Effect of Processing Methods and Storage Time on the Content of Bioactive Compounds in Blue Honeysuckle Berry Purees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Reagents and Standards
2.3. Blue Honeysuckle Berry Purée Processing
2.4. Physicochemical Parameters
2.5. Preparation of Extracts for Testing
2.6. HPLC Analysis of Anthocyanins
2.7. Total Phenolic Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Parameters
3.2. L-Ascorbic Acid Content
3.3. Anthocyanin and Total Phenolic Content
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kucharska, A.; Sokół-Łętowska, A.; Oszmiański, J.; Piórecki, N.; Fecka, I. Iridoids, phenolic compounds and antioxidant activity of edible honeysuckle berries (Lonicera caerulea var. kamtschatica Sevast.). Molecules 2017, 22, 405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grobelna, A.; Kalisz, S.; Kieliszek, M. The effect of the addition of blue honeysuckle berry juice to apple juice on the selected quality characteristics, anthocyanin stability, and antioxidant properties. Biomolecules 2019, 9, 744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, R.; Szakiel, A. Phytochemical characteristics and potential therapeutic properties of blue honeysuckle Lonicera caerulea L. (Caprifoliaceae). J. Herb. Med. 2019, 16, 100237. [Google Scholar] [CrossRef]
- Svarcovaa, I.; Heinrichb, J.; Valentovaa, K. Berry Fruits as a Source of Biologically Active Compounds: The Case of Lonicera Caerulea; Biomedical Papers of the Medical Faculty of Palacky University in Olomouc; Medical Faculty of Palacky University in Olomouc: Olomouc, Czech Republic, 2007; Volume 151, pp. 163–174. [Google Scholar]
- Senica, M.; Stampar, F.; Mikulic-Petkovsek, M. Blue honeysuckle (Lonicera cearulea L. subs. Edulis) berry; A rich source of some nutrients and their differences among four different cultivars. Sci. Hortic. 2018, 238, 215–221. [Google Scholar] [CrossRef]
- Ochmian, I.; Grajkowski, J.; Skupień, K. Field performance, fruit chemical composition and firmness under cold storage and simulated “shelf-life” conditions of three blue honeysuckle cultigens (Lonicera caerulea). J. Fruit Ornam. Plant Res. 2008, 16, 83–91. [Google Scholar]
- Celli, G.B.; Ghanem, A.; Brooks, M.S.L. Haskap berries (Lonicera caerulea L.)—A critical review of antioxidant capacity and health-related studies for potential value-added products. Food Bioprocess Technol. 2014, 7, 1541–1554. [Google Scholar] [CrossRef]
- Jurikova, T.; Rop, O.; Mlcek, J.; Sochor, J.; Balla, S.; Szekeres, L.; Hegedusova, A.; Hubalek, J.; Adam, V.; Kizek, R. Phenolic profile of edible honeysuckle berries (genus Lonicera) and their biological effects. Molecules 2012, 17, 61–79. [Google Scholar] [CrossRef] [Green Version]
- Thompson, M.M.; Barney, D.L. Evaluation and breeding of haskap in North America. J. Am. Pomol. Soc. 2007, 61, 25–32. [Google Scholar]
