The Potentiality of Marine Macro-Algae as Bio-Fertilizers to Improve the Productivity and Salt Stress Tolerance of Canola (Brassica napus L.) Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Algae Collection
2.3. Application of the Powdered Seaweeds in Planting Soils
2.4. Growth Conditions
2.5. Methods
2.5.1. Extraction, Separation, and Estimation of Growth Regulating Substances by Gas Chromatography (GC) and High-Performance Liquid Chromatography (HPLC)
2.5.2. Phytochemical Analyses
2.6. Statistical Analyses
3. Results
3.1. Phytochemical and Hormonal Analyses of Seaweeds
3.2. Growth Parameters of Canola Plant
3.3. Yield Characteristics
3.4. Photosynthetic Pigments
3.5. Phytohormones
3.6. Primary Metabolites
3.7. Secondary Metabolites
3.8. Total Antioxidant Activity
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Arioli, T.; Mattner, S.W.; Winberg, P.C. Applications of seaweed extracts in Australian agriculture: Past, present and future. J. Appl. Phycol. 2015, 27, 2007–2015. [Google Scholar] [CrossRef]
- Chojnacka, K.; Saeid, A.; Witkowska, Z.; Tuhy, L. Biologically active compounds in seaweed extracts—the prospects for the application. Open Conf. Proc. J. 2012, 3, 20–28. [Google Scholar] [CrossRef]
- Nabti, E.; Jha, B.; Hartmann, A. Impact of seaweeds on agricultural crop production as biofertilizer. Int. J. Environ. Sci. Technol. 2016, 14, 1119–1134. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Kumareswari, T.; Rani, M.S. Utilization of seaweeds to enhance growth and nutritive status of Amaranthus caudatus L. Int. J. Res. Stud. Biosci. 2015, 3, 9–15. [Google Scholar]
- Layek, J.; Das, A.; Idapuganti, R.G.; Sarka, D.; Ghosh, A.; Zodape, S.T.; Lal, R.; Yadav, G.S.; Panwar, A.S.; Ngachan, S.; et al. Seaweed extract as organic bio-stimulant improves productivity and quality of rice in eastern Himalayas. J. Appl. Phycol. 2018, 30, 547–558. [Google Scholar] [CrossRef]
- Mirparsa, T.; Ganjali, H.R.; Dahmardeh, M. The effect of biofertilizers on yield and yield components of sunflower oil seed and nut. Int. J. Agric. Biosci. 2016, 5, 46–49. [Google Scholar]
- Hernández-Herrera, R.M.; Santacruz-Ruvalcaba, F.; Briceño-Domínguez, D.; Di-Filippo-Herrera, D.A.; Hernández-Carmona, G. Seaweed as potential plant growth stimulants for agriculture in Mexico. Hidrobiológica 2018, 28, 129–140. [Google Scholar] [CrossRef]
- Hernández-Herrera, R.M.; Santacruz-Ruvalcaba, F.; Ruiz-López, M.A.; Norrie, J.; Hernández-Carmona, G. Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). J. Appl. Phycol. 2013, 26, 619–628. [Google Scholar] [CrossRef]
- Khan, N.; Syeed, S.; Masood, A.; Nazar, R.; Iqbal, N. Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. Int. J. Plant Biol. 2010, 1, e1. [Google Scholar] [CrossRef]
