Evaluation of Commercial Humic Substances and Other Organic Amendments for the Immobilization of Copper Through 13C CPMAS NMR, FT-IR, and DSC Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organic Amendments
2.2. Elemental Analysis
2.3. Solid-State 13C CPMAS NMR Analysis
2.4. FT-IR Analysis
2.5. Thermal Analysis (DSC)
2.6. Study of Cu Interaction with Organic Amendments
3. Results and Discussion
3.1. Initial Characterization of the Organic Amendments
3.1.1. Elemental Analysis
3.1.2. Solid state 13C CPMAS NMR Spectra
3.1.3. FT-IR Spectra
3.1.4. DSC Thermal Analysis
3.2. Interaction of Cu with Organic Amendments
3.2.1. Solid-state 13C CPMAS NMR Analysis of the Interaction with Cu
3.2.2. FT-IR Analysis of the Interaction with Cu
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Senesi, G.S.; Baldassarre, G.; Senesi, N.; Radina, B. Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere 1999, 39, 343–377. [Google Scholar] [CrossRef]
- Soler-Rovira, P.; Madejón, E.; Madejón, P.; Plaza, C. In situ remediation of metal-contaminated soils with organic amendments: role of humic acids in copper bioavailability. Chemosphere 2010, 79, 844–849. [Google Scholar] [CrossRef]
- Tapia, Y.; Cala, V.; Eymar, E.; Frutos, I.; Gárate, A.; Masaguer, A. Chemical characterization and evaluation of composts as organic amendments for immobilizing cadmium. Bioresour. Technol. 2010, 101, 5437–5443. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Clemente, R.; Escolar, A.; Bernal, P. Heavy metals fractionation and organic matter mineralisation in contaminated calcareous soil amended with organic materials. Bioresour. Technol. 2006, 97, 1894–1901. [Google Scholar] [CrossRef]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments —A review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef]
- Senesi, N. Metal-humic substance complexes in the environment. Molecular and mechanistic aspects by multiple spectroscopic approach. In Biogeochemistry of Trace Metals; Adriano, D.C., Ed.; Lewis Publishers: Boca Raton, FL, USA, 1992; pp. 429–451. [Google Scholar]
- Álvarez-Puebla, R.A.; Valenzuela-Calahorro, C.; Garrido, J.J. Cu (II) retention on a humic substance. J. Colloid Interf. Sci. 2004, 270, 47–55. [Google Scholar] [CrossRef]
- Prado, A.G.S.; Torres, J.D.; Martins, P.C.; Pertusatti, J.; Bolzon, L.B.; Faria, E.A. Studies on copper (II)-and zinc(II)-mixed ligand complexes of humic acid. J. Hazard. Mater. 2006, 136, 585–588. [Google Scholar] [CrossRef]
- Tipping, E. Cation Binding by Humic Substances; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Provenzano, M.R.; Senesi, N. Thermal properties of standard and reference humic substances by differential scanning calorimetry. J. Therm. Anal. Calorim. 1999, 57, 517–526. [Google Scholar] [CrossRef]
- Provenzano, M.R.; Senesi, N.; Miikki, V. Characterization of composts and humic acids from pulp and paper mill biosludges by DSC in association with FT-IR spectroscopy. J. Therm. Anal. Calorim. 1998, 52, 1037–1046. [Google Scholar] [CrossRef]
- Provenzano, M.R.; Senesi, N.; Piccone, G. Thermal and spectroscopic characterization of composts from municipal solid wastes. Compos. Sci. Util. 1998, 6, 67–73. [Google Scholar] [CrossRef]
- Provenzano, M.R.; Ouatmane, A.; Hafidi, M.; Senesi, N. Differential scanning calorimetric analysis of composted materials from different sources. J. Therm. Anal. Calorim. 2000, 61, 607–614. [Google Scholar] [CrossRef]
