Deep Learning Techniques for Agronomy Applications
Abstract
:1. Introduction
- Submissions (11);
- Publications (5);
- Rejections (6);
- Article types: research article (5).
- China (7);
- Pakistan (2);
- Argentina (1).
2. DL-based Image Recognition Techniques for Agronomy Applications
3. DL-Based Time Series Data Analysis Techniques for Agronomy Applications
4. Behavior and Strategy Analysis for Agronomy Applications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhong, L.H.; Hu, L.N.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Kerkech, M.; Hafiane, A.; Canals, R. Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases detection in UAV images. Comput. Electron. Agric. 2018, 155, 237–243. [Google Scholar] [CrossRef]
- Mehra, M.; Saxena, S.; Sankaranarayanan, S.; Tom, R.J.; Veeramanikandan, M. IoT based hydroponics system using deep neural networks. Comput. Electron. Agric. 2018, 155, 473–486. [Google Scholar] [CrossRef]
- Saggi, M.K.; Jain, S. Reference evapotranspiration estimation and modeling of the Punjab Northern India using deep learning. Comput. Electron. Agric. 2019, 156, 387–398. [Google Scholar] [CrossRef]
- Dong, W.; Wu, T.J.; Luo, J.C.; Sun, Y.W.; Xia, L.G. Land parcel-based digital soil mapping of soil nutrient properties in an alluvial-diluvia plain agricultural area in China. Geoderma 2019, 340, 234–248. [Google Scholar] [CrossRef]
- Bah, M.D.; Hafiane, A.; Canals, R. Deep learning with unsupervised data labeling for weed detection in line crops in UAV images. Remote Sens. 2018, 10, 1690. [Google Scholar] [CrossRef]
- Zhu, J.; Song, Y.H.; Jiang, D.D.; Song, H.B. A new deep-Q-learning-based transmission scheduling mechanism for the cognitive Internet of things. IEEE Internet Things J. 2018, 5, 2375–2385. [Google Scholar] [CrossRef]
- Khan, M.J.; Khan, H.S.; Yousaf, A.; Khurshid, K.; Abbas, A. Modern trends in hyperspectral image analysis: A review. IEEE Access 2018, 6, 14118–14129. [Google Scholar] [CrossRef]
- Gao, H.; Yang, Y.; Li, C.; Zhou, H.; Qu, X. Joint alternate small convolution and feature reuse for hyperspectral image classification. ISPRS Int. J. Geo-Inf. 2018, 7, 349. [Google Scholar] [CrossRef]
- Lin, H.F.; Chen, C.H. The Persuasion effect of sociability in the design and use of an augmented reality wedding invitation app. J. Internet Technol. 2019, 20, 269–282. [Google Scholar] [CrossRef]
- Pan, J.S.; Kong, L.P.; Sung, T.W.; Tsai, P.W.; Snasel, V. alpha-fraction first strategy for hierarchical model in wireless sensor networks. J. Internet Technol. 2018, 19, 1717–1726. [Google Scholar] [CrossRef]
- Lai, W.-K.; Kuo, T.-H.; Chen, C.-H. Vehicle speed estimation and forecasting methods based on cellular floating vehicle data. Appl. Sci. 2016, 6, 47. [Google Scholar] [CrossRef]
- Lin, H.F.; Chen, C.H. Design and application of augmented reality query-answering system in mobile phone information navigation. Expert Syst. Appl. 2015, 42, 810–820. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, X.; Wu, L. Method for mapping rice fields in complex landscape areas based on pre-trained convolutional neural network from HJ-1 A/B data. ISPRS Int. J. Geo-Inf. 2018, 7, 418. [Google Scholar] [CrossRef]
