Potential Applications of Guayulins to Improve Feasibility of Guayule Cultivation
Abstract
:1. Guayule: More than Rubber
2. Guayulins
2.1. Guayulin Structure
2.2. Similar or Related Sesquiterpenes
3. Reported Guayule Resins or Its Components Activity
4. New Potential Applications
5. Guayulin Extraction Processes
6. Economic Considerations
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Coffelt, T.A.; Ray, D.T.; Dierig, D.A. 100 years of breeding guayule. In Industrial Crops: Breeding for Bioenergy and Bioproducts; Cruz, V.M., Dierig, A.E., Eds.; Springer: New York, USA, 2015; pp. 351–367. [Google Scholar] [CrossRef]
- Rasutis, D.; Soratana, K.; McMahan, C.; Landis, A.E. A sustainability review of domestic rubber from the guayule plant. Ind. Crops Prod. 2015, 70, 383–394. [Google Scholar] [CrossRef]
- ANRPC. Natural Rubber Trends & Statistics; Association of Natural Rubber Producing Countries: Kuala Lumpur, Malaysia, 2017. [Google Scholar]
- International Monetary Fund. Global Price of Rubber [PRUBBUSDM], Retrieved from FRED, Federal Reserve Bank of St. Louis. Available online: https://fred.stlouisfed.org/series/PRUBBUSDM (accessed on 21 December 2018).
- COM. Commission’s Communication “Study on the Review of the List of Critical Raw Materials”; 13/0972017 COM: 2017, 490 final; The Publications Office of the European Union: Brussels, Belgium, 2017. [Google Scholar]
- ETRMA. Sustainable Natural Rubber & European Commission Deforestation Agenda Report, 21 February 2019; The European Tyre & Rubber Manufacturers Association: Brussels, Belgium, 2019. [Google Scholar]
- Vaysse, L.; Bonfils, F.; Sainte-Beuve, J.; Cartault, M. Natural rubber. In Polymer Science: A Comprehensive Reference; Matyjaszewski, K., Möller, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 10, pp. 281–291. [Google Scholar] [CrossRef]
- Crepy, M.N. Rubber: New allergens and preventive measures. Eur. J. Dermatol. 2016, 26, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Vandenplas, O.; Raulf, M. Occupational Latex Allergy: The Current State of Affairs. Curr. Allergy Asthma Rep. 2017, 17, 14. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, R.G.; Cornish, K. Immunogenicity studies of guayule and guayule latex in occupationally exposed workers. Ind. Crops Prod. 2010, 31, 197–201. [Google Scholar] [CrossRef]
- Wagner, J.P.; Parma, D.G. Establishing a domestic guayule natural rubber industry. Polym.-Plast. Technol. Eng. 1989, 28, 753–777. [Google Scholar] [CrossRef]
- Schloman, W.W.; Hively, R.A.; Krishen, A.; Andrews, A.M. Guayule byproduct evaluation: Extract characterization. J. Agric. Food Chem. 1983, 31, 873–876. [Google Scholar] [CrossRef]
- Nakayama, F.S. Guayule future development. Ind. Crops Prod. 2005, 22, 3–13. [Google Scholar] [CrossRef]
- Dissanayake, P.; George, D.L.; Gupta, M.L. Performance of improved guayule lines in Australia. Ind. Crops Prod. 2004, 20, 331–338. [Google Scholar] [CrossRef]
- Cornish, K.; Williams, J.L.; Kirk, M.; Teetor, V.H.; Ray, D.T. Evaluation & control of potential sensitizing & irritating chemical components in natural rubber latex extracted from the industrial crop guayule. Ind. Biotechnol. 2009, 5, 245–252. [Google Scholar] [CrossRef]
- Schloman, W.W.; Carlson, D.W.; Hilton, A.S. Guayule extractables: Influence of extraction conditions on yield and composition. Biomass 1988, 17, 239–249. [Google Scholar] [CrossRef]
- Watkins, S.F.; Fronczek, F.R.; Chiari, G.; Reynolds, G.W.; Rodríguez, E. Molecular Structure of Guayulin A. J. Nat. Prod. 1985, 48, 631–633. [Google Scholar] [CrossRef] [PubMed]
- Maatooq, G.T.; El Gamal, A.A.H.; Furbacher, T.R.; Cornuelle, T.L.; Hoffmann, J.J. Triterpenoids from Parthenium argentatum × P. tomentosa. Phytochemistry 2002, 60, 755–760. [Google Scholar] [CrossRef]
- Teetor, V.H.; Ray, D.T.; Schloman, W.W. Evaluating chemical indices of guayule rubber content: Guayulins A and B. Ind. Crops Prod. 2009, 2–3, 590–598. [Google Scholar] [CrossRef]
- Martínez, M.; Flores, G.; de Vivar, A.R.; Reynolds, G.; Rodríguez, E. Guayulins C and D from Guayule (Parthenium Argentatum). J. Nat. Prod. 1986, 49, 1102–1103. [Google Scholar] [CrossRef]