- Kaczmarska, E.; Gawronski, J.; Dyduch-Sieminska, M.; Najda, A.; Marecki, W.; Zebrowska, J. Genetic diversity and chemical characterization of selected Polish and Russian cultivars and clones of blue honeysuckle (Lonicera caerulea). Turkish J. Agric. For. 2015, 39, 394–402. [Google Scholar] [CrossRef]
- Palíková, I.; Heinrich, J.; Bednář, P.; Marhol, P.; Křen, V.; Cvak, L.; Valentová, K.; Růžička, F.; Holá, V.; Kolář, M. Constituents and antimicrobial properties of blue honeysuckle: A novel source for phenolic antioxidants. J. Agric. Food Chem. 2008, 56, 11883–11889. [Google Scholar] [CrossRef]
- Kula, M.; Majdan, M.; Radwańska, A.; Nasal, A.; Hałasa, R.; Głód, D.; Matkowski, A.; Krauze-Baranowska, M. Chemical composition and biological activity of the fruits from Lonicera caerulea var. edulis ‘Wojtek’. Acad. J. Med. Plants 2013, 8, 141–148. [Google Scholar] [CrossRef]
- Caprioli, G.; Iannarelli, R.; Innocenti, M.; Bellumori, M.; Fiorini, D.; Sagratini, G.; Vittori, S.; Buccioni, M.; Santinelli, C.; Bramucci, M.; et al. Blue honeysuckle fruit (Lonicera caerulea L.) from eastern Russia: Phenolic composition, nutritional value and biological activities of its polar extracts. Food Funct. 2016, 7, 1892–1903. [Google Scholar] [CrossRef] [PubMed]
- Rupasinghe, H.V.; Arumuggam, N.; Amararathna, M.; De Silva, A.B.K.H. The potential health benefits of haskap (Lonicera caerulea L.): Role of cyanidin-3-O-glucoside. J. Funct. Foods 2018, 44, 24–39. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [Green Version]
- Oszmiański, J.; Kucharska, A.Z. Effect of pre-treatment of blue honeysuckle berries on bioactive iridoid content. Food Chem. 2018, 240, 1087–1091. [Google Scholar] [CrossRef]
- Dawson, J.K. Concentration and Content of Secondary Metabolites in Fruit and Leaves of Haskap (Lonicera Caerulea L.); University of Saskatchewan: Saskatoon, SK, Canada, 2017. [Google Scholar]
- Marszałek, K.; Woźniak, Ł.; Skąpska, S.; Mitek, M. High pressure processing and thermal pasteurization of strawberry purée: Quality parameters and shelf life evaluation during cold storage. J. Food Sci. Technol. 2017, 54, 832–841. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, A.; Farid, M.; Silva, F.V. Strawberry puree processed by thermal, high pressure, or power ultrasound: Process energy requirements and quality modeling during storage. Food Sci. Technol. Int. 2017, 23, 293–309. [Google Scholar] [CrossRef]
- POLISH STANDARD PN-90/A-75101/04. Fruit and Vegetable Preserves. Preparation of Samples and Test Methods. Determination of Total Acidity; PKN: Plock, Poland, 1990. (In Polish) [Google Scholar]
