Winter Rye Cover Crop with Liquid Manure Injection Reduces Spring Soil Nitrate but Not Maize Yield
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Weather
3.2. Rye Biomass, Rye N Uptake, and Soil NO3-N
3.3. Maize Silage and Grain Yields
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Diaz, R.J.; Rosenberg, R. Spreading Dead Zones and Consequences for Marine Ecosystems. Science 2008, 321, 926–929. [Google Scholar] [CrossRef] [PubMed]
- Rabalais, N.N.; Turner, R.E.; Justić, D.; Dortch, Q.; Wiseman, W.J.; Gupta, B.K.S.; Justic, D. Nutrient Changes in the Mississippi River and System Responses on the Adjacent Continental Shelf. Estuaries 1996, 19, 386–407. [Google Scholar] [CrossRef]
- Goolsby, D.A.; Battaglin, W.A.; Lawrence, G.B.; Artz, R.S.; Aulenbach, B.T.; Hooper, R.P.; Keeney, D.R.; Stensland, G.J. Flux and Sources of Nutrients in the Mississippi-Atchafalaya River Basin: Topic 3 Report for the Integrated Assessment on Hypoxia in the Gulf of Mexico; NOAA/National Centers for Coastal Ocean Science: Silver Spring, MD, USA, 1999. [Google Scholar]
- David, M.B.; Gentry, L.E.; Kovacic, D.A.; Smith, K.M. Nitrogen Balance in and Export from an Agricultural Watershed. J. Environ. Qual. 1997, 26, 1038–1048. [Google Scholar] [CrossRef] [Green Version]
- Randall, G.W.; Mulla, D.J. Nitrate Nitrogen in Surface Waters as Influenced by Climatic Conditions and Agricultural Practices. J. Environ. Qual. 2001, 30, 337–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawlor, P.A.; Helmers, M.J.; Baker, J.L.; Melvin, S.W.; Lemke, D.W. Nitrogen Application Rate Effect on Nitrate-Nitrogen Concentration and Loss in Subsurface Drainage for a Corn-Soybean Rotation. Trans. ASABE 2008, 51, 83–94. [Google Scholar] [CrossRef]
- Sharpley, A.; Foy, B.; Withers, P. Practical and Innovative Measures for the Control of Agricultural Phosphorus Losses to Water: An Overview. J. Environ. Qual. 2000, 29, 1–9. [Google Scholar] [CrossRef]
- McLellan, E.; Robertson, D.; Schilling, K.; Tomer, M.; Kostel, J.; Smith, D.; King, K. Reducing Nitrogen Export from the Corn Belt to the Gulf of Mexico: Agricultural Strategies for Remediating Hypoxia. J. Am. Water Resour. Assoc. 2015, 51, 263–289. [Google Scholar] [CrossRef]
- Ribaudo, M.; Delgado, J.; Hansen, L.; Livingston, M.; Mosheim, R.; Williamson, J. Nitrogen in Agricultural Systems: Implications for Conservation Policy; United Statesd Department of Agriculture-Economic Research Service: Washington, DC, USA, 2011. [Google Scholar]
- USDA-NASS. Crop. Production 2018 Summary; United Statesd Department of Agriculture-National Agricultural Statistics Service: Washington, DC, USA, 2019. [Google Scholar]
- Minnesota Department of Agriculture. Fertilizer and Manure Selection and Management Practices Associated with Minnesota’s 2010 Corn and Wheat Production; Minnesota Department of Agriculture: Saint Paul, MN, USA, 2014. [Google Scholar]
