Wheat Response to No-Tillage and Nitrogen Fertilization in a Long-Term Faba Bean-Based Rotation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Wheat Experimental Design
2.3. Wheat Biomass Yield
2.4. Wheat Grain Quality
2.5. Soil Analysis
2.6. Land and Rainfall Use Efficiency
2.7. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Grain Yield and Yield Components
3.3. Wheat Grain Quality
3.4. Rainfall Use Efficiency (RUE) and Land Use Efficiency (LUE)
3.5. Soil Management on Topsoil Quality
4. Discussion
4.1. Effect of Weather Conditions on Crop Productivity
4.2. Effect of Main Treatments on Durum Wheat Production
4.2.1. Effect of Tillage System
4.2.2. Effects of N Fertilizer Rate
4.2.3. Effect of Cropping System
4.3. Analysis of Wheat Quality Parameters
4.4. Effect of Soil Management on Topsoil Quality
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tedone, L.; Verdini, L.; Grassano, N.; Tarraf, W. De Mastro G. Optimizing nitrogen in order to improve the efficiency, eco-physiology, yield and quality on one cultivar of durum wheat. Ital. J. Agron. 2014, 9, 49–54. [Google Scholar] [CrossRef]
- D’Egidio, M.G. Overview on pasta in the world. Tec. Molit. Int. 2007, 58, 92–97. [Google Scholar] [CrossRef]
- Rautaray, S.K.; Mishra, A.; Verma, O.P. Energy efficiency, productivity and profitability of rice (Oryza sativa L.) based cropping systems for selected conservation practices. Arch. Agron. Soil Sci. 2017, 63, 1993–2006. [Google Scholar] [CrossRef]
- De Vita, P.; Di Paolo, E.; Fecondo, G.; Di Fonzo, N.; Pisante, M. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tillage Res. 2007, 92, 69–78. [Google Scholar] [CrossRef]
- Alhajj Ali, S.; Tedone, L.; De Mastro, G. A compare on of the energy consumption of rainfed durum wheat under different management scenarios in southern Italy. Energy 2013, 61, 308–318. [Google Scholar] [CrossRef]
- Alhajj Ali, S.; Tedone, L.; Verdini, L.; De Mastro, G. Effect of different crop management systems on rainfed durum wheat greenhouse gas emissions and carbon footprint under Mediterranean conditions. J. Clean. Prod. 2017, 140, 608–621. [Google Scholar] [CrossRef]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Bedoussac, L.; Justes, E. The efficiency of a durum wheat-winter pea intercrop to improve yield and wheat grain protein concentration depends on N availability during early growth. Plant Soil 2010, 330, 19–35. [Google Scholar] [CrossRef]
- Nemecek, T.; von Richthofen, J.-S.; Dubois, G.; Casta, P.; Charles, R.; Pahl, H. Environmental impacts of introducing grain legumes into European crop rotations. Eur. J. Agron. 2008, 28, 380–393. [Google Scholar] [CrossRef]
- Kirkegaard, J.A.; Christen, O.; Krupinsky, J.; Layzell, D. Break crop benefits in temperate wheat production. Field Crops Res. 2008, 107, 185–195. [Google Scholar] [CrossRef]
- Galantini, J.A.; Landriscini, M.R.; Iglesias, J.O.; Miglierinac, A.M.; Rosell, R.A. The effects of crop rotation and fertilization on wheat productivity in the Pampean semiarid region of Argentina: 2. Nutrient balance, yield and grain quality. Soil Tillage Res. 2000, 53, 137–144. [Google Scholar] [CrossRef]