- De Oliveira, S.C.; Provenzano, M.R.; Santiago Silva, M.R.; Senesi, N. Maturity Degree of Composts from Municipal Solid Wastes Evaluated by Differential Scanning Calorimetry. Environ. Technol. 2002, 23, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cruzado, C.; Sande, B.; Ormil, B.; Rovira, P.; Martin-Pastor, M.; Barros, N.; Salgado, J.; Merino, A. Organic matter properties in soils afforested with Pinus radiata. Plant. Soil 2014, 374, 381–398. [Google Scholar] [CrossRef]
- Senesi, N.; Miano, T.M.; Brunetti, G. Humic-like substances in organic amendments and effects on native soil humic substances. In Humic Substances in Terrestrial Ecosystems; Piccolo, A., Ed.; Elsevier: New York, NY, USA, 1996; pp. 531–593. [Google Scholar]
- Cardoza, L.A.; Korir, A.K.; Otto, W.H.; Wurrey, C.J.; Larive, C.K. Applications of NMR spectroscopy in environmental science. Prog. Nucl. Magn. Reson. Spectrosc. 2004, 45, 209–238. [Google Scholar] [CrossRef]
- Lambert, J.; Lankes, U. Application of nuclear magnetic resonance spectroscopy to structural investigations of refractory organic substances—Principles and definitions. In Refractory Organic Substances in the Environment; Frimmel, F.H., Abbt-Braun, G., Heumann, K.G., Hock, B., Lüdemann, H.-D., Spiteller, M., Eds.; Wiley-VCH: Weinheim, Germany, 2002; pp. 89–95. [Google Scholar]
- Huang, S.W.; Chiang, P.N.; Liu, J.C.; Hung, J.T.; Kuane, W.H.; Tzou, Y.M.; Wang, S.L.; Huang, J.H.; Chen, C.C.; Wang, M.K.; et al. Chromate reduction on humic acid derived from a peat soil—Exploration of the activated sites on HAs for chromate removal. Chemosphere 2012, 87, 587–594. [Google Scholar] [CrossRef]
- Barančíková, G.; Senesi, N.; Brunetti, G. Chemical and spectroscopic characterization of humic acids isolated from different Slovak soil types. Geoderma 1997, 78, 251–266. [Google Scholar] [CrossRef]
- Kwiatkowska, J.; Provenzano, M.R.; Senesi, N. Long term effects of a brown coal-based amendment on the properties of soil humic acids. Geoderma 2008, 148, 200–205. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Yin, H.; Jin, S.; Liu, F.; Chen, H. Mechanism study of humic acid functional groups for Cr (VI) retention: two-dimensional FTIR and 13C CP/MAS NMR correlation spectroscopic analysis. Environ. Pollut. 2017, 225, 86–92. [Google Scholar] [CrossRef]
- Li, C.; Ji, F.; Wang, S.; Zhang, J.; Gao, Q.; Wu, J.; Zhao, L.; Wang, L.; Zheng, L. Adsorption of Cu (II) on humic acids derived from different organic materials. J. Integr. Agric. 2015, 14, 168–177. [Google Scholar] [CrossRef]
- Plante, A.F.; Fernández, J.M.; Leifeld, J. Application of thermal analysis techniques in soil science. Geoderma 2009, 153, 1–10. [Google Scholar] [CrossRef]
- Gonet, S.S.; Cieslewicz, J. Differential thermal analysis of sedimentary humic acids in the light of their origin. Environ. Int. 1998, 24, 629–636. [Google Scholar] [CrossRef]
- Murphy, E.M.; Zachara, J.M.; Smith, S.C. Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds. Environ. Sci. Technol. 1990, 24, 1507–1516. [Google Scholar] [CrossRef]
- Spaccini, R.; Piccolo, A. Spectroscopic characterization of compost at different maturity stages. Clean Soil Air Water 2008, 36, 152–157. [Google Scholar] [CrossRef]
- Chefetz, B.; Hatcher, P.G.; Hadar, Y.; Chen, Y. Chemical and biological characterization of organic matter during composting of municipal solid waste. J. Environ. Qual. 1996, 25, 776–785. [Google Scholar] [CrossRef]
