(11):697. https://doi.org/10.3390/agronomy9110697
Chicago/Turabian StyleGanyo, Komla Kyky, Bertrand Muller, Malick Ndiaye, Espoir Koudjo Gaglo, Aliou Guissé, and Myriam Adam. 2019. "Defining Fertilization Strategies for Sorghum (Sorghum bicolor (L.) Moench) Production Under Sudano-Sahelian Conditions: Options for Late Basal Fertilizer Application" Agronomy 9, no. 11: 697. https://doi.org/10.3390/agronomy9110697