- Lòpez-Bellido, L.; Fuentes, M.; Castillo, J.E.; Lopez-Garrido, F.J. Effects of tillage, crop rotation and nitrogen, fertilization on wheat-grain quality grown under rainfed Mediterranean conditions. Field Crops Res. 1998, 57, 265–276. [Google Scholar] [CrossRef]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. B 2008, 363, 543–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruisi, P.; Giambalvo, D.; Saia, S.; Di Miceli, G.; Frenda, A.S.; Plaia, A.; Amato, G. Conservation tillage in a semiarid Mediterranean environment: Results of 20 years of research. Ital. J. Agron. 2014, 9, 560. [Google Scholar] [CrossRef]
- Uri, N.D.; Atwood, J.D.; Sanabria, J. The environment benefit and cost of conservation tillage. Environ. Geol. 1999, 38, 111–125. [Google Scholar] [CrossRef]
- Kirkegaard, J.A. A review of trends in wheat yield responses to conservation cropping in Australia. Aust. J. Exp. Agric. 1995, 35, 835–848. [Google Scholar] [CrossRef]
- Jordan, V.W.; Leake, A.R.; Ogilvy, S.E. Agronomic and environmental implications of soil management practices in integrated farming systems. Asp. Appl. Biol. 2000, 62, 61–66. [Google Scholar]
- West, T.O.; Post, W.M. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Madari, B.; Machado, P.L.O.A.; Torres, E.; De Andrade, A.G.; Valencia, L.I.O. No tillage and crop rotation effects on soil aggregation and organic carbon in a Rhodic Ferralsol from southern Brazil. Soil Tillage Res. 2005, 80, 185–200. [Google Scholar] [CrossRef]
- Tabaglio, V.; Gavazzi, C.; Menta, C. The influence of no-till, conventional tillage and nitrogen fertilization on physico-chemical and biological indicators after three years of monoculture barley. Ital. J. Agron. 2008, 3, 233–240. [Google Scholar] [CrossRef]
- FAO AQUASTAT. Database Query, FAO of the UN, Commissioned for the Exclusive Use of FAO-Conservation Agriculture. 2012. Available online: http://www.fao.org/nr/water/aquastat/data/query/results (accessed on 10 November 2018).
- De Sanctis, G.; Roggero, P.P.; Seddaiu, G.; Orsinic, R.; Porter, C.H.; Jones, J.W. Long-term no tillage increased soil organic carbon content of rain-fed cereal systems in a Mediterranean area. Eur. J. Agron. 2012, 40, 18–27. [Google Scholar] [CrossRef]
- Campiglia, E.; Mancinelli, R.; De Stefanis, E.; Pucciarmati, S.; Radicetti, E. The long-term effects of conventional and organic cropping systems, tillage managements and weather conditions on yield and grain quality of durum wheat (Triticum durum Desf.) in the Mediterranean environment of Central Italy. Field Crops Res. 2015, 176, 34–44. [Google Scholar] [CrossRef]
- Seddaiu, G.; Iocola, I.; Farina, R.; Orsini, R.; Iezzi, G.; Roggero, P.P. Long-term effects of tillage practices and N fertilization in rainfed Mediterranean cropping systems: Durum wheat, sunflower and maize grain yield. Eur. J. Agron. 2016, 77, 166–178. [Google Scholar] [CrossRef]
- Mazzoncini, M.; Antichi, D.; Di Benec, C.; Risaliti, R.; Petri, M.; Bonari, E. Soil carbon and nitrogen changes after 28 years of no-tillage management under Mediterranean conditions. Eur. J. Agron. 2016, 77, 156–165. [Google Scholar] [CrossRef]
- Ruisi, P.; Saia, S.; Badagliacca, G.; Amato, G.; Frenda, A.S.; Giambalvo, D.; Di Miceli, G. Long-term effects of no tillage treatment on soil N availability, N uptake, and 15N-fertilizer recovery of durum wheat differ in relation to crop sequence. Field Crops Res. 2016, 189, 51–58. [Google Scholar] [CrossRef]