- Al-Faiyz, Y.S.S. CPMAS 13C NMR characterization of humic acids from composted agricultural Saudi waste. Arab. J. Chem. 2017, 10, S839–S853. [Google Scholar] [CrossRef]
- Gerasimowicz, W.V.; Byler, D.M. Carbon-13 CPMAS NMR and FTIR spectroscopic-studies of humic acids. Soil Sci. 1985, 139, 270–278. [Google Scholar] [CrossRef]
- Senesi, N.; Miano, T.M.; Provenzano, M.R.; Brunetti, G. Spectroscopic and compositional comparative characterization of IHSS reference and standard fulvic and humic acids of various origin. Sci. Total Environ. 1989, 81, 143–156. [Google Scholar] [CrossRef]
- Sh, T.; Liu, C.Q.; Wang, L. Antimony coordination to humic acid: Nuclear magnetic resonance and X-ray absorption fine structure spectroscopy study. Microchem. J. 2012, 103, 68–73. [Google Scholar] [CrossRef]
- Leenheer, J.A.; Brown, G.K.; MacCarthy, P.; Cabaniss, S.E. Models of metal binding structures in fulvic acid from the Suwannee River, Georgia. Environ. Sci. Technol. 1998, 32, 2410–2416. [Google Scholar] [CrossRef]
- Preston, C.M.; Dudley, R.L.; Fyfe, C.A.; Mathur, S.P. Effects of variations in contact times and copper contents in a 13C CPMAS NMR study of samples of four organic soils. Geoderma 1984, 33, 245–253. [Google Scholar] [CrossRef]
- Preston, C.M.; Schnitzer, M.; Ripmeester, J.A. A spectroscopic and chemical investigation on the de-ashing of a humin. Soil Sci. Soc. Am. J. 1989, 53, 1442–1447. [Google Scholar] [CrossRef]
- Schilling, M.; Cooper, W.T. Identification of copper binding sites in soil organic matter through chemical modifications and 13C CP-MAS NMR spectroscopy. Environ. Sci. Technol. 2004, 38, 5059–5063. [Google Scholar] [CrossRef] [PubMed]
- Jerzykiewicz, M. Formation of new radicals in humic acids upon interaction Pb (II) ions. Geoderma 2004, 122, 305–309. [Google Scholar] [CrossRef]
- Smernik, R.J.; Oades, J.M. Effects of added paramagnetic ions on the 13C CP/MAS NMR spectrum of a de-ashed soil. Geoderma 1999, 89, 219–248. [Google Scholar] [CrossRef]
- Smernik, R.J.; Oades, J.M. Paramagnetic effects on solid state carbon-13 nuclear magnetic resonance spectra of soil organic matter. J. Environ. Qual. 2002, 31, 414–420. [Google Scholar] [CrossRef]
- Pfeffer, P.E.; Gerasimowicz, W.V.; Piotrowski, E.G. Effect of paramagnetic iron on quantitation in carbon-13 cross polarization magic angle spinning nuclear magnetic resonance spectrometry of heterogeneous environmental matrixes. Anal. Chem. 1984, 56, 734–741. [Google Scholar] [CrossRef]
- Preston, C.M.; Schnitzer, M. 13C NMR of humic substances: pH and solvent effects. J. Soil Sci. 1987, 38, 667–678. [Google Scholar] [CrossRef]
- Boguta, P.; D’Orazio, V.; Sokołowska, Z.; Senesi, N. Effects of selected chemical and physicochemical properties of humic acids from peat soils on their interaction mechanisms with copper ions at various pHs. J. Geochem. Explor. 2016, 168, 119–126. [Google Scholar] [CrossRef]
- Milne, C.J.; Kinniburgh, D.G.; Van Riemsdijk, W.H.; Tipping, E. Generic NICA−Donnan model parameters for metal-ion binding by humic substances. Environ. Sci. Technol. 2003, 37, 958–971. [Google Scholar] [CrossRef]
- Boguta, P.; Sokołowska, Z. Interactions of Zn (II) ions with humic acids isolated from various type of soils. Effect of pH, Zn concentrations and humic acids chemical properties. PLoS ONE 2016, 11, e0153626. [Google Scholar] [CrossRef] [PubMed]