- Minnesota Department of Agriculture. Commercial Nitrogen and Manure Applications on Minnesota’s 2014 Corn Crop Compared to the University of Minnesota Nitrogen Guidelines; Minnesota Department of Agriculture: Saint Paul, MN, USA, 2014. [Google Scholar]
- Andresen, J.; Hilberg, S.; Kunkel, K. Historical Climate and Climate Trends in the Midwestern USA. In U.S. National Climate Assessment Midwest Technical Input Report.; Winkler, J., Andresen, J., Hatfield, J., Bidwell, D., Brown, D., Eds.; Great Lakes Integrated Sciences and Assessments (GLISA) Center: Ann Arbor, MI, USA, 2012. [Google Scholar]
- Abendroth, L.J.; Elmore, R.W.; Boyer, M.J.; Marlay, S.K. Corn Growth and Development; Iowa State University Extension: Ames, IA, USA, 2011. [Google Scholar]
- American Society of Agricultural and Biological Engineers (ASABE). ASAE D384.2 Manure Production and Characteristics; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2005; (R2019); pp. 1–32. [Google Scholar]
- Sabey, B.R.; Bartholomew, W.V.; Shaw, R.; Pesek, J. Influence of Temperature on Nitrification in Soils. Soil Sci. Soc. Am. J. 1956, 20, 357–360. [Google Scholar] [CrossRef]
- Chang, C.; Entz, T. Nitrate Leaching Losses Under Repeated Cattle Feedlot Manure Applications in Southern Alberta. J. Environ. Qual. 1996, 25, 145–153. [Google Scholar] [CrossRef]
- Donner, S.D.; Kucharik, C.J.; Foley, J.A. Impact of Changing Land Use Practices on Nitrate Export by the Mississippi River. Glob. Biogeochem. Cycles 2004, 18. [Google Scholar] [CrossRef]
- Novotny, E.V.; Stefan, H.G. Stream Flow in Minnesota: Indicator of Climate Change. J. Hydrol. 2007, 334, 319–333. [Google Scholar] [CrossRef]
- Ditsch, D.C.; Alley, M.M.; Kelley, K.R.; Lei, Y.Z. Effectiveness of Winter Rye for Accumulating Residual Fertilizer N Following Corn. J. Soil Water Conserv. 1993, 48, 125–132. [Google Scholar]
- Coale, F.J.; Costa, J.M.; Bollero, G.A.; Schlosnagle, S.P. Small Grain Winter Cover Crops for Conservation of Residual Soil Nitrogen in the Mid-Atlantic Coastal Plain. Am. J. Altern. Agric. 2001, 16, 66–72. [Google Scholar] [CrossRef]
- McCracken, D.V.; Smith, M.S.; Grove, J.H.; Blevins, R.L.; MacKown, C.T. Nitrate Leaching as Influenced by Cover Cropping and Nitrogen Source. Soil Sci. Soc. Am. J. 1994, 58, 1476–1483. [Google Scholar] [CrossRef]
- Shah, S.; Hookway, S.; Pullen, H.; Clarke, T.; Wilkinson, S.; Reeve, V.; Fletcher, J.M. The Role of Cover Crops in Reducing Nitrate Leaching and Increasing Soil Organic Matter. Asp. Appl. Biol. 2017, 134, 243–251. [Google Scholar]
- Meisinger, J.J.; Ricigliano, K.A. Nitrate Leaching from Winter Cereal Cover Crops Using Undisturbed Soil-Column Lysimeters. J. Environ. Qual. 2017, 46, 576–584. [Google Scholar] [CrossRef]
- Huntington, T.G.; Grove, J.H.; Frye, W.W. Release and Recovery of Nitrogen from Winter Annual Cover Crops in No-till Corn Production. Commun. Soil Sci. Plant. Anal. 1985, 16, 193–211. [Google Scholar] [CrossRef]