- Hernanz, J.L.; Lopez, R.; Navarrete, L.; Sanchez-Giron, V. Long-term effects of tillage systems and rotations on soil structural stability and organic carbon stratification in semiarid central Spain. Soil Tillage Res. 2002, 66, 129–141. [Google Scholar] [CrossRef]
- Al-Issa, T.A.; Samarah, N.H. Tillage practices in wheat production under rainfed conditions in Jordan: An economic comparison. World J. Agric. Sci. 2006, 2, 322–325. [Google Scholar]
- Lòpez-Fando, C.; Dorado, J.; Pardo, M.T. Effects of zone-tillage in rotation with no-tillage on soil properties and crop yields in a semi-arid soil from central Spain. Soil Tillage Res. 2007, 95, 266–276. [Google Scholar] [CrossRef]
- Munoz-Romero, V.; Benítez-Vega, J.; López-Bellido, L.; López-Bellido, R.J. Monitoring wheat root development in a rainfed vertisol: Tillage effect. Eur. J. Agron. 2010, 33, 182–187. [Google Scholar] [CrossRef]
- Zentner, R.P.; Bowren, K.E.; Edwards, W.; Campbell, C.A. Effects of crop rotations and fertilization on yields and quality of spring wheat grown on a black Chernozem in north central Saskatchewan. Can. J. Plant Sci. 1990, 70, 383–397. [Google Scholar] [CrossRef]
- Cox, D.J.; Shelton, D.R. Genotype-by-tillage interactions inhard red winter wheat quality evaluation. Agron. J. 1992, 84, 627–630. [Google Scholar] [CrossRef]
- Borghi, B.; Giordani, G.; Corbellini, M.; Vaccino, P.; Guermandi, M.; Toderi, G. Influence of crop rotation, manure and fertilizers on bread making quality of wheat Triticum aestivum L. Eur. J. Agron. 1995, 4, 37–45. [Google Scholar] [CrossRef]
- Stoddard, F.L.; Marshall, D.R. Variability in grain protein in Australian hexaploid wheats. Aust. J. Agric. Res. 1990, 41, 277–288. [Google Scholar] [CrossRef]
- Dong, Z.; Layzell, D.B. Why do legume nodules evolve hydrogen gas? In Nitrogen Fixation: Global Perspectives, Proceedings of the 13th International Congress on Nitrogen Fixation, Hamilton, ON, Canada, 2–7 July 2001; Finan, T., O’Brian, M., Layzell, D., Vessey, K., Newton, W., Eds.; CABI Publ.: Hamilton, ON, Canada, 2002; pp. 331–335. [Google Scholar]
- Golding, A.-L.; Zou, Y.; Yang, X.; Flynn, B.; Dong, Z. Plant growth promoting H2-oxidizing bacteria as seed inoculants for cereal crops. Agric. Sci. 2012, 3, 510–516. [Google Scholar] [CrossRef]
- Cochran, W.G. Long-term agricultural experiments. Suppl. J. R. Stat. Soc. 1939, 6, 104–148. [Google Scholar] [CrossRef]
- CGC (Canadian Grain Commission). Official Grain Grading Guide; Agriculture Edition: Winnipeg, MB, Canada, 2005; ISSN 1704-5118. [Google Scholar]
- Gardner, W.H. Water content. In Methods of Soil Analysis, Part 1. Agronomy Monogr., 2nd ed.; Klute, A., Ed.; American Society of Agronomy—Soil Science Society of America: Madison, WI, USA, 1986; pp. 493–544. [Google Scholar] [CrossRef]
- Quaye, A.K.; Hall, C.A.S.; Luzadis, V.A. Agricultural land use efficiency and food crop production in Ghana. Environ. Dev. Sustain. 2010, 12, 967–983. [Google Scholar] [CrossRef]
- Gwenzi, W.; Taru, M.; Mutema, Z.; Gotosa, J.; Mushiri, S.M. Tillage system and genotype effects on rainfed maize (Zea mays L.) productivity in semi-arid Zimbabwe. Afr. J. Agric. Res. 2008, 3, 101–110. [Google Scholar]