- Goiffon, J.P.; Mouly, P.P.; Gaydou, E.M. Anthocyanic pigment determination in red fruit juices, concentrated juices and syrups using liquid chromatography. Anal. Chim. Acta 1999, 382, 39–50. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdyło, A. Effects of blackcurrant and apple mash blending on the phenolics contents, antioxidant capacity, and colour of juices. Czech J. Food Sci. 2009, 27, 338–351. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef]
- Dongare, M.L.; Buchade, P.B.; Shaligram, A.D. Refractive index based optical Brix measurement technique with equilateral angle prism for sugar and Allied Industries. Optik 2015, 126, 2383–2385. [Google Scholar] [CrossRef]
- Türkmen, İ.; Ekşi, A. Brix degree and sorbitol/xylitol level of authentic pomegranate (Punica granatum) juice. Food Chem. 2011, 127, 1404–1407. [Google Scholar] [CrossRef] [PubMed]
- Elik, A.; Yanık, D.K.; Maskan, M.; Göğüş, F. Influence of three different concentration techniques on evaporation rate, color and phenolics content of blueberry juice. J. Food Sci. Technol. 2016, 53, 2389–2395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolić, M.T.; Jurčević, I.L.; Krbavčić, I.P.; Marković, K.; Vahčić, N. Phenolic content, antioxidant capacity and quality of chokeberry (Aronia melanocarpa) products. Food Technol. Biotechnol. 2015, 53, 171–179. [Google Scholar] [CrossRef]
- Yuan, B.; Danao, M.G.C.; Stratton, J.E.; Weier, S.A.; Weller, C.L.; Lu, M. High pressure processing (HPP) of aronia berry purée: Effects on physicochemical properties, microbial counts, bioactive compounds, and antioxidant capacities. Innov. Food Sci. Emerg. Technol. 2018, 47, 249–255. [Google Scholar] [CrossRef]
- Wibowo, S.; Afuape, A.L.; De Man, S.; Bernaert, N.; Van Droogenbroeck, B.; Grauwet, T.; Van Loey, A.; Hendrickx, M. Thermal processing of kale purée: The impact of process intensity and storage on different quality related aspects. Innov. Food Sci. Emerg. Technol. 2019, 58, 102213. [Google Scholar] [CrossRef]
- Zhao, C.N.; Li, Y.; Meng, X.; Li, S.; Liu, Q.; Tang, G.Y.; Gan, R.Y.; Li, H. Bin Insight into the roles of vitamins C and D against cancer: Myth or truth? Cancer Lett. 2018, 431, 161–170. [Google Scholar] [CrossRef]
- Granger, M.; Eck, P. Dietary Vitamin C in Human Health. In Advances in Food and Nutrition Research; Academic Press: Boston, MA, USA, 2018; Volume 83, pp. 281–310. [Google Scholar] [CrossRef]
- Sapei, L.; Hwa, L. Study on the Kinetics of Vitamin C Degradation in Fresh Strawberry Juices. Proced. Chem. 2014, 9, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Mercali, G.D.; Jaeschke, D.P.; Tessaro, I.C.; Marczak, L.D.F. Study of vitamin C degradation in acerola pulp during ohmic and conventional heat treatment. LWT-Food Sci. Technol. 2012, 47, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Zümreoglu-Karan, B. The coordination chemistry of Vitamin C: An overview. Coord. Chem. Rev. 2006, 250, 2295–2307. [Google Scholar] [CrossRef]