- Jahanzad, E.; Barker, A.V.; Hashemi, M.; Eaton, T.; Sadeghpour, A.; Weis, S.A. Nitrogen Release Dynamics and Decomposition of Buried and Surface Cover Crop Residues. Agron. J. 2016, 108, 1735–1741. [Google Scholar] [CrossRef]
- Finney, D.M.; White, C.M.; Kaye, J.P. Biomass Production and Carbon/Nitrogen Ratio Influence Ecosystem Services from Cover Crop Mixtures. Agron. J. 2016, 108, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Miguez, F.E.; Bollero, G.A. Review of Corn Yield Response under Winter Cover Cropping Systems Using Meta-Analytic Methods. Crop Sci. 2005, 45, 2318–2329. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, J.L.; Quemada, M. Replacing Bare Fallow with Cover Crops in a Maize Cropping System: Yield, N Uptake and Fertiliser Fate. Eur. J. Agron. 2011, 34, 133–143. [Google Scholar] [CrossRef]
- Ball-Coelho, B.R.; Roy, R.C. Overseeding Rye into Corn Reduces NO3 Leaching and Increases Yields. Can. J. Soil Sci. 1997, 77, 443–451. [Google Scholar] [CrossRef]
- Ball Coelho, B.R.; Roy, R.C.; Bruin, A.J. Long-Term Effects of Late-Summer Overseeding of Winter Rye on Corn Grain Yield and Nitrogen Balance. Can. J. Plant. Sci. 2005, 85, 543–554. [Google Scholar] [CrossRef]
- Komainda, M.; Taube, F.; Kluß, C.; Herrmann, A. Effects of Catch Crops on Silage Maize (Zea mays L.): Yield, Nitrogen Uptake Efficiency and Losses. Nutr. Cycl. Agroecosyst. 2018, 110, 51–69. [Google Scholar] [CrossRef]
- Thilakarathna, M.S.; Serran, S.; Lauzon, J.; Janovicek, K.; Deen, B. Management of Manure Nitrogen Using Cover Crops. Agron. J. 2015, 107, 1595–10607. [Google Scholar] [CrossRef] [Green Version]
- Singer, J.W.; Cambardella, C.A.; Moorman, T.B. Enhancing Nutrient Cycling by Coupling Cover Crops with Manure Injection. Agron. J. 2008, 100, 1735–1739. [Google Scholar] [CrossRef] [Green Version]
- Milliron, R.A.; Karsten, H.D.; Beegle, D.B. Influence of Dairy Slurry Manure Application Method, Fall Application-Timing, and Winter Rye Management on Nitrogen Conservation. Agron. J. 2019, 111, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Laverty, J.C. A Modified Procedure for Determination of Phosphorus in Soil Extracts. Soil Sci. Soc. Am. Proc. 1963, 27, 360–361. [Google Scholar] [CrossRef]
- Frank, K.; Beegle, D.; Denning, J. Phosphorus. In Recommended Chemical Soil Test Procedures for the North Central Region; Brown, J.R., Ed.; Missouri Agricultural Experiment Station SB 1001: Columbia, MO, USA, 1998. [Google Scholar]
- Warncke, D.; Brown, J.R. Potassium and Other Basic Cations. In Recommended Chemical Soil Test Procedures for the North Central Region; Brown, J.R., Ed.; Missouri Agricultural Experiment Station SB 1001: Columbia, MO, USA, 1998. [Google Scholar]
- Peters, J.B.; Nathan, M.V.; Laboski, C.A.M. PH and Lime Requirement. In Recommended Chemical Soil Test Procedures for the North Central Region; Brown, J.R., Ed.; Missouri Agricultural Experiment Station SB 1001: Columbia, MO, USA, 1998. [Google Scholar]