- Li, J.L.; Luo, G.Y.; Cheng, N.; Yuan, Q.; Wu, Z.H.; Gao, S.; Liu, Z.H. An end-to-end load balancer based on deep learning for vehicular network traffic control. IEEE Internet Things J. 2019, 6, 953–966. [Google Scholar] [CrossRef]
- Fang, L.Y.; Cheng, X.; Wang, H.N.; Yang, L.Q. Mobile demand forecasting via deep graph-sequence spatiotemporal modeling in cellular networks. IEEE Internet Things J. 2018, 5, 3091–3101. [Google Scholar] [CrossRef]
- Jung, E.J.; Chikontwe, P.; Zong, X.P.; Lin, W.L.; Shen, D.G.; Park, S.H. Enhancement of perivascular spaces using densely connected deep convolutional neural network. IEEE Access 2019, 7, 18382–18391. [Google Scholar] [CrossRef]
- Amin, S.U.; Alsulaiman, M.; Muhammad, G.; Bencherif, M.A.; Hossain, M.S. Multilevel weighted feature fusion using convolutional neural networks for EEG motor imagery classification. IEEE Access 2019, 7, 18940–18950. [Google Scholar] [CrossRef]
- Ding, L.; Xiao, L.; Zhou, K.Q.; Lan, Y.H.; Zhang, Y.S.; Li, J.C. An improved complex-valued recurrent neural network model for time-varying complex-valued Sylvester equation. IEEE Access 2019, 7, 19291–19302. [Google Scholar] [CrossRef]
- Wu, L.; Chen, C.-H.; Zhang, Q. A mobile positioning method based on deep learning techniques. Electronics 2019, 8, 59. [Google Scholar] [CrossRef]
- Yu, Z.Y.; Niu, Z.W.; Tang, W.H.; Wu, Q.H. Deep learning for daily peak load forecasting-a novel gated recurrent neural network combining dynamic time warping. IEEE Access 2019, 7, 17184–17194. [Google Scholar] [CrossRef]
- Chen, B.F.; Hao, Z.F.; Cai, X.F.; Cai, R.C.; Wen, W.; Zhu, J.; Xie, G.Q. Embedding logic rules into recurrent neural networks. IEEE Access 2019, 7, 14938–14946. [Google Scholar] [CrossRef]
- Long, D.K.; Zhang, R.C.; Mao, Y.Y. Recurrent neural networks with finite memory length. IEEE Access 2019, 7, 12511–12520. [Google Scholar] [CrossRef]
- Tao, D.P.; Wen, Y.G.; Hong, R.C. Multicolumn bidirectional long short-term memory for mobile devices-based human activity recognition. IEEE Internet Things J. 2016, 3, 1124–1134. [Google Scholar] [CrossRef]
- Kung, H.-Y.; Kuo, T.-H.; Chen, C.-H.; Tsai, P.-Y. Accuracy analysis mechanism for agriculture data using the ensemble neural network method. Sustainability 2016, 8, 735. [Google Scholar] [CrossRef]
- Chen, C.H. An Arrival Time Prediction Method for Bus System. IEEE Internet Things J. 2018, 5, 4231–4232. [Google Scholar] [CrossRef]
- Chen, C.H.; Wu, C.L.; Lo, C.C.; Hwang, F.J. An augmented reality question answering system based on ensemble neural networks. IEEE Access 2017, 5, 17425–17435. [Google Scholar] [CrossRef]
- Lin, H.-F.; Chen, C.-H. Combining the technology acceptance model and uses and gratifications theory to examine the usage behavior of an augmented reality tour-sharing application. Symmetry 2017, 9, 113. [Google Scholar] [CrossRef]
- Shi, Y.; Lei, M.L.; Ma, R.R.; Niu, L.F. Learning robust auto-encoders with regularizer for linearity and sparsity. IEEE Access 2019, 7, 17195–17206. [Google Scholar] [CrossRef]
- Chen, C.H. Reducing the Dimensionality of Time-Series Data with Deep Learning Techniques. Science 2006, 313, 504–507. Available online: http://science.sciencemag.org/content/313/5786/504/tab-e-letters (accessed on 13 March 2019).