- Herbig, A.L.; Maingonnat, J.F.; Renard, C.M.G.C. Oxygen availability in model solutions and purées during heat treatment and the impact on vitamin C degradation. LWT-Food Sci. Technol. 2017, 85, 493–499. [Google Scholar] [CrossRef] [Green Version]
- Chanoca, A.; Kovinich, N.; Burkel, B.; Stecha, S.; Bohorquez-Restrepo, A.; Ueda, T.; Eliceiri, K.W.; Grotewold, E.; Otegui, M.S. Anthocyanin vacuolar inclusions form by a microautophagy mechanism. Plant Cell 2015, 27, 2545–2599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danalache, F.; Mata, P.; Alves, V.D.; Moldão-Martins, M. Enzyme-Assisted Extraction of Fruit Juices. In Fruit Juices: Extraction, Composition, Quality and Analysis; Academic Press: Cambridge, MA, USA, 2017; pp. 183–200. ISBN 9780128024911. [Google Scholar]
- Casati, C.B.; Baeza, R.; Sanchez, V.; Catalano, A.; López, P.; Zamora, M.C. Thermal degradation kinetics of monomeric anthocyanins, colour changes and storage effect in elderberry juices. J. Berry Res. 2015, 5, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Turturicǎ, M.; Stǎnciuc, N.; Murean, C.; Râpeanu, G.; Croitoru, C. Thermal degradation of plum anthocyanins: Comparison of kinetics from simple to natural systems. J. Food Qual. 2018, 10. [Google Scholar] [CrossRef]
- Peron, D.V.; Fraga, S.; Antelo, F. Thermal degradation kinetics of anthocyanins extracted from juçara (Euterpe edulis Martius) and “Italia” grapes (Vitis vinifera L.), and the effect of heating on the antioxidant capacity. Food Chem. 2017, 232, 836–840. [Google Scholar] [CrossRef]
- Kalisz, S.; Oszmiański, J.; Hładyszowski, J.; Mitek, M. Stabilization of anthocyanin and skullcap flavone complexes–Investigations with computer simulation and experimental methods. Food Chem. 2013, 138, 491–500. [Google Scholar] [CrossRef]
- Chaovanalikit, A.; Thompson, M.M.; Wrolstad, R.E. Characterization and quantification of anthocyanins and polyphenolics in blue honeysuckle (Lonicera caerulea L.). J. Agric. Food Chem. 2004, 52, 848–852. [Google Scholar] [CrossRef]
- Oancea, S.; Călin, F. Changes in total phenolics and anthocyanins during blackberry, raspberry and cherry jam processing and storage. Rom. Biotechnol. Lett. 2016, 21, 11232–11237. [Google Scholar]
Symbol of the Puree | The Processing Method |
---|---|
SP0; VP0 | Non-thermal treatment fruit subjected to a sieving process |
SP2.5; VP2.5 | Thermal treatmentfruit for 2.5 min at 85 °C, and sieving |
SP5; VP5 | Thermal treatment fruit for 5 min at 85 °C and sieving |
SH; VH | Non-thermal treatment fruit subjected to a homogenization |
Variety | Symbol | Parameters | Time of Storage | ||
---|---|---|---|---|---|
After Production | Two Months | Four Months | |||
Sinoglaska | SP0 | TSS A | 12.6 ± 0.01 aE | 12.6 ± 0.01 aE | 12.6 ± 0.00 aE |