- Carillo, P.; Annunziata, M.G.; Pontecorvo, G.; Fuggi, G.; Woodrow, P. Salinity stress and salt tolerance. In Abiotic Stress in Plants; Shanker, A., Venkateswarlu, B., Eds.; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils (FAO & ITPS). Status of the World’s Soil Resources (SWSR)—Main Report; Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015. [Google Scholar]
- Amin, R.; Khalil, S.K. Effect of pre and post-emergence herbicides and row spacing on Canola. Sarhad J. Agric. 2005, 21, 165–170. [Google Scholar]
- Aleem, A.A. The Marine Algae of Alexandria; Alexandria Privately Published: Alexandria, Egypt, 1993; p. 139. [Google Scholar]
- Shindy, W.W.; Smith, O. Identification of plant hormones from cotton ovules. Plant Physiol. 1975, 55, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Kramell, R. HPLC separation of jasmonic acid methyl ester enantiomers. Phytochem. Anal. 1996, 7, 738–743. [Google Scholar]
- Müller, P.; Hilgenberg, W. Isomers of zeatin and zeatin riboside in club root tissue: Evidence for trans-zeatin biosynthesis by Plasmodiophora brassica. Physiol. Plant. 1986, 66, 245–250. [Google Scholar] [CrossRef]
- Lambert, M.; Neish, A.C. Rapid method for estimation of glycerol in fermentation solutions. Can. J. Med. Sci. 1950, 28, 83–89. [Google Scholar] [CrossRef]
- Metzner, H.; Rau, H.; Senger, H. Untersuchungen Zur Synchronisier barkeep ein Zelner pigmentmangel Mutanten Von chlorella. Planta 1965, 65, 186–194. [Google Scholar] [CrossRef]
- Be Miller, J.N. Carbohydrate analysis. In Food Analysis, 4th ed.; Nielsen, S.S., Ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Malik, C.P.; Singh, M.B. Plant Enzymology and Histoenzymology; Kalyani Publishers: New Delhi, India, 1980; p. 53. [Google Scholar]
- Strzelecka, H.; Kaminska, J.; Kowalski, J.; Malinowski, J.; Walewska, E. Chemiczne Metody Badań Roślinnych Surowców Leczniczych; PZWL: Warszawa, Poland, 1987; pp. 82–83. (In Polish) [Google Scholar]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV-visible spectroscopy. In Current Protocols in Food Analytical Chemistry; F12.1–F12.13; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Tailor, C.S.; Goyal, A. Antioxidant activity by DPPH radical scavenging method of Ageratum conyzoides Linn. leaves. Am. J. Ethnomed. 2014, 1, 244–249. [Google Scholar]
- SAS Institute Inc. SAS/STAT® 12.1 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2012. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1984; p. 680. [Google Scholar]
- Hamed, S.M.; Abd El-Rhman, A.A.; Abdel-Raouf, N.; Ibrahim, I.B.M. Role of marine macroalgae in plant protection & improvement for sustainable agriculture technology. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 104–110. [Google Scholar]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef] [PubMed]