- Combs, S.M.; Nathan, M.V. Soil Organic Matter. In Recommended Chemical Soil Test Procedures for the North Central Region; Brown, J.R., Ed.; Missouri Agricultural Experiment Station SB 1001: Columbia, MO, USA, 1998. [Google Scholar]
- Peters, J.; Combs, S.; Hoskins, B.; Jarman, J.; Kovar, J.; Watson, M.; Wolf, A.; Wolf, N. Recommended Methods of Manure Analysis; Peters, J., Ed.; Cooperative Extension Publishing: Madison, WI, USA, 2003. [Google Scholar]
- Crandall, S.M.; Ruffo, M.L.; Bollero, G.A. Cropping System and Nitrogen Dynamics under a Cereal Winter Cover Crop Preceding Corn. Plant. Soil 2005, 268, 209–219. [Google Scholar] [CrossRef]
- Gelderman, R.H.; Beegle, D. Nitrate-Nitrogen. In Recommended Chemical Soil Test Procedures for the North Central Region; Brown, J.R., Ed.; Missouri Agricultural Experiment Station SB 1001: Columbia, MO, USA, 1998. [Google Scholar]
- Huffman, S.A.; Barbarick, K.A. Soil Nitrate Analysis by Cadmium Reduction. Commun. Soil Sci. Plant. Anal. 1981, 12, 79–89. [Google Scholar] [CrossRef]
- SARE. Managing Cover Crops Profitably, 3rd ed.; Sustainable Agriculture Research and Education (SARE): College Park, MD, USA, 2012. [Google Scholar]
- Strock, J.S.; Porter, P.M.; Russelle, M.P. Cover Cropping to Reduce Nitrate Loss through Subsurface Drainage in the Northern U.S. Corn Belt. J. Environ. Qual. 2004, 33, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- De Bruin, J.L.; Porter, P.M.; Jordan, N.R. Use of a Rye Cover Crop Following Corn in Rotation with Soybean in the Upper Midwest. Agron. J. 2005, 97, 587–598. [Google Scholar] [CrossRef]
- Krueger, E.S.; Ochsner, T.E.; Porter, P.M.; Baker, J.M. Winter Rye Cover Crop Management Influences on Soil Water, Soil Nitrate, and Corn Development. Agron. J. 2011, 103, 316–323. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Jaynes, D.B.; Parkin, T.B.; Moorman, T.B. Rye Cover Crop and Gamagrass Strip Effects on NO3 Concentration and Load in Tile Drainage. J. Environ. Qual. 2007, 36, 1503–1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, M.L.; Baker, J.M.; Allan, D.L. Factors Affecting Successful Establishment of Aerially Seeded Winter Rye. Agron. J. 2013, 105, 1868–1877. [Google Scholar] [CrossRef]
- Clark, A.J.; Decker, A.M.; Meisinger, J.J.; McIntosh, M.S. Kill Date of Vetch, Rye, and a Vetch-Rye Mixture: I. Cover Crop and Corn Nitrogen. Agron. J. 1997, 89, 427–434. [Google Scholar] [CrossRef]
- Kessavalou, A.; Walters, D.T. Winter Rye Cover Crop Following Soybean Under Conservation Tillage. Agron. J. 1999, 91, 643–649. [Google Scholar] [CrossRef]
- Pantoja, J.L.; Woli, K.P.; Sawyer, J.E.; Barker, D.W. Corn Nitrogen Fertilization Requirement and Corn–Soybean Productivity with a Rye Cover Crop. Soil Sci. Soc. Am. J. 2015, 79, 1482–1895. [Google Scholar] [CrossRef] [Green Version]