TTA B | 1.93 ± 0.00 aA | 1.95 ± 0.00 aA | 1.95 ± 0.01 aA | ||
pH | 2.61 ± 0.10 aB | 2.60 ± 0.01 aB | 2.60 ± 0.02 aB | ||
L-ascorbic acid | 13.75 ± 0.11 aD | 6.65 ± 0.02 bD | nd | ||
SP2.5 | TSS A | 14.0 ± 0.02 aD | 13.9 ± 0.01 aD | 13.9 ± 0.00 aD | |
TTA B | 1.90 ± 0.02 aA | 1.91 ± 0.10 aA | 1.92 ± 0.01 aA | ||
pH | 2.62 ± 0.07 aB | 2.61 ± 0.02 aB | 2.60 ± 0.02 aB | ||
L-ascorbic acid | 12.49 ± 0.04 aE | 5.32 ± 0.03 bE | nd | ||
SP5 | TSS A | 14.4 ± 0.01 aC | 14.4 ± 0.00 aC | 14.3 ± 0.00 aC | |
TTA B | 1.90 ± 0.06 aA | 1.91 ± 0.05 aA | 1.91 ± 0.04 aA | ||
pH | 2.63 ± 0.01 aB | 2.62 ± 0.00 aB | 2.62 ± 0.00 aB | ||
L-ascorbic acid | 10.68 ± 0.04 aF | 4.49 ± 0.03 bF | nd | ||
SH | TSS A | 12.7 ± 0.01 aE | 12.6 ± 0.00 aE | 12.6 ± 0.00 aE | |
TTA B | 1.92 ± 0.03 aA | 1.92 ± 0.02 aA | 1.93 ± 0.04 aA | ||
pH | 2.60 ± 0.00 aB | 2.60 ± 0.02 aB | 2.59 ± 0.00 aB | ||
L-ascorbic acid | 4.57 ± 0.04 aH | 2.30 ± 0.11 bH | nd | ||
Volshebnica | VP0 | TSS A | 14.3 ± 0.01 aC | 14.3 ± 0.01 aC | 14.3 ± 0.00 aC |
TTA B | 2.00 ± 0.00 aA | 2.01 ± 0.00 aA | 2.01 ± 0.01 aA | ||
pH | 2.90 ± 0.05 aA | 2.89 ± 0.01 aA | 2.88 ± 0.02 aA | ||
L-ascorbic acid | 20.72 ± 0.11 aA | 15.18 ± 0.02 bA | 12.67 ± 0.02 cA | ||
VP2.5 | TSS A | 15.3 ± 0.02 aB | 15.2 ± 0.01 aB | 15.2 ± 0.00 aB | |
TTA B | 1.98 ± 0.02 aA | 1.98 ± 0.10 aA | 1.99 ± 0.01 aA | ||
pH | 2.91 ± 0.20 aA | 2.90 ± 0.02 aA | 2.89 ± 0.00 aA | ||
L-ascorbic acid | 19.51 ± 0.04 aB | 13.23 ± 0.03 bB | 10.48 ± 0.02 cB | ||
VP5 | TSS A | 15.6 ± 0.01 aA | 15.3 ± 0.00 aA | 15.4 ± 0.01 aA | |
TTA B | 1.97 ± 0.02 aA | 1.97 ± 0.01 aA | 1.97 ± 0.01 aA | ||
pH | 2.91 ± 0.07 aA | 2.89 ± 0.00 aA | 2.89 ± 0.00 aA | ||
L-ascorbic acid | 17.93 ± 0.04 aC | 11.98 ± 0.03 bC | 7.32 ± 0.02 cC | ||
VH | TSS A | 14.2 ± 0.01 aC | 14.2 ± 0.00 aC | 14.2 ± 0.00 aC | |
TTA B | 2.01 ± 0.03 aA | 2.01 ± 0.02 aA | 2.02 ± 0.01 aA | ||
pH | 2.90 ± 0.05 aA | 2.87 ± 0.02 aA | 2.87 ± 0.00 aA | ||
L-ascorbic acid | 5.42 ± 0.04 aG | 3.14 ± 0.11 bG | nd |
Variety | Symbol | Compounds | Time of Storage | ||
---|---|---|---|---|---|
After Production | Two Months | Four Months | |||
Sinoglaska | SP0 | Cyanidin 3,5-O-diglucoside | 20.31 ± 0.47 aF | 12.83 ± 1.09 bE | 8.63 ± 0.15 cE |
Cyanidin 3-O-glucoside | 350.49 ± 1.44 aG | 283.61 ± 0.38 bH | 228.28 ± 1.62 cH | ||
Cyanidin 3-O-rutinoside | 10.36 ± 1.62 aE | 8.53 ± 0.72 bG | 7.21 ± 0.03 cG | ||
Pelargonidin 3-O-glucoside | 3.53 ± 0.13 aB | 2.85 ± 0.06 bC | 2.68 ± 0.05 cC | ||
Peonidin 3-O-glucoside | 15.69 ± 0.19 aF | 11.84 ± 0.03 bG | 9.73 ± 0.07 cG | ||
Peonidin 3-O-rutinoside | 1.51 ± 0.08 aB | 1.03 ± 0.02 cDE | 1.06 ± 0.10 bBC | ||
Total anthocyanins | 401.89 ± 3,93 aH | 320.69 ± 2,30 bG | 257.59 ± 2,02 cF | ||
SP2.5 | Cyanidin 3,5-O-diglucoside | 25.22 ± 0.09 aC | 12.73 ± 0.08 bE | 10.58 ± 0.10 cC | |