- Tang, X.S.; Wei, H.; Hao, K.R. Using a vertical-stream variational auto-encoder to generate segment-based images and its biological plausibility for modelling the visual pathways. IEEE Access 2019, 7, 99–110. [Google Scholar] [CrossRef]
- Lu, C.B.; Mei, Y. An imputation method for missing data based on an extreme learning machine auto-encoder. IEEE Access 2018, 6, 52930–52935. [Google Scholar] [CrossRef]
- Sun, J.Y.; Wang, X.Z.; Xiong, N.X.; Shao, J. Learning sparse representation with variational auto-encoder for anomaly detection. IEEE Access 2018, 6, 33353–33361. [Google Scholar] [CrossRef]
- Xiang, J.P.; Chen, Z.H. Traffic state estimation of signalized intersections based on stacked denoising auto-encoder model. Wirel. Pers. Commun. 2018, 103, 625–638. [Google Scholar] [CrossRef]
- Hazrati, N.; Shams, B.; Haratizadeh, S. Entity representation for pairwise collaborative ranking using restricted Boltzmann machine. Expert Syst. Appl. 2019, 116, 161–171. [Google Scholar] [CrossRef]
- Sun, X.C.; Li, Y.Q.; Gui, G.; Sari, H. Echo-state restricted Boltzmann machines: A perspective on information compensation. IEEE Access 2019, 7, 16281–16290. [Google Scholar] [CrossRef]
- Li, Y.C.; Nie, X.Q.; Huang, R. Web spam classification method based on deep belief networks. Expert Syst. Appl. 2018, 96, 261–270. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, K.; Wu, C.; Niu, X.; Yang, Y. Building an effective intrusion detection system using the modified density peak clustering algorithm and deep belief networks. Appl. Sci. 2019, 9, 238. [Google Scholar] [CrossRef]
- Sun, X.C.; Gui, G.; Li, Y.Q.; Liu, R.P.; An, Y.L. ResInNet: A novel deep neural network with feature reuse for Internet of things. IEEE Internet Things J. 2019, 6, 679–691. [Google Scholar] [CrossRef]
- Lee, S.; Chang, J.-H. Dempster–Shafer fusion based on a deep Boltzmann machine for blood pressure estimation. Appl. Sci. 2019, 9, 96. [Google Scholar] [CrossRef]
- Chen, J.; Fan, Y.; Wang, T.; Zhang, C.; Qiu, Z.; He, Y. Automatic segmentation and counting of aphid nymphs on leaves using convolutional neural networks. Agronomy 2018, 8, 129. [Google Scholar] [CrossRef]
- Rodríguez Alvarez, J.; Arroqui, M.; Mangudo, P.; Toloza, J.; Jatip, D.; Rodriguez, J.M.; Teyseyre, A.; Sanz, C.; Zunino, A.; Machado, C.; et al. Estimating body condition score in dairy cows from depth images using convolutional neural networks, transfer learning and model ensembling techniques. Agronomy 2019, 9, 90. [Google Scholar] [CrossRef]
- Lu, C.-P.; Liaw, J.-J.; Wu, T.-C.; Hung, T.-F. Development of a mushroom growth measurement system applying deep learning for image recognition. Agronomy 2019, 9, 32. [Google Scholar] [CrossRef]
- Haider, S.A.; Naqvi, S.R.; Akram, T.; Umar, G.A.; Shahzad, A.; Sial, M.R.; Khaliq, S.; Kamran, M. LSTM neural network based forecasting model for wheat production in Pakistan. Agronomy 2019, 9, 72. [Google Scholar] [CrossRef]
- Lin, C.-H.; Wang, W.-C.; Liu, C.-Y.; Pan, P.-N.; Pan, H.-R. Research into the E-learning model of agriculture technology companies: Analysis by deep learning. Agronomy 2019, 9, 83. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-H.; Kung, H.-Y.; Hwang, F.-J. Deep Learning Techniques for Agronomy Applications. Agronomy 2019, 9, 142. https://doi.org/10.3390/agronomy9030142
Chen C-H, Kung H-Y, Hwang F-J. Deep Learning Techniques for Agronomy Applications. Agronomy. 2019; 9(3):142. https://doi.org/10.3390/agronomy9030142
Chicago/Turabian StyleChen, Chi-Hua, Hsu-Yang Kung, and Feng-Jang Hwang. 2019. "Deep Learning Techniques for Agronomy Applications" Agronomy 9, no. 3: 142. https://doi.org/10.3390/agronomy9030142
APA StyleChen, C. -H., Kung, H. -Y., & Hwang, F. -J. (2019). Deep Learning Techniques for Agronomy Applications. Agronomy, 9(3), 142. https://doi.org/10.3390/agronomy9030142