- El-Kaoua, M.; Chernane, H.; Benaliat, A.; Neamallah, L. Seaweed liquid extracts effect on Salvia officinalis growth, biochemical compounds and water deficit tolerance. Afr. J. Biotech. 2013, 12, 4481–4489. [Google Scholar]
- Rathorea, S.S.; Chaudharyb, D.R.; Borichab, G.N.; Ghoshb, A.; Bhatta, B.P.; Zodapeb, S.T.; Patoliab, J.S. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. S. Afr. J. Bot. 2009, 75, 351–355. [Google Scholar] [CrossRef]
- Sivasankari, S.; Chandrasekaran, M.; Kannathasan, K.; Venkatesalu, V. Studies on the biochemical constituents of Vigna radiata Linn treated with seaweed liquid fertilizer. Seaweed Res. Util. 2006, 28, 151–158. [Google Scholar]
- Mattner, S.W.; Milinkovic, M.; Arioli, T. Increased growth response of strawberry roots to a commercial extract from Durvillaea potatorum and Ascophyllum nodosum. J. Appl. Phycol. 2018, 30, 2943–2951. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.M.N.; Chatterjee, R. Effect of seaweed liquid fertilizer from Gracilaria textorii and Hypnea musciformis on seed germination and productivity of some vegetable crops. Univ. J. Plant Sci. 2014, 2, 115–120. [Google Scholar]
- Musyimi, D.M.; Netondo, G.W.; Ouma, G. Effects of salinity on growth and photosynthesis of avocado seedling. Int. J. Bot. 2007, 3, 78–84. [Google Scholar]
- Mzibra, A.; Aasfar, A.; El Arroussi, H.; Khouloud, M.; Dhiba, D.; Kadmiri, I.M.; Bamouh, A. Polysaccharides extracted from Moroccan seaweed: A promising source of tomato plant growth promoters. J. Appl. Phycol. 2018, 30, 2953–2962. [Google Scholar] [CrossRef]
- Ramya, S.S.; Vijayanand, N.; Rathinavel, S. Foliar application of liquid biofertilizer of brown alga Stoechospermum marginatum on growth, biochemical and yield of Solanum melongena. Int. J. Recycl. Org. Waste Agric. 2015, 4, 167–173. [Google Scholar] [CrossRef]
- Smirnoff, N. The function and metabolism of ascorbic acid in plants. Ann. Bot. 1996, 78, 661–669. [Google Scholar] [CrossRef]
- Santos, C.V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci. Hort. 2004, 103, 93–99. [Google Scholar] [CrossRef]
- Ramarajan, S.; Joseph, L.H.; Ganthi, A.S. Effect of seaweed liquid fertilizer on the germination and pigment concentration of soybean. J. Crop Sci. Technol. 2012, 1, 1–5. [Google Scholar]
- Mastafa, M.E.; Skeekh, L. Effect of seaweed extracts on seed germination, seedling growth and some metabolic process of Vicia faba L. Cytobios 1999, 100, 23–25. [Google Scholar]