Cyanidin 3-O-glucoside | 384.11 ± 0.39 aE | 316.13 ± 0.40 bF | 275.44 ± 0.18 cE | ||
Cyanidin 3-O-rutinoside | 10.18 ± 0.06 aE | 9.18 ± 0.02 bF | 9.06 ± 0.02 cE | ||
Pelargonidin 3-O-glucoside | 3.56 ± 0.16 aB | 3.15 ± 0.01 bB | 3.03 ± 0.06 cB | ||
Peonidin 3-O-glucoside | 16.76 ± 0.15 aE | 13.25 ± 0.01 bF | 10.14 ± 0.02 cF | ||
Peonidin 3-O-rutinoside | 1.44 ± 0.07 aB | 1.08 ± 0.00 cCD | 1.15 ± 0.00 bB | ||
Total anthocyanins | 441.27 ± 0,92 aF | 355.40 ± 0.52 bE | 310.27 ± 0.38 cD | ||
SP5 | Cyanidin 3,5-O-diglucoside | 24.05 ± 0.05 aD | 15.52 ± 0.10 bB | 10.67 ± 0.19 cC | |
Cyanidin 3-O-glucoside | 443.49 ± 0.18 aC | 376.14 ± 0.13 bC | 303.16 ± 0.96 cD | ||
Cyanidin 3-O-rutinoside | 12.88 ± 0.01 aD | 10.84 ± 0.01 bE | 9.14 ± 0.06 cE | ||
Pelargonidin 3-O-glucoside | 4.22 ± 0.04 aA | 3.75 ± 0.04 bA | 3.54 ± 0.03 cA | ||
Peonidin 3-O-glucoside | 19.68 ± 0.06 aD | 15.90 ± 0.06 bC | 12.84 ± 0.04 cD | ||
Peonidin 3-O-rutinoside | 1.88 ± 0.00 aA | 1.53 ± 0.01 bA | 1.35 ± 0.02 cA | ||
Total anthocyanins | 506.20 ± 0.34 aD | 423.68 ± 0.35 bC | 340.70 ± 1.30 cC | ||
SH | Cyanidin 3,5-O-diglucoside | 25.13 ± 0.10 aC | 15.54 ± 0.08 bB | 6.41 ± 0.07 cF | |
Cyanidin 3-O-glucoside | 372.38 ± 0.58 aF | 338.91 ± 2.09 bE | 242.40 ± 0.51 cF | ||
Cyanidin 3-O-rutinoside | 9.97 ± 0.07 aEF | 9.13 ± 0.08 bF | 8.09 ± 0.15 cF | ||
Pelargonidin 3-O-glucoside | 3.28 ± 0.11 aC | 3.10 ± 0.01 bB | 2.68 ± 0.10 cC | ||
Peonidin 3-O-glucoside | 16.51 ± 0.09 aE | 13.91 ± 0.82 bE | 11.37 ± 0.16 cE | ||
Peonidin 3-O-rutinoside | 1.45 ± 0.00 aB | 1.27 ± 0.00 bB | 1.10 ± 0.00 cB | ||
Total anthocyanins | 428.72 ± 0.95 aG | 381.86 ± 3.08 bD | 272.05 ± 0.99 cE | ||
Volshebnica | VP0 | Cyanidin 3,5-O-diglucoside | 19.43 ± 0.01 aG | 10.19 ± 0.88 bF | 10.09 ± 0.04 bD |
Cyanidin 3-O-glucoside | 391.10 ± 0.17 aD | 290.52 ± 0.02 bG | 232.25 ± 1.21 cG | ||
Cyanidin 3-O-rutinoside | 21.62 ± 0.00 aC | 15.41 ± 0.01 bD | 10.94 ± 0.01 cD | ||
Pelargonidin 3-O-glucoside | 2.37 ± 0.12 aD | 1.95 ± 0.04 bE | 1.62 ± 0.01 cG | ||
Peonidin 3-O-glucoside | 21.65 ± 0.02 aC | 14.71 ± 0.00 bD | 14.13 ± 0.65 bC | ||
Peonidin 3-O-rutinoside | 1.22 ± 0.01 aC | 0.95 ± 0.08 bE | 0.82 ± 0.00 cD | ||
Total anthocyanins | 457.39 ± 0.33 aE | 333.73 ± 1.03 bF | 269.85 ± 1.92 cE | ||
VP2.5 | Cyanidin 3,5-O-diglucoside | 21.57 ± 0.10 aE | 14.76 ± 0.04 bC | 11.16 ± 0.06 cB | |
Cyanidin 3-O-glucoside | 466.82 ± 0.18 aC | 371.42 ± 0.16 bD | 306.57 ± 0.80 cC | ||
Cyanidin 3-O-rutinoside | 24.14 ± 0.02 aB | 17.99 ± 0.01 bB | 17.70 ± 0.05 cA | ||
Pelargonidin 3-O-glucoside | 3.14 ± 0.06 aC | 2.89 ± 0.01 bC | 2.50 ± 0.06 cD | ||
Peonidin 3-O-glucoside | 24.88 ± 0.02 aB | 16.98 ± 0.00 bB | 15.09 ± 0.09 cB | ||
Peonidin 3-O-rutinoside | 1.20 ± 0.00 aC | 1.18 ± 0.02 aBC | 0.98 ± 0.05 bC | ||
Total anthocyanins | 541.75 ± 0.38 aC | 424.83 ± 0.22 bC | 364.39 ± 1.11 cB | ||