- SAS Institute. SAS/STAT 9.2 User’s Guide; SAS Inst.: Cary, NC, USA, 2008. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Santín-Montanyá, M.I.; Fernández-Getino, A.P.; Zambrana, E.; Tenorio, J.L. Effects of tillage on winter wheat production in Mediterranean dryland fields. Arid Land Res. Manag. 2017, 1–14. [Google Scholar] [CrossRef]
- Yu, H.Y.; Peng, W.Y.; Ma, X.; Zhang, K.L. Effects of no-tillage on soil water content and physical properties of spring corn fields in semiarid region of northern China. Ying Yong Sheng Tai Xue Bao 2011, 22, 99–104, (In Chinese with English abstract). [Google Scholar] [PubMed]
- Shao, Y.; Xie, Y.; Wanga, C.; Yue, J.; Yao, Y.; Li, X.; Liu, W.; Zhu, Y.; Guo, T. Effects of different soil conservation tillage approaches on soil nutrients, water use and wheat-maize yield in rainfed dry-land regions of North China. Eur. J. Agron. 2016, 81, 37–45. [Google Scholar] [CrossRef]
- Troccoli, A.; Maddaluno, C.; Mucci, M.; Russo, M.; Rinaldi, M. Is it appropriate to support the farmers for adopting conservation agriculture? Economic and environmental impact assessment. Ital. J. Agron. 2015, 10, 169–177. [Google Scholar] [CrossRef]
- Xie, R.Z.; Li, S.K.; Jin, Y.Z.; Li, X.J.; Tang, Q.X.; Wang, K.R.; Gao, S.J. The trends of crop yield responses to conservation tillage in China. Sci. Agric. Sin. 2008, 41, 397–404, (In Chinese with English Abstract). [Google Scholar]
- Sharma, K.L.; Grace, J.K.; Mishra, P.K.; Venkateswarlu, B.; Nagdeve, M.B.; Gabhane, V.V.; Sankar, G.M.; Korwar, G.R.; Chary, G.R.; Rao, C.S.; et al. Effect of Soil and Nutrient-Management Treatments on Soil Quality Indices under Cotton-Based Production System in Rainfed Semi-arid Tropical Vertisol. Commun. Soil Sci. Plant Anal. 2011, 42, 1298–1315. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Nolot, J.M.; Raffaillac, D.; Justes, E. Innovative cropping systems to reduce N inputs and maintain wheat yields by inserting grain legumes and cover crops in southwestern France. Eur. J. Agron. 2017, 82, 331–341. [Google Scholar] [CrossRef]
- Chakraborty, D.; Nagarajan, S.; Aggarwal, P.; Gupta, V.K.; Tomar, R.K.; Garg, R.N.; Sahoo, R.N.; Sarkar, A.; Chopra, U.K.; Sarma, K.S.S.; et al. Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment. Agric. Water Manag. 2008, 95, 1323–1334. [Google Scholar] [CrossRef]
- Jan, M.; Khan, M.; Khan, A.; Arif, M.; Farhatullah Jan, D.; Saeed, M.; Afridi, M.Z. Improving wheat productivity through source and timing of nitrogen fertilization. Pak. J. Bot. 2011, 43, 905–914. [Google Scholar]
- Rial-Lovera, K.; Davies, W.P.; Cannon, N.D.; Conway, J.S. Influence of tillage systems and nitrogen management on grain yield, grain protein and nitrogen-use efficiency in UK spring wheat. J. Agric. Sci. 2016, 154, 1437–1452. [Google Scholar] [CrossRef]
- Kopke, U.; Nemecek, T. Ecological services of faba bean. Field Crops Res. 2010, 115, 217–233. [Google Scholar] [CrossRef]
- Garrido-Lestache, E.; López-Bellido, R.J.; López-Bellido, L. Durum wheat quality under Mediterranean conditions as affected by N rate, timing and splitting, N form and S fertilization. Eur. J. Agron. 2005, 23, 265–278. [Google Scholar] [CrossRef]