- Spano, N.; Meloni, P.; Idda, I.; Mariani, A.; Pilo, M.; Nurchi, V.; Lachowicz, J.I.; Rivera, E.; Orona-Espino, A.; Sanna, G. Assessment, Validation and Application to Real Samples of an RP-HPLC Method for the Determination of Guayulins A, B, C and D in Guayule Shrub. Separations 2018, 5, 23. [Google Scholar] [CrossRef]
- Durán-Peña, M.J.; Ares, J.M.B.; Hanson, J.R.; Collado, I.G.; Hernández-Galán, R. Biological activity of natural sesquiterpenoids containing a gem-dimethylcyclopropane unit. Nat. Prod. 2015, 32, 1236–1248. [Google Scholar] [CrossRef]
- Cane, D.E.; Xue, Q.; Fitzsimons, B.C. Trichodiene synthase. Probing the role of the highly conserved aspartate-rich region by site-directed mutagenesis. Biochemistry 1996, 35, 12369–12376. [Google Scholar] [CrossRef]
- Lesburg, C.A.; Zhai, G.; Cane, D.E.; Christianson, D.W. Crystal structure of pentalenene synthase: Mechanistic insights on terpenoid cyclization reactions in biology. Science 1997, 277, 1820–1824. [Google Scholar] [CrossRef]
- Starks, C.M. Structural Basis for Cyclic Terpene Biosynthesis by Tobacco 5-Epi-Aristolochene Synthase. Science 1997, 277, 1815–1820. [Google Scholar] [CrossRef]
- Ramírez, A.M.; Saillard, N.; Yang, T.; Franssen, M.C.R.; Bouwmeester, H.J.; Jongsma, M.A. Biosynthesis of Sesquiterpene Lactones in Pyrethrum (Tanacetum cinerariifolium). PLoS ONE 2013, 8, e65030. [Google Scholar] [CrossRef]
- Liang, J.; Liu, J.; Brown, R.; Jia, M.; Zhou, K.; Peters, R.J.; Wang, Q. Direct production of dihydroxylated sesquiterpenoids by a maize terpene synthase. Plant J. 2018, 94, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Schloman, W.W.; Garrot, D.J.; Ray, D.T.; Bennett, D.J. Seasonal effects on guayule resin composition. J. Agric. Food Chem. 1986, 34, 177–179. [Google Scholar] [CrossRef]
- Maatooq, G.T.; Hoffmann, J.J. Fungistatic sesquiterpenoids from Parthenium. Phytochemistry 1996, 43, 67–69. [Google Scholar] [CrossRef]
- Bultman, J.D.; Gilbertson, R.L.; Adaskaveg, J.; Amburgey, T.L.; Parikh, S.V.; Bailey, C.A. The efficacy of guayule resin as a pesticide. Bioresour. Technol. 1991, 35, 197–201. [Google Scholar] [CrossRef]
- Maatooq, G.T.; Stumpf, D.K.; Hoffmann, J.J.; Hutter, L.K.; Timmermann, B.N. Antifungal Eudesmanoids from Parthenium Argentatum × P. Tomentosa. Phytochemistry 1996, 41, 519–524. [Google Scholar] [CrossRef]
- Gutiérrez, C.; Gonzalez-Coloma, A.; Hoffmann, J.J. Antifeedant properties of natural products from Parthenium argentatum, P. argentatum × P. tomentosum (Asteraceae) and Castela emoryi (Simaroubeaceae) against Reticulitermes flavipes. Ind. Crops Prod. 1999, 10, 35–40. [Google Scholar] [CrossRef]
- Nakayama, F.S.; Vinyard, S.H.; Chow, P.; Bajwa, D.S.; Youngquist, J.A.; Muehl, J.H.; Krzysik, A.M. Guayule as a wood preservative. Ind. Crops Prod. 2001, 14, 105–111. [Google Scholar] [CrossRef]
- Holt, G.A.; Chow, P.; Wanjura, J.D.; Pelletier, M.G.; Coffelt, T.A.; Nakayama, F.S. Termite resistance of biobased composition boards made from cotton byproducts and guayule bagasse. Ind. Crops Prod. 2012, 36, 508–512. [Google Scholar] [CrossRef]
- Isman, M.B.; Rodriguez, E. Larval growth inhibitors from species of Parthenium (Asteraceae). Phytochemistry 1983, 22, 2709–2713. [Google Scholar] [CrossRef]
- Schloman, W.W. Free-Flowing Guayule Resin and Bagasse Mixtures and Their Use as Fuel or Soil Amendment. US Patent 4988388, 29 January 1991. [Google Scholar]
- Rodríguez, E.; Towers, G.H.N.; Mitchell, J.C. Biological activities of sesquiterpene lactones. Phytochemistry 1976, 15, 1573–1580. [Google Scholar] [CrossRef]
- Behl, H.M.; Marchand, B.; Rodríguez, E. Inheritance of Sesquiterpenoid Phenolic Acid Esters (Guayulins) in F1 Hybrids of Parthenium (Asteraceae). Z. Naturforsch. C 1983, 38, 494–496. [Google Scholar] [CrossRef]
- GIR (Global Info Research). Global Paclitaxel Market 2018 by Manufacturers, Regions, Type and Application, Forecast to 2023. ID: PD017360. Available online: https://www.decisiondatabases.com/ip/17360-paclitaxel-market-analysis-report (accessed on 21 December 2018).