- Christaki, E.; Bonos, E.; Giannenas, I.; Florou-Paneri, P. Functional properties of carotenoids originating from algae. J. Sci. Food Agric. 2013, 93, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Pedranzani, H.; Racagni, G.; Alemano, S.; Miersch, O.; Ramírez, I.; Peña-Cortés, H.; Taleisnik, E.; Machado-Domenech, E.; Abdala, G. Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul. 2003, 41, 149–158. [Google Scholar] [CrossRef]
- Haroun, A.S.; Hussein, M.H. The promotive effect of algal biofertilizers on growth, protein pattern and some metabolic activities of Lupins terms plant grown in siliceous soil. Asian J. Plant Sci. 2003, 2, 944–951. [Google Scholar]
- Lozano, M.S.; Verde Star, J.; Maitic, P.K.; Orandy, C.A.; Gaona, R.H.; Aranada, H.E.; Rojas, G.M. Effect of algal extract and several plant growth regulators on the nutritive value of potatoes (Solanum tuberosum L. Var. Gigant). Arch. Latinoam. Nutr. 1999, 49, 166–170. [Google Scholar]
- Rolland, F.; Moore, B.; Sheen, J. Sugar sensing and signalling in plants. Plant Cell 2002, 14, 185–205. [Google Scholar] [CrossRef]
- Hashem, H.A.; Hassanein, R.A. Plant metabolites expression. In Mathematical Advances towards Sustainable Environmental Systems; Furze, J.N., Swing, K., Gupta, A.K., McClatchey, R., Reynolds, D., Eds.; Springer International Publishing: Berlin, Germany, 2017; pp. 151–180. [Google Scholar]
- Hokmabadi, H.; Arzani, K.; Grierson, P.F. Growth, chemical composition, and carbon isotope discrimination of pistachio (Pistacia vera L.) rootstock seedlings in response to salinity. Aust. J. Agric. Res. 2005, 56, 135–144. [Google Scholar] [CrossRef]
- Kulbat, K. The role of phenolic compounds in plant resistance. Biotechnol. Food Sci. 2016, 80, 97–108. [Google Scholar]
- Rajasulochana, P.; Krishnamoorthy, P. Marine algae for agricultural sector for high yield. J. Chem. Pharm. Sci. 2014, 7, 369–372. [Google Scholar]
Phytochemical Contents of Algae | Algal Taxa | L.S.D. at 5% | ||
---|---|---|---|---|
Ulva lactuca Linnaeus | Cystoseira spp. | Gelidium crinale (Hare ex Turner) Gaillon | ||
Total carbohydrate content (μg.g−1 FW) | 292.05 ± 1.93a | 177.90 ± 1.1b | 288.50 ± 1.62a | 2.24 |
Total phenols μg g−1 FW) | 9.07 ± 0.53c | 26.03 ± 0.73a | 17.02 ± 0.85b | 1.02 |
Glycerol (μmole g−1 FW) | 127.53 ± 0.12a | 93.07 ± 0.15c | 103.67 ± 1.1b | 0.92 |
Proline (μg g−1 FW) | 5.01 ± 0.06a | 3.82 ± 0.1b | 2.47 ± 0.02c | 0.1 |
Total antioxidant activity (μg g−1 FW) | 612.74 ± 0.5a | 351.08 ± 1.04b | 219.44 ± 0.71c | 1.11 |
Algal growth hormones (µg g−1 DW) | ||||
Indole acetic acid (IAA) | 14.16 ± 0.32a | 2.90 ± 0.05c | 3.86 ± 0.08b | 0.28 |
Indole butyric acid (IBA) | 3.52 ± 0.22b | 1.21 ± 0.07c | 4.90 ± 0.08a | 0.2 |
Gibberellic acid (GA3) | 66.37 ± 1.3c | 139.38 ± 0.93a | 73.45 ± 2.04b | 2.12 |
Zeatin | 5.58 ± 0.02a | 1.69 ± 0.01b | 1.78 ± 0.05b | 0.46 |
Benzyl adenine | 3.45 ± 0.06a | 1.72 ± 0.04c | 2.39 ± 0.14b | 0.13 |
Jasmonic acid | 53.21 ± 1.6b | 96.89 ± 1.2a | 92.83 ± 1.3a | 1.94 |