- Abad, A.; Michelena, A.; Lloveras, J. Effects of nitrogen supply on wheat and on soil nitrate. Agron. Sustain. Dev. 2005, 25, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Khakbazan, M.; Mohr, R.M.; Derksen, D.A.; Monreal, M.A.; Grant, C.A.; Zentner, R.P.; Moulin, A.P.; McLaren, D.L.; Irvine, R.B.; Nagy, C.N. Effects of alternative management practices on the economics, energy and GHG emissions of a wheat– pea cropping system in the Canadian prairies. Soil Tillage Res. 2009, 104, 30–38. [Google Scholar] [CrossRef]
- Jensen, E.S.; Peoples, M.B.; Hauggaard-Nielsen, H. Faba bean in cropping systems. Field Crops Res. 2010, 115, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Amato, G.; Ruisi, P.; Frenda, A.S.; Di Miceli, G.; Saia, S.; Plaia, A.; Giambalvo, D. Long-term tillage and crop sequence effects on wheat grain yield and quality. Agron. J. 2013, 105, 1317–1327. [Google Scholar] [CrossRef]
- Von Richthofen, J.-S.; Pahl, H.; Bouttet, D.; Casta, P.; Cartrysse, C.; Charles, R.; Lafarga, A. What do European farmers think about grain legumes? Grain Leg. 2006, 45, 14–15. [Google Scholar]
- Gerba, L.; Getachew, B.; Walelign, W. Nitrogen fertilization effects on grain quality of durum wheat (Triticum turgidum L. var. durum) varieties in central Ethiopia. Agric. Sci. 2013, 4, 123. [Google Scholar] [CrossRef]
- Feil, B. The inverse yield-protein relationship in cereals: Possibilities and limitations for genetically improving the grain protein yield. Trends Agron. 1997, 1, 103–119. [Google Scholar]
- Abaye, A.O.; Brann, D.E.; Alley, M.M.; Griffey, C.A. Winter Durum Wheat: Do We Have All the Answers; Virginia Tech Publication: Petersburg, VA, USA, 1997; pp. 424–802. [Google Scholar]
- Garrido-Lestache, E.; López-Bellido, R.J.; López-Bellido, L. Effect of N rate, timing and splitting and N type on bread-making quality in hard red spring wheat under rainfed Mediterranean conditions. Field Crops Res. 2004, 85, 213–236. [Google Scholar] [CrossRef]
- Farrer, D.C.; Randy, W.; Ronnie, H.J.; Paul, M.; Jeffrey, G.W. Minimizing protein variability in soft red winter wheat: Impact of nitrogen application timing and rate. Agron. J. 2006, 98, 1137–1145. [Google Scholar] [CrossRef]
- Ames, N.P.; Clarke, J.M.; Dexter, J.E.; Woods, S.M.; Selles, F.; Marchylo, B. Effects of nitrogen fertilizer on protein quantity and gluten strength parameters in durum wheat (Triticum turgidum L. var. durum) cultivars of variable Gluten strength. Cereal Chem. 2003, 80, 203–211. [Google Scholar] [CrossRef]
- Grierson, I.T. Effects of varying tillage procedures on crop growth factors in southern Australia. In Proceedings of the 8th Conference of the International Soil Tillage Research Organization (ISTRO), Stuttgart, Gremany, 8–15 September 1979; University of Hohenheim: Stuttgart, Germany, 1979; Volume 1. [Google Scholar]
- Mathew, R.P.; Feng, Y.; Githinji, L.; Ankumah, R.; Balkcom, K.S. Impact of No-Tillage and Conventional Tillage Systems on Soil Microbial Communities. Appl. Environ. Soil Sci. 2012, 2012, 548620. [Google Scholar] [CrossRef]
- Ercoli, L.; Masoni, A.; Pampana, S.; Mariotti, M.; Arduini, I. The response of durum wheat to the preceding crop in a mediterranean environment. Sci. World J. 2014, 2014, 717562. [Google Scholar] [CrossRef] [PubMed]