- Maatooq, G.T. Microbial metabolism of partheniol by Mucor circinelloides. Phytochemistry 2002, 59, 39–44. [Google Scholar] [CrossRef]
- Maatooq, G.T. Microbial conversion of partheniol by Calonectria decora. Z. Naturforsch. C. 2002, 57, 680–685. [Google Scholar] [CrossRef]
- Ćirić, A.; Karioti, A.; Koukoulitsa, C.; Soković, M.; Skaltsa, H. Sesquiterpene lactones from Centaurea zuccariniana and their antimicrobial activity. Chem. Biodivers. 2012, 9, 2843–2853. [Google Scholar] [CrossRef]
- Ashitani, T.; Schubert, F.; Liblikas, I.; Pålsson, K.; Borg-Karlson, A.-K.; Vongsombath, C.; Garboui, S.S. Activity studies of sesquiterpene oxides and sulfides from the plant Hyptis suaveolens (Lamiaceae) and its repellency on Ixodes ricinus (Acari: Ixodidae). Exp. Appl. Acarol. 2015, 67, 595–606. [Google Scholar] [CrossRef]
- Jamal, W.; Bari, A.; Mothana, R.A.; Basudan, O.; Mohammed, M.S.; Ng, S.W. Antimicrobial evaluation and crystal structure of Parthenolide from Tarconanthus camphoratus collected in Saudi Arabia. Asian J. Chem. 2014, 26, 5183–5185. [Google Scholar] [CrossRef]
- Picman, A.K. Antifungal activity of helenin and isohelenin. Biochem. Syst. Ecol. 1983, 11, 183–186. [Google Scholar] [CrossRef]
- Hubert, T.D.; Wiemer, D.F. Ant-repellent terpenoids from Melampodium divaricatum. Phytochemistry 1985, 24, 1197–1198. [Google Scholar] [CrossRef]
- Cantrell, L.; Pridgeon, J.W.; Fronczek, F.R.; Becnel, J.J. Structure–Activity Relationship Studies on derivatives of Eudesmanolides from Inula helenium as Toxicants against Aedes aegypti Larvae and Adults. Chem. Biodivers. 2010, 7, 1681–1697. [Google Scholar] [CrossRef]
- Messer, A.; McCormick, K.; Sunjaya, H.H.; Tumbel, F.; Meinwald, J. Defensive role of tropical tree resins: Antitermitic sesquiterpenes from Southeast Asian Dipterocarpaceae. J. Chem. Ecol. 1990, 16, 3333–3352. [Google Scholar] [CrossRef]
- Ramseyer, J.; Thuerig, B.; De Mieri, M.; Schärer, H.-J.; Oberhänsli, T.; Gupta, M.P.; Tamm, L.; Hamburger, M.; Potterat, O. Eudesmane Sesquiterpenes from Verbesina lanata with Inhibitory Activity against Grapevine Downy Mildew. J. Nat. Prod. 2017, 80, 3296–3304. [Google Scholar] [CrossRef] [PubMed]
- Wedge, D.E.; Galindo, J.C.G.; Macías, F.A. Fungicidal activity of natural and synthetic sesquiterpene lactone analogs. Phytochemistry 2000, 53, 747–757. [Google Scholar] [CrossRef]
- Vega, A.E.; Wendel, G.H.; Maria, A.O.M.; Pelzer, L. Antimicrobial activity of Artemisia douglasiana and dehydroleucodine against Helicobacter pylori. J. Ethnopharmacol. 2009, 124, 653–655. [Google Scholar] [CrossRef] [PubMed]
- Sofou, K.; Isaakidis, D.; Spyros, A.; Büttner, A.; Giannis, A.; Katerinopoulos, H.E. Use of costic acid, a natural extract from Dittrichia viscosa, for the control of Varroa destructor, a parasite of the European honey bee. Beilstein J. Org. Chem. 2017, 13, 952–959. [Google Scholar] [CrossRef] [Green Version]
- Barrero, A.F.; Oltra, J.E.; Álvarez, M.; Raslan, D.S.; Saúde, D.A.; Akssira, M. New sources and antifungal activity of sesquiterpene lactones. Fitoterapia 2000, 71, 60–64. [Google Scholar] [CrossRef]