- Cambardella, C.A.; Moorman, T.B.; Singer, J.W. Soil Nitrogen Response to Coupling Cover Crops with Manure Injection. Nutr. Cycl. Agroecosyst 2010, 87, 383–393. [Google Scholar] [CrossRef]
- Brady, N.; Weil, R. The Nature and Properties of Soils, 13th ed.; Pearson/Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Basche, A.D.; Kaspar, T.C.; Archontoulis, S.V.; Jaynes, D.B.; Sauer, T.J.; Parkin, T.B.; Miguez, F.E. Soil Water Improvements with the Long-Term Use of a Winter Rye Cover Crop. Agric. Water Manag. 2016, 172, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Ruffo, M.L.; Bullock, D.G.; Bollero, G.A. Soybean Yield as Affected by Biomass and Nitrogen Uptake of Cereal Rye in Winter Cover Crop Rotations. Agron. J. 2004, 96, 800–805. [Google Scholar] [CrossRef]
- Duiker, S.W.; Curran, W.S. Rye Cover Crop Management for Corn Production in the Northern Mid-Atlantic Region. Agron. J. 2005, 97, 1413–1418. [Google Scholar] [CrossRef]
- Acharya, J.; Bakker, M.G.; Moorman, T.B.; Kaspar, T.C.; Lenssen, A.W.; Robertson, A.E. Time Interval Between Cover Crop Termination and Planting Influences Corn Seedling Disease, Plant Growth, and Yield. Plant. Dis. 2017, 101, 591–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raimbault, B.A.; Vyn, T.J.; Tollenaar, M. Corn Response to Rye Cover Crop Management and Spring Tillage Systems. Agron. J. 1990, 82, 1088–1093. [Google Scholar] [CrossRef]
- Tollenaar, M.; Mihajlovic, M.; Vyn, T.J. Annual Phytomass Production of a Rye-Corn Double-Cropping System in Ontario. Agron. J. 1992, 84, 963–967. [Google Scholar] [CrossRef]
- Wilson, D.O.; Hargrove, W.L. Release of Nitrogen from Crimson Clover Residue under Two Tillage Systems1. Soil Sci. Soc. Am. J. 1986, 50, 1251–1254. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Radke, J.K.; Laflen, J.M. Small Grain Cover Crops and Wheel Traffic Effects on Infiltration, Runoff, and Erosion. J. Soil Water Conserv. 2001, 56, 160–164. [Google Scholar]
- De Baets, S.; Poesen, J.; Meersmans, J.; Serlet, L. Cover Crops and Their Erosion-Reducing Effects during Concentrated Flow Erosion. Catena 2011, 85, 237–244. [Google Scholar] [CrossRef]
- Easterling, D.R.; Kunkel, K.E.; Arnold, J.R.; Knutson, T.; Legrande, A.N.; Leung, L.R.; Vose, R.S.; Wal-Iser, D.E.; Wehner, M.F.; Fahey, D.J.W.; et al. Precipitation Change in the United States; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
Site | Rye Planting Date | Manure Type | Manure Application Date | Rye Sampling Date | Maize Planting Date | Maize Harvest Method |
---|---|---|---|---|---|---|
2015 | 2016 | |||||
1 | 30 September | dairy | 20 November | 26 April | 6 May | silage |
2 | 26 September | dairy | 9 October | 18 April | 4 May | silage |
3 | 9 October | dairy | 12 November | 15 April | 3 May | grain |
4 | 25 September | dairy | 2 November | 21 April | 9 May | silage |
5 | 2 October | swine | 12 November | 25 April | 13 May | grain |