- Doran, J.W. Soil microbial and biochemical changes associated with reduced tillage. Soil Sci. Soc. Am. J. 1980, 44, 765–771. [Google Scholar] [CrossRef]
- Hughes, J.F.; Herridge, D.F. Effect of tillage on yield, nodulation and nitrogen fixation of soybeans in far north-coastal New South Wales. Aust. J. Exp. Agric. 1989, 29, 671–677. [Google Scholar] [CrossRef]
- Ercoli, L.; Masoni, A.; Mariotti, M.; Pampana, S.; Pellegrino, E.; Arduini, I. Effect of preceding crop on the agronomic and economic performance of durum wheat in the transition from conventional to reduced tillage. Eur. J. Agron. 2017, 82, 125–133. [Google Scholar] [CrossRef]
Characteristics | Unit | Value |
---|---|---|
Total N | % | 0.196 |
P2O5 Assimilable | ppm | 40 |
NO3-N | ppm | 14.3 |
Amminium | ppm | trace |
Organic Matter | % | 2.8 |
Total Lime | % | 8.8 |
pH | - | 7.72 |
Sand | % | 39.78 |
Silt | % | 37.40 |
Clay | % | 22.82 |
Month | 2009–2010 | 2010–2011 | 2011–2012 | 50-year Mean | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rainfall (mm) | Tmax (°C) | Tmin (°C) | Rainfall (mm) | Tmax (°C) | Tmin (°C) | Rainfall (mm) | Tmax (°C) | Tmin (°C) | Rainfall (mm) | Tmax (°C) | Tmin (°C) | |
October | 19.2 | 22.8 | 14.1 | 109.2 | 21.8 | 13.3 | 11.4 | 23.3 | 13.9 | 61.8 | 24.3 | 11.3 |
November | 6.9 | 19 | 8.6 | 51.8 | 20.2 | 11 | 63 | 19 | 10.9 | 77.3 | 19.2 | 6.8 |
December | 14.5 | 16.8 | 9.0 | 7.8 | 14.6 | 6.4 | 53.1 | 15.9 | 6.9 | 79.3 | 14.4 | 4.8 |
January | 91 | 14.3 | 6.8 | 71.6 | 12.7 | 5 | 67.1 | 13.5 | 4.5 | 67.7 | 12.8 | 3.8 |
February | 64.8 | 16.2 | 7.3 | 59.4 | 14.4 | 5.5 | 112 | 11.2 | 4.7 | 48.8 | 13.9 | 3.7 |
March | 58.7 | 17.1 | 7.8 | 123.7 | 16 | 8 | 12.4 | 17.7 | 7.2 | 55.4 | 17 | 4.5 |
April | 50.3 | 21.2 | 10.6 | 58.5 | 21.4 | 10.2 | 56.9 | 18.7 | 8.7 | 34.5 | 19.7 | 7.7 |
May | 32.8 | 24.4 | 14.9 | 26.1 | 24.3 | 14.1 | 22.7 | 23.7 | 11.9 | 29.3 | 25.2 | 11.4 |
June | 15.9 | 29.7 | 18.5 | 20 | 30.1 | 18.6 | 6.1 | 30.9 | 17.8 | 17.9 | 29.7 | 15.4 |
Total | 354 | 528 | 404.7 | 472 |
Cropping Year (Y) | Tillage (T) | Nitrogen Rate (kg ha−1 N) | Mean | ||||
---|---|---|---|---|---|---|---|
Test | 30 | 60 | 90 | ||||
2009–2010 (WW) | CT | 4.3 | 4.0 | 3.7 | 3.7 | 3.9 | |
RT | 4.2 | 3.6 | 3.4 | 3.4 | 3.6 | ||
NT | 4.7 | 5.9 | 5.3 | 5.1 | 5.5 | ||
Mean | 4.4 | 4.5 | 4.1 | 4.1 | 4.3c | ||
2010–2011 (FW) | CT | 5.1 | 5.3 | 5.2 | 4.6 | 5.0 | |
RT | 5.4 | 4.6 | 4.3 | 4.5 | 4.7 | ||
NT | 5.2 | 4.8 | 5.5 | 5.8 | 5.3 | ||
Mean | 5.2 | 4.9 | 5.0 | 5.0 | 5.0b | ||
2011–2012 (FW) | CT | 6.3 | 6.3 | 6.7 | 6.4 | 6.5 | |
RT | 6.6 | 6.1 | 5.7 | 5.2 | 5.9 | ||
NT | 6.5 | 6.9 | 6.7 | 6.3 | 6.6 | ||
Mean | 6.5 | 6.5 | 6.4 | 6.0 | 6.3a | ||
Tillage mean | CT | 5.2 | 5.2 | 5.2 | 4.9 | 5.1 | |
RT | 5.4 | 4.8 | 4.5 | 4.4 | 4.7 | ||
NT | 5.5 | 5.9 | 5.8 | 5.7 | 5.8 | ||
N rate mean | 5.4a | 5.3a | 5.2a | 5.0a | 5.2 | ||
ANOVA | Y | T | N | N × T | N × Y | Y × T | Y × T × N |
*** | *** | ns | ns | ns | ** | ns |
Effect of Treatment | Yield Component | Quality Parameters | SWC (%) | LUE m−2 kg−1 | RUE kg Grain ha−1 mm−1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Straw t ha−1 | HI | Plant Height cm | Spikes N m−2 | Protein (%) | Hectolitre Weight (kg hL−1) | Broken and Shriveled Grains (%) | Piebald Grains (%) | Grain Humidity (%) | ||||