- EPRS. European Parliamentary Research Service, PE 634.416. Farming without Plant Protection Products: Can we Grow Without Using Herbicides, Fungicides and Insecticides? Available online: http://www.europarl.europa.eu/RegData/etudes/IDAN/2019/634416/EPRS_IDA(2019)634416_EN.pdf (accessed on 17 May 2019).
- Márquez, E. Pesticide Action Network-North America. Pesticides 101. 2018. Available online: http://www.panna.org/pesticies-big-picture/pesticies-101 (accessed on 28 May 2019).
- HRC. Human Rights Council, 34th Session Agenda Item 3. United Nations A/HRC/34/48. Promotion and Protection of all Human Rights, Civil, Political, Economic, Social and Cultural Rights, Including the Right to Development. 2017. Available online: https://www.ohchr.org/EN/HRBodies/HRC/RegularSessions/Session34/Pages/ListReports.aspx (accessed on 28 August 2019).
- National Research Council (NRC). Guayule: An Alternative Source of Natural Rubber; The National Academies Press: Washington, DC, USA, 1977. [Google Scholar] [CrossRef]
- FAO. Global Food Losses and Food Waste-Extent, Causes and Prevention; FAO: Rome, Italy, 2011; Available online: http://www.fao.org/docrep/014/mb060e/mb060e00.pdf (accessed on 28 May 2019).
- Garnier, L.; Valence, F.; Mounier, J. Diversity and Control of Spoilage Fungi in Dairy Products: An Update. Microorganisms 2017, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Song, J.-E.; Kim, J.-M.; Lee, N.-H.; Yang, J.-Y.; Lee, H.-S. Acaricidal and Insecticidal Activities of Essential Oils against a Stored-Food Mite and Stored-Grain Insects. J. Food Prot. 2016, 79, 174–178. [Google Scholar] [CrossRef]
- Choudhary, S.; Raheja, N.; Yadav, S.K.; Kamboj, M.; Sharma, A. A review: Pesticide residue: Cause of many animal health problems. J. Entomol. Zool. Stud. 2018, 6, 330–333. [Google Scholar]
- De Meneghi, D.; Stachurski, F.; Adakal, H. Experiences in Tick Control by Acaricide in the Traditional Cattle Sector in Zambia and Burkina Faso: Possible Environmental and Public Health Implications. Front. Public Health 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Taurines, M.; Brancheriau, L.; Palu, S.; Pioch, D.; Tardan, E.; Boutahar, N.; Sartre, P.; Meunier, F. Determination of natural rubber and resin content of guayule fresh biomass by near infrared spectroscopy. Ind. Crops Prod. 2019, 134, 177–184. [Google Scholar] [CrossRef]
- Zoeller, J.H.J.; Wagner, J.P.; Sulikowski, G.A. Concise Multigram Purification of Guayulin A from Guayule. J. Agric. Food Chem. 1994, 42, 1647–1649. [Google Scholar] [CrossRef]
- Querci, C.; Del Prete, D.; Caldararo, M.; Girotti, G. Method for the Separation of the Isoprenic Constituents of Guayule. International Patent WO 2017/021852, 2 September 2017. [Google Scholar]
- Cornish, K.; McCoy, R.G.; Martin, J.A.; Williams, J.; Nocera, A. Biopolymer Extraction from Plant Materials. US Patent 7923,039 B2, 4 December 2011. [Google Scholar]
- Soratana, K.; Rasutis, D.; Azarabadi, H.; Eranki, P.L.; Landis, A.E. Guayule as an alternative source of natural rubber: A comparative life cycle assessment with Hevea and synthetic rubber. J. Clean. Prod. 2017, 159, 271–280. [Google Scholar] [CrossRef]
- Sfeir, N.; Chapuset, T.; Palu, S.; Lançon, F.; Amor, A.; García, J.G.; Snoeck, D. Technical and economic feasibility of a guayule commodity chain in Mediterranean Europe. Ind. Crops Prod. 2014, 59, 55–62. [Google Scholar] [CrossRef]