ABA | 1.12 ± 0.02b | 0.63 ± 0.01c | 2.62 ± 0.09a | 0.18 |
Treatment | Shoot Length (cm) | Root Length (cm) | Number of Leaves/Plant | Mean Leaf Area/Plant (cm2) | Fresh Weight of Shoot (g) | Fresh Weight of Root (g) | Dry Weight of Shoot (g) | Dry Weight of Root (g) | |
---|---|---|---|---|---|---|---|---|---|
NaCl Concentration (mM) | Algal Taxa | ||||||||
0 | Control | 13.60 ± 0.32e | 6.6 ± 0.4gh | 3.4 ± 0.22d | 35.9 ± 2.1d | 3.26 ± 0.4g | 0.66 ± 0.03h | 0.55 ± 0.04e | 0.09 ± 0.03fg |
Ulva lactuca L. | 24.63 ± 1.4b | 8.30 ± 0.6e | 4.88 ± 0.12a | 45.07 ± 0.07b | 5.7 ± 0.1b | 1.58 ± 0.03b | 1.23 ± 0.03b | 0.46 ± 0.18b | |
Cystoseria spp. | 20.23 ± 0.59cd | 6.8 ± 0.81fgh | 4.2 ± 0.08c | 36.73 ± 0.59d | 3.62 ± 0.1f | 0.99 ± 0.05f | 0.7 ± 0.1d | 0.37 ± 0.05cd | |
Gelidium crinale | 19.94 ± 0.64cd | 7.32 ± 0.32fg | 4.2 ± 0.05c | 51.79 ± 0.89a | 3.58 ± 0.23f | 1.11 ± 0.1e | 0.86 ± 0.1c | 0.27 ± 0.08e | |
75 | Control | 17 ± 0.47de | 7.5 ± 0.06f | 4.2 ± 0.1c | 27.34 ± 0.1fg | 3.83 ± 0.02e | 0.8 ± 0.1g | 0.42 ± 0.02f | 0.11 ± 0.02f |
Ulva lactuca L. | 29.3 ± 0.92a | 11.3 ± 0.7c | 4.8 ± 0.03a | 39.4 ± 0.26c | 6.35 ± 0.18a | 1.7 ± 0.01a | 1.45 ± 0.16a | 0.53 ± 0.02a | |
Cystoseria spp. | 23.2 ± 1.21bc | 10.2 ± 0.34d | 4.5 ± 0.39b | 30.12 ± 0.34e | 4.14 ± 0.1e | 1.41 ± 0.01c | 0.59 ± 0.03e | 0.16 ± 0.03f | |
Gelidium crinale | 26.82 ± 0.72ab | 11 ± 0.15c | 4.8 ± 0.2a | 40.78±0.78c | 5.08 ± 0.08c | 1.57 ± 0.07b | 0.58 ± 0.04e | 0.39 ± 0.01c | |
150 | Control | 9.2 ± 0.34f | 6.3 ± 0.08h | 3.2 ± 0.54d | 17.11 ± 0.24h | 1.35 ± 0.06i | 0.21 ± 0.02i | 0.27 ± 0.03g | 0.02 ± 0.01g |
Ulva lactuca L. | 19.63 ± 0.5c | 14 ± 0.71a | 4.75 ± 0.3a | 27.46 ± 1.7fg | 4.7 ± 0.11d | 1.3 ± 0.02c | 1.14 ± 0.2b | 0.32 ± 0.04de | |
Cystoseria spp. | 17.20 ± 1.35de | 11.3 ± 0.15c | 4.2 ± 0.13c | 28.24 ± 0.22ef | 3.88 ± 0.1e | 1.48 ± 0.03b | 0.49 ± 0.01ef | 0.12 ± 0.01f | |
Gelidium crinale | 16.54 ± 0.65de | 12.8 ± 0.34b | 4.4 ± 0.48bc | 25.7 ± 1.9g | 2.72 ± 0.2h | 1.24 ± 0.07d | 0.45 ± 0.09f | 0.06 ± 0.01g | |
L.S.D. at 5% | 4.19 | 0.38 | 0.22 | 0.86 | 0.19 | 0.054 | 0.09 | 0.06 |
Treatment | Shoot Length (cm) | Root Length (cm) | Stem Circumference (cm) | Number of Siliqua/Plant | Number of Seeds/Siliqua | Weight of 1000 Seed (g) | |
---|---|---|---|---|---|---|---|
NaCl Concentration (mM) | Algal Taxa | ||||||
0 | Control | 62 ± 1.9e | 10.4 ± 0.4i | 1.8 ± 0.2e | 55 ± 1.0d | 12.04 ± 0.47ef | 2.15 ± 0.45e |
Ulva lactuca L. | 82.21 ± 1.6a | 12.25 ± 0.75h | 3.1 ± 0.3b | 77 ± 1.0a | 17.02 ± 0.22a | 2.8 ± 0.05b | |
Cystoseria spp. | 73.4 ± 0.63c | 12 ± 0.8h | 2.7 ± 0.37c | 63 ± 0.2c | 15.87 ± 0.87b | 3.15 ± 0.15a | |
Gelidium crinale | 76.34 ± 0.00b | 16.1 ± 0.01f | 3.4 ± 0.28a | 69 ± 0.66b | 13.99 ± 0.31d | 2.75 ± 0.25b | |