6 | 3 October | swine | 10 November | 22 April | 6 May | grain |
7 | 29 September | swine | 12 November | 22 April | 25 April | grain |
8 | 9 October | swine | 12 November | 15 April | 3 May | grain |
9 | 12 October | swine | 10 November | 26 April | 7 May | grain |
2016 | 2017 | |||||
10 | 26 September | dairy | 10 November | 20 April | 13 May | silage |
11 | 24 October | dairy | 27 October | 28 April | 9 May | silage |
12 | 3 October | dairy | 2 November | 8 May | 6 May | silage |
13 | 26 October | dairy | 5 December | 24 April | 15 May | grain |
14 | 17 October | dairy | 6 October | 9 May | 10 May | silage |
15 | 7 October | dairy | 22 October | 25 April | 11 May | silage |
16 | 8 November | swine | 25 October | 8 May | 9 May | grain |
17 | 14 October | swine | 18 October | 20 April | 6 May | grain |
18 | 17 October | swine | 27 November | 17 April | 9 May | grain |
19 | 26 October | swine | 5 December | 24 April | 15 May | grain |
Site | Total N Applied | Plant N Uptake | Soil NO3-N | |||||
---|---|---|---|---|---|---|---|---|
Manure | Fertilizer | Rye | Maize | w/Rye | w/o Rye | |||
TKN * | NH4-N | w/Rye | w/o Rye | |||||
kg ha−1 | mg kg−1 | |||||||
2016 Maize Growing Season | ||||||||
1 | 256 | 222 | 0 | 95 (14.2) † | 85 (5.8) | 120 (5.9) | 4 (0.8) | 12 (1.3) |
2 | 179 | 142 | 0 | 98 (19.2) | 193 (15.8) | 188 (11.2) | 24 (2.3) | 26 (3.0) |
3 | 30 | 7 | 157 | 15 (1.2) | 139 (13.7) | 135 (19.4) | 6 (0.6) | 9 (0.3) |
4 | 186 | 177 | 28 | 107 (1.5) | 151 (4.1) | 149 (2.5) | 16 (1.3) | 21 (5.0) |
5 | 320 | 232 | 36 | 114 (11.2) | 186 (4.9) | 177 (12.5) | 7 (1.5) | 21 (3.0) |
6 | 226 | 209 | 0 | 84 (2.9) | 177 (14.9) | 177 (12.8) | 20 (1.2) | 38 (2.8) |
7 | 219 | 217 | 0 | 71 (6.0) | 152 (18.2) | 136 (2.5) | 12 (1.4) | 25 (2.5) |
8 | 22 | 20 | 112 | 14 (0.3) | 148 (11.7) | 142 (8.9) | 7 (0.3) | 11 (0.4) |
9 | 75 | 73 | 0 | 43 (4.0) | 91 (6.6) | 99 (1.8) | 4 (0.3) | 10 (1.5) |
2017 Maize Growing Season | ||||||||
10 | 279 | 118 | 0 | 84 (4.2) | 209 (5.2) | 218 (6.2) | 7 (1.8) | 13 (1.5) |
11 | 292 | 105 | 0 | 22 (2.8) | 188 (7.4) | 185 (15.6) | 18 (2.2) | 27 (0.8) |
12 | 148 | 68 | 68 | 49 (0.3) | 144 (1.5) | 149 (3.5) | 24 (3.0) | 35 (4.4) |
13 | 24 | 14 | 135 | 5 (0.3) | 153 (9.2) | 153 (6.0) | 13 (1.5) | 14 (1.2) |
14 | 195 | ‡ | 68 | 54 (2.6) | 144 (6.3) | 170 (8.2) | 9 (1.2) | 15 (1.6) |
15 | 374 | 169 | 35 | 25 (1.7) | 166 (13.3) | 167 (2.9) | 27 (4.6) | 28 (1.4) |
16 | 226 | 137 | 86 | 5 (1.0) | 156 (4.7) | 165 (14.5) | 23 (0.4) | 35 (4.8) |
17 | 140 | 100 | 0 | 65 (4.4) | 141 (11.0) | 144 (1.7) | 10 (2.0) | 20 (1.2) |
18 | 186 | 127 | 67 | 8 (0.5) | 174 (3.6) | 163 (5.6) | 44 (4.7) | 64 (12.6) |
19 | 206 | 153 | 0 | 5 (0.3) | 181 (8.9) | 180 (10.0) | 22 (3.9) | 56 (16.1) |
Mean | 49 (5.2) | 157 (4.5) | 159 (4.0) | 16 (1.4) | 25 (2.2) | |||
Significance of difference with and without rye | n.s. | p < 0.001 |
Site | Biomass DM | Height * | Density |
---|---|---|---|
kg ha−1 | cm | Plants m−2 | |