- Boguta, P.; D’Orazio, V.; Senesi, N.; Sokołowska, Z.; Szewczuk-Karpisz, K. Insight into the interaction mechanism of iron ions with soil humic acids. The effect of the pH and chemical properties of humic acids. J. Environ. Manage. 2019, 245, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Silvetti, M.; Demurtas, D.; Garau, G.; Deiana, S.; Castaldi, P. Sorption of Pb, Cu, Cd, and Zn by municipal solid waste composts: metal retention and desorption mechanisms. Clean Soil Air Water 2017, 45, 1600253. [Google Scholar] [CrossRef]
Organic Amend. 1 | %C | %H | %N | %S | %O | C/N | H/C | C/O |
---|---|---|---|---|---|---|---|---|
HS | 33.5 | 3.4 | 0.6 | 0.53 | 62.0 | 65.1 | 1.22 | 0.72 |
PW | 30.1 | 3.9 | 2.1 | 0.10 | 63.9 | 16.7 | 1.55 | 0.63 |
VC | 26.2 | 3.6 | 2.2 | 0.21 | 67.8 | 13.9 | 1.65 | 0.52 |
PB | 35.7 | 4.2 | 0.5 | 0.04 | 59.7 | 83.3 | 1.41 | 0.80 |
M | 13.3 | 1.9 | 1.4 | 0.21 | 83.1 | 11.1 | 1.71 | 0.21 |
Organic Amend. 1 | 0–45 Alkyl | 45–60 N-Alkyl | 60–95 O-Alkyl | 95–110 Di-O-Alkyl | 110–140 Aromatic | 140–160 Phenolic | 160–190 Carboxyl | 190–220 Carbonyl | Aliphatic | Aromatic |
---|---|---|---|---|---|---|---|---|---|---|
HS | 34.2 | 9.0 | 9.5 | 0.0 | 29.6 | 10.1 | 7.5 | 0.0 | 52.7 | 39.7 |
PW | 18.3 | 12.5 | 34.2 | 10.0 | 12.5 | 6.7 | 5.8 | 0.0 | 75.0 | 19.2 |
VC | 17.8 | 11.1 | 31.1 | 8.9 | 13.3 | 7.8 | 10.0 | 0.0 | 68.9 | 21.1 |
PB | 6.3 | 5.5 | 44.5 | 11.0 | 17.7 | 10.2 | 3.1 | 1.6 | 67.3 | 27.9 |
M | 16.8 | 11.4 | 35.9 | 8.2 | 15.9 | 7.3 | 4.5 | 0.0 | 72.3 | 23.2 |
Treatment 1 | 0–45 Alkyl | 45–60 N-Alkyl | 60–95 O-Alkyl | 95–110 Di-O-Alkyl | 110–140 Aromatic | 140–160 Phenolic | 160–190 Carboxyl | 190–220 Carbonyl |
---|---|---|---|---|---|---|---|---|
HS0 pH 5.0 | 48.4 | 4.8 | 4.1 | 3.3 | 27.9 | 7.4 | 4.1 | 0.0 |
HS100 pH 5.0 | 42.4 | 7.6 | 5.9 | 4.3 | 27.9 | 8.5 | 3.4 | 0.0 |
HS0 pH 2.5 | 23.4 | 5.5 | 6.2 | 6.9 | 36.6 | 13.8 | 7.6 | 0.0 |
HS100 pH 2.5 | 22.7 | 5.2 | 5.2 | 6.2 | 38.1 | 14.4 | 8.2 | 0.0 |
M0 pH 5.0 | 13.7 | 10.8 | 29.6 | 8.1 | 18.8 | 9.9 | 6.3 | 2.8 |
M100 pH 5.0 | 12.5 | 10.6 | 35.9 | 8.0 | 17.9 | 9.7 | 5.4 | 0.0 |
M0 pH 2.5 | 15.6 | 12.2 | 30.4 | 7.8 | 19.2 | 9.6 | 5.2 | 0.0 |
M100 pH 2.5 | 16.8 | 11.8 | 31.1 | 7.6 | 17.6 | 10.1 | 5.0 | 0.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayans, B.; Pérez-Esteban, J.; Escolástico, C.; Eymar, E.; Masaguer, A. Evaluation of Commercial Humic Substances and Other Organic Amendments for the Immobilization of Copper Through 13C CPMAS NMR, FT-IR, and DSC Analyses. Agronomy 2019, 9, 762. https://doi.org/10.3390/agronomy9110762
Mayans B, Pérez-Esteban J, Escolástico C, Eymar E, Masaguer A. Evaluation of Commercial Humic Substances and Other Organic Amendments for the Immobilization of Copper Through 13C CPMAS NMR, FT-IR, and DSC Analyses. Agronomy. 2019; 9(11):762. https://doi.org/10.3390/agronomy9110762
Chicago/Turabian StyleMayans, Begoña, Javier Pérez-Esteban, Consuelo Escolástico, Enrique Eymar, and Alberto Masaguer. 2019. "Evaluation of Commercial Humic Substances and Other Organic Amendments for the Immobilization of Copper Through 13C CPMAS NMR, FT-IR, and DSC Analyses" Agronomy 9, no. 11: 762. https://doi.org/10.3390/agronomy9110762
APA StyleMayans, B., Pérez-Esteban, J., Escolástico, C., Eymar, E., & Masaguer, A. (2019). Evaluation of Commercial Humic Substances and Other Organic Amendments for the Immobilization of Copper Through 13C CPMAS NMR, FT-IR, and DSC Analyses. Agronomy, 9(11), 762. https://doi.org/10.3390/agronomy9110762