- De la Cuesta, S.P.; Knopper, L.; Van der Wielen, L.A.M.; Cuellar, M.C. Techno-economic assessment of the use of solvents in the scale-up of microbial sesquiterpene production for fuels and fine chemicals. Biofuel Bioprod. Biorefin. 2019, 13, 140–152. [Google Scholar] [CrossRef] [Green Version]
Bycyclogermacrenes | |
---|---|
Partheniol (C1) Fungistatic against Aspergillus niger [28] Toxic vs termites [29] | |
Guayulin A (C2) Effective against 7 wood fungi and 3 termites [30] | |
Guayulin B (C3) Termites antifeedant [29] | |
Aromadendranes | |
Guayulin C (C4) Effective against 7 wood fungi and 3 termites [30] | |
Guayulin D (C5) Effective against 7 wood fungi and 3 termites [30] | |
Eudesmanes | |
Eudesmol (C6) Fungistatic against Aspergillus fumigatus, A. niger [31,32] | |
Guayulone | |
Guayulone (C7) Compound extracted from the interspecific hybrid AZ-101 (P. argentatum x P. tomentosa) Moderate fungistatic activity against A. niger [29] |
Eudesmanolides | Germacrenes | ||
---|---|---|---|
8α-O-(4,5-diacetoxyangeloyl) sonchucarpolide (C8) Centaurea zuccariniana Antifungal [42] | Germacrene D (C15) Hyptis suaveolens, Ligustrum japonicum Acaricidal 4 species [43] | ||
Zuccarinin (C9) Centaurea zuccariniana Antifungal against 8 fungi [42] | Germacranolides | ||
Parthenolide (C16) Tarconanthus camphoratus Antibacterial against S. aureus & B. subtilis [44] | |||
Alantolactone (C10) Inula helenium Antifungal vs M. cookei, T. mentagrophytes and Trichothecium roseum [45] | Aromadendranes | ||
Spathulenol (C17) Melampodium divaricatum Repellent leafcutter ant Atta cephalotes [46] | |||
Isoalantolactone (C11) Inula helenium Larvicidal activity against Aedes aegypti mosquito [47] | Spathulenol isomer (C18) Dipterocarpus grandifloras Antitermitic effect [48] | ||
Eudesmanes | Guaianolides | ||
6β-cinnamoyloxy-4β,9β,15 trihydroxyeudesmane (C12) Verbesina lanata Fungistatic against Plasmopara vitícola [49] | 6β-cinnamoyloxy-1β,15-dihydroxyeudesm-4-en-3-one (C13) Verbesina lanata Fungistatic against Plasmopara vitícola. [49] | Dehydrozaluzanin (C19) Several Asteraceae Fungicidal against 3 Colletotrichum species [50] | |
Dehydroleucodine (C20) Artemisia douglasiana Bactericidal Helicobacter pylori [51] | |||
Costic Acid (C14) Dittrichia viscosa Acaricidal against Varroa destructor [52] | (-)-dehydrocostuslactone (C21) Saussurea lappa Antifungal vs C. echinulate [53] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jara, F.M.; Cornish, K.; Carmona, M. Potential Applications of Guayulins to Improve Feasibility of Guayule Cultivation. Agronomy 2019, 9, 804. https://doi.org/10.3390/agronomy9120804
Jara FM, Cornish K, Carmona M. Potential Applications of Guayulins to Improve Feasibility of Guayule Cultivation. Agronomy. 2019; 9(12):804. https://doi.org/10.3390/agronomy9120804
Chicago/Turabian StyleJara, Francisco M., Katrina Cornish, and Manuel Carmona. 2019. "Potential Applications of Guayulins to Improve Feasibility of Guayule Cultivation" Agronomy 9, no. 12: 804. https://doi.org/10.3390/agronomy9120804
APA StyleJara, F. M., Cornish, K., & Carmona, M. (2019). Potential Applications of Guayulins to Improve Feasibility of Guayule Cultivation. Agronomy, 9(12), 804. https://doi.org/10.3390/agronomy9120804