2016 Maize Growing Season | |||
1 | 3220 (572) † | 30 | 116 (9) |
2 | 1925 (224) | 18 | 114 (5) |
3 | 408 (34) | 13 | 120 (8) |
4 | 2526 (55) | 25 | 128 (7) |
5 | 2622 (301) | 30 | 138 (7) |
6 | 2002 (43) | 28 | 74 (4) |
7 | 1853 (160) | 28 | 71 (6) |
8 | 445 (10) | 10 | 120 (7) |
9 | 1153 (61) | 23 | 84 (3) |
2017 Maize Growing Season | |||
10 | 2141 (213) | 15 | 160 (7) |
11 | 590 (43) | 10 | 107 (1) |
12 | 1160 (27) | 15 | 67 (7) |
13 | 160 (5) | 8 | 122 (6) |
14 | 1760 (203) | 20 | 178 (6) |
15 | 609 (33) | 20 | 79 (5) |
16 | 102 (18) | 5 | 51 (1) |
17 | 1300 (92) | 15 | 181 (2) |
18 | 151 (5) | 8 | 76 (9) |
19 | 160 (10) | 8 | 104 (4) |
Site No. | Silage Yield | |
---|---|---|
w/rye | w/o rye | |
Mg ha−1 | ||
1 | 34.3 (0.7) * | 39.8 (0.5) |
2 | 59.1 (2.6) | 57.9 (3.7) |
4 | 48.1 (0.9) | 46.5 (2.5) |
10 | 46.5 (1.2) | 49.8 (1.9) |
11 | 43.6 (3.0) | 43.4 (4.6) |
12 | 39.0 (0.9) | 41.5 (1.5) |
14 | 48.6 (2.5) | 48.6 (0.0) |
15 | 48.1 (0.9) | 48.4 (1.2) |
Mean | 45.7 (1.6) | 46.9 (1.4) |
Significance of difference with and without rye | n.s. |
Site No. | Maize Grain Yield | Maize Stalk Dry Matter | ||
---|---|---|---|---|
w/rye | w/o rye | w/rye | w/o rye | |
Mg ha−1 | ||||
3 | 11.3 (0.6) * | 11.1 (1.3) | 5.5 (0.4) | 5.7 (0.3) |
5 | 12.4 (0.1) | 11.8 (0.2) | 8.4 (0.3) | 7.9 (0.3) |
6 | 14.0 (0.6) | 14.5 (0.4) | 8.7 (0.1) | 8.0 (0.3) |
7 | 13.8 (0.0) | 14.1 (0.1) | 7.2 (0.5) | 6.6 (0.2) |
8 | 12.9 (0.9) | 13.1 (0.6) | 6.5 (0.5) | 7.0 (0.5) |
9 | 10.0 (0.3) | 10.5 (0.2) | 5.1 (0.4) | 6.1 (0.2) |
13 | 12.6 (0.5) | 13.3 (0.3) | 7.5 (0.4) | 7.2 (0.2) |
16 | 10.2 (0.1) | 10.3 (0.3) | 7.2 (0.3) | 8.0 (0.1) |
17 | 11.7 (0.1) | 12.5 (0.1) | 7.9 (0.3) | 7.9 (0.1) |
18 | 14.4 (0.3) | 13.7 (0.4) | 7.5 (0.4) | 7.3 (0.2) |
19 | 13.8 (0.5) | 13.8 (0.4) | 7.7 (0.2) | 7.6 (0.2) |
Mean | 12.5 (0.3) | 12.6 (0.3) | 7.2 (0.2) | 7.2 (0.1) |
Significance of difference with and without rye | n.s. | n.s. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Everett, L.A.; Wilson, M.L.; Pepin, R.J.; Coulter, J.A. Winter Rye Cover Crop with Liquid Manure Injection Reduces Spring Soil Nitrate but Not Maize Yield. Agronomy 2019, 9, 852. https://doi.org/10.3390/agronomy9120852
Everett LA, Wilson ML, Pepin RJ, Coulter JA. Winter Rye Cover Crop with Liquid Manure Injection Reduces Spring Soil Nitrate but Not Maize Yield. Agronomy. 2019; 9(12):852. https://doi.org/10.3390/agronomy9120852
Chicago/Turabian StyleEverett, Leslie A., Melissa L. Wilson, Randall J. Pepin, and Jeffrey A. Coulter. 2019. "Winter Rye Cover Crop with Liquid Manure Injection Reduces Spring Soil Nitrate but Not Maize Yield" Agronomy 9, no. 12: 852. https://doi.org/10.3390/agronomy9120852
APA StyleEverett, L. A., Wilson, M. L., Pepin, R. J., & Coulter, J. A. (2019). Winter Rye Cover Crop with Liquid Manure Injection Reduces Spring Soil Nitrate but Not Maize Yield. Agronomy, 9(12), 852. https://doi.org/10.3390/agronomy9120852