Tillage (T) | * | *** | ns | ns | *** | *** | *** | *** | ** | * | ** | *** |
CT | 7.3ab | 0.41b | 84.3 | 488.7 | 14.9a | 76.5b | 6.4a | 3.4b | 12.0a | 16.9a | 2.1b | 12.2b |
RT | 6.9ab | 0.41b | 85.7 | 512.5 | 14.6a | 77.0b | 7.6a | 3.5b | 11.2b | 16b | 2.5a | 11.3b |
NT | 6.6b | 0.47a | 82.2 | 501.4 | 13.0b | 79.7a | 2.6b | 14.1a | 11.5b | 17.2a | 1.8b | 13.7a |
Nitrogen rate (N) | ns | *** | ns | ns | *** | ns | *** | *** | ns | * | ns | ns |
0 | 6.7 | 0.45c | 82.6 | 473.3 | 13.3d | 77.5 | 3.4c | 14.1a | 11.8 | 17.4a | 2.0 | 12.8 |
30 | 6.8 | 0.44bc | 82.6 | 480.1 | 14.1c | 77.5 | 4.9b | 7.7b | 11.5 | 17ab | 2.2 | 12.5 |
60 | 7.0 | 0.42ab | 85.3 | 519.0 | 14.4b | 77.1 | 6.4ab | 3.5b | 11.4 | 16.5ab | 2.1 | 12.2 |
90 | 7.2 | 0.41a | 84.8 | 531.1 | 14.8a | 79.0 | 7.5a | 2.6b | 11.4 | 16b | 2.2 | 12.0 |
Cropping year (Y) | *** | ns | ns | *** | * | *** | ns | *** | *** | *** | *** | *** |
2010-WW | 5.7c | 0.43 | 82.7 | 554.5a | 14.0b | 74.1c | 5.4a | 12.8a | 12.6a | 23.15a | 2.7a | 12.1b |
2011-FW | 6.5b | 0.43 | 83.3 | 452.0b | 14.4a | 78.7b | 6.2a | 6.2b | 11.0b | 13.6b | 2.1b | 9.5c |
2012-FW | 8.5a | 0.42 | 86.3 | 496.1b | 14.1ab | 80.4a | 5.1a | 2.0b | 10.0c | 13.4b | 1.6c | 15.6a |
Mean | 6.9 | 0.43 | 84.1 | 500.9 | 14.2 | 77.8 | 5.5 | 7.0 | 11.5 | 16.7 | 2.1 | 12.4 |
Effect of interaction | ||||||||||||
Y × T | ns | *** | ns | ns | * | *** | ** | ns | ** | *** | * | * |
Y × N | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
T × N | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Y × T × N | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Treatments * | Test | 30 | 60 | 90 | Mean | |
---|---|---|---|---|---|---|
Tillage | CT | 39.6 | 43.6 | 47.9 | 45.2 | 44.0a |
RT | 31.9 | 33.3 | 54.5 | 42.1 | 40.5a | |
NT | 19.2 | 21.5 | 28.2 | 25.5 | 23.6b | |
Soil Depth (cm) | 0–30 | 43.3 | 47.0 | 61.7 | 54.5 | 51.7a |
30–60 | 25.8 | 29.9 | 32.6 | 34.0 | 30.6b | |
60–90 | 21.2 | 21.4 | 35.7 | 24.4 | 25.7b | |
Year | 1st year (WW) | 15.3 | 19.4 | 22.8 | 20.7 | 19.5c |
2nd year (FW) | 38.4 | 34.2 | 44.6 | 44.2 | 40.3b | |
3rd year (FW) | 37.2 | 44.7 | 63.0 | 48.0 | 48.2a | |
Mean | 30.2b | 32.8b | 43.5a | 37.6ab | 36.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.A.; Tedone, L.; Verdini, L.; Cazzato, E.; De Mastro, G. Wheat Response to No-Tillage and Nitrogen Fertilization in a Long-Term Faba Bean-Based Rotation. Agronomy 2019, 9, 50. https://doi.org/10.3390/agronomy9020050
Ali SA, Tedone L, Verdini L, Cazzato E, De Mastro G. Wheat Response to No-Tillage and Nitrogen Fertilization in a Long-Term Faba Bean-Based Rotation. Agronomy. 2019; 9(2):50. https://doi.org/10.3390/agronomy9020050
Chicago/Turabian StyleAli, Salem Alhajj, Luigi Tedone, Leonardo Verdini, Eugenio Cazzato, and Giuseppe De Mastro. 2019. "Wheat Response to No-Tillage and Nitrogen Fertilization in a Long-Term Faba Bean-Based Rotation" Agronomy 9, no. 2: 50. https://doi.org/10.3390/agronomy9020050
APA StyleAli, S. A., Tedone, L., Verdini, L., Cazzato, E., & De Mastro, G. (2019). Wheat Response to No-Tillage and Nitrogen Fertilization in a Long-Term Faba Bean-Based Rotation. Agronomy, 9(2), 50. https://doi.org/10.3390/agronomy9020050