VP5 | Cyanidin 3,5-O-diglucoside | 34.54 ± 0.08 aA | 25.51 ± 0.51 bA | 20.55 ± 1.44 cA | |
Cyanidin 3-O-glucoside | 556.75 ± 0.40 aA | 431.74 ± 2.98 bA | 360.96 ± 1.62 cA | ||
Cyanidin 3-O-rutinoside | 26.69 ± 0.02 aA | 20.32 ± 0.35 bA | 17.44 ± 1.09 cB | ||
Pelargonidin 3-O-glucoside | 2.52 ± 0.01 aE | 2.36 ± 0.06 bD | 2.32 ± 0.08 bE | ||
Peonidin 3-O-glucoside | 28.24 ± 0.01 aA | 19.21 ± 0.22 bA | 17.31 ± 0.72 cA | ||
Peonidin 3-O-rutinoside | 1.26 ± 0.00 aC | 0.98 ± 0.32 bDE | 0.79 ± 0.03 cE | ||
Total anthocyanins | 649.8 ± 0.52 aA | 500.28 ± 4.44 bA | 419.41 ± 5.28 cA | ||
VH | Cyanidin 3,5-O-diglucoside | 26.75 ± 0.47 aB | 13.88 ± 0.02 bD | 11.21 ± 0.15 cB | |
Cyanidin 3-O-glucoside | 488.55 ± 2.60 aB | 379.18 ± 0.61 bB | 321.88 ± 1.62 cB | ||
Cyanidin 3-O-rutinoside | 21.76 ± 0.31 aC | 17.43 ± 0.01 bC | 15.75 ± 0.15 cC | ||
Pelargonidin 3-O-glucoside | 2.28 ± 0.13 aD | 2.30 ± 0.04 aD | 2.02 ± 0.03 bF | ||
Peonidin 3-O-glucoside | 24.48 ± 0.21 aB | 18.92 ± 0.04 bA | 15.08 ± 0.09 cB | ||
Peonidin 3-O-rutinoside | 1.56 ± 0.05 aB | 1.23 ± 0.00 bB | 0.95 ± 0.05 cC | ||
Total anthocyanins | 565.38 ± 3.77 aB | 432.94 ± 0.72 bB | 366.89 ± 2.09 cB |
Variety | Symbol | Time of Storage | ||
---|---|---|---|---|
After Production | 2 Months | 4 Months | ||
Sinoglaska | SP0 | 1160.5 ± 1.24 aH | 986.6 ± 2.21 bH | 920.6 ± 1.32 cH |
SP2.5 | 1207.7 ± 0.84 aF | 1141.4 ± 2.54 bF | 1003.3 ± 1.54 cF | |
SP5 | 1398.3 ± 1.52 aD | 1189.5 ± 1.42 bE | 1058.6 ± 0.98 cD | |
SH | 1192.8 ± 2.42 aG | 1099.7 ± 3.53 bG | 954.5 ± 0.42 cG | |
Volshebnica | VP0 | 1321.9 ± 1.21 aE | 1272.9 ± 0.08 bC | 1027.7 ± 1.43 cE |
VP2.5 | 1446.8 ± 0.02 aC | 1216.3 ± 0.07 bD | 1170.1 ± 0.03 cB | |
VP5 | 1635.7 ± 1.31 aA | 1467.9 ± 1.40 bA | 1206.5 ± 1.10 cA | |
VH | 1498.3 ± 1.21 aB | 1311.1 ± 0.09 bB | 1162.3 ± 0.08 cC |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grobelna, A.; Kalisz, S.; Kieliszek, M. Effect of Processing Methods and Storage Time on the Content of Bioactive Compounds in Blue Honeysuckle Berry Purees. Agronomy 2019, 9, 860. https://doi.org/10.3390/agronomy9120860
Grobelna A, Kalisz S, Kieliszek M. Effect of Processing Methods and Storage Time on the Content of Bioactive Compounds in Blue Honeysuckle Berry Purees. Agronomy. 2019; 9(12):860. https://doi.org/10.3390/agronomy9120860
Chicago/Turabian StyleGrobelna, Anna, Stanisław Kalisz, and Marek Kieliszek. 2019. "Effect of Processing Methods and Storage Time on the Content of Bioactive Compounds in Blue Honeysuckle Berry Purees" Agronomy 9, no. 12: 860. https://doi.org/10.3390/agronomy9120860
APA StyleGrobelna, A., Kalisz, S., & Kieliszek, M. (2019). Effect of Processing Methods and Storage Time on the Content of Bioactive Compounds in Blue Honeysuckle Berry Purees. Agronomy, 9(12), 860. https://doi.org/10.3390/agronomy9120860