75 | Control | 42.62 ± 0.2h | 13 ± 0.12g | 1.1 ± 0.1g | 38 ± 2.0h | 9.98 ± 1.02h | 2 ± 0.14f |
Ulva lactuca L. | 76.5 ± 2.2b | 17.56 ± 0.54d | 2.3 ± 0.2d | 55 ± 1.0d | 15.19 ± 0.32bc | 2.75 ± 0.14b | |
Cystoseria spp. | 59.64 ± 0.36f | 20.8 ± 0.8b | 1.7 ± 0.05e | 47 ± 0.68ef | 14.8 ± 0.3c | 2.8 ± 0.08b | |
Gelidium crinale | 71.5 ± 0.5d | 22.2 ± 0.3a | 2.4 ± 0.44d | 48 ± 0.24e | 11.76 ± 0.14f | 2.5 ± 0.06d | |
150 | Control | 38.12 ± 0.43i | 9 ± 0.8j | 1.0 ± 0.04g | 26 ± 0.4i | 7.61 ± 0.39i | 1.5 ± 0.05g |
Ulva lactuca L. | 63 ± 1.2d | 19 ± 1.1c | 1.5 ± 0.26f | 46 ± 1.32f | 12.69 ± 0.41e | 2.6 ± 0.13c | |
Cystoseria spp. | 43.5 ± 0.28g | 15.2 ± 0.2f | 1.1 ± 0.03g | 38 ± 1.88h | 10.87 ± 0.07g | 2.75 ± 0.05b | |
Gelidium crinale | 61.4 ± 0.17e | 16.86 ± 0.14e | 1.65 ± 0.1ef | 42 ± 1.1g | 10.31 ± 0.39gh | 2 ± 0.2f | |
L.S.D. at 5% | 0.88 | 0.49 | 0.2 | 1.06 | 0.4 | 0.15 |
Treatment | Chlorophyll a | Chlorophyll b | Chl a/Chl b Ratio | Carotenoids | Total Photosynthetic Pigments | |
---|---|---|---|---|---|---|
NaCl Concentration (mM) | Algal Taxa | |||||
0 | Control | 580.01 ± 10.3h | 203.05 ± 1.06j | 2.87 ± 0.11a | 101.81 ± 1.1k | 884.87 ± 1.31j |
Ulva lactuca L. | 943.96 ± 1.7a | 395.34 ± 5.16c | 2.39 ± 0.11d | 193.33 ± 1.97c | 1532.63 ± 0.47a | |
Cystoseria spp. | 864.95 ± 1.7d | 353.41 ± 2.01e | 2.45 ± 0.16cd | 173.39 ± 0.32e | 1391.75 ± 1.15e | |
Gelidium crinale | 909.50 ± 1.25b | 363.77 ± 1.34d | 2.50 ± 0.21c | 178.98 ± 1.13d | 1452.25 ± 3.95d | |
75 | Control | 527.62 ± 2.38j | 219.83 ± 0.67i | 2.40 ± 0.08cd | 107.58 ± 1.84j | 855.00 ± 1.2k |
Ulva lactuca L. | 912.21 ± 3.59b | 416.94 ± 2.17b | 2.18 ± 0.05e | 195.93 ± 0.52b | 1525.1 ± 1.07b | |
Cystoseria spp. | 814.41 ± 6.29e | 341.43 ± 0.87f | 2.39 ± 0.03d | 166.95 ± 0.49f | 1322.79 ± 0.1f | |
Gelidium crinale | 876.16 ± 14.18c | 403.39 ± 1.26a | 2.17 ± 0.01e | 200.75 ± 2.14a | 1480.30 ± 6.35c | |
150 | Control | 320.34 ± 2.16k | 157.95 ± 2.39k | 2.03 ± 0.04f | 165.83 ± 3.27f | 644.13 ± 0.93l |
Ulva lactuca L. | 666.33 ± 4.17f | 305.13 ± 0.97g | 2.18 ± 0.01e | 147.58 ± 0.08g | 1119.04 ± 1.34g | |
Cystoseria spp. | 573.01 ± 12.8i | 233.74 ± 1.46h | 2.45 ± 0.11cd | 114.70 ± 0.5h | 921.46 ± 0.85i | |
Gelidium crinale | 600.02 ± 2.42g | 218.75 ± 1.35i | 2.74 ± 0.08b | 109.03 ± 1.57i | 927.81 ± 1.99h | |
L.S.D. at 5% | 5.61 | 1.69 | 0.1 | 1.26 | 1.96 |
Treatment | Primary Metabolites | Secondary Metabolites | Total Antioxidant Activity DPPH % | ||||
---|---|---|---|---|---|---|---|
NaCl Concentration (mM) | Algal Taxa | Total Carbohydrates (µg g−1 DW) | Proline (µg g−1 DW) | Total Phenols (µg g−1 DW) | Total Flavonoids (µg g−1 DW) | Anthocyanin (µg g−1 DW) | |
0 | Control | 3.86 ± 0.06h | 6.01 ± 0.12fg | 67.65 ± 0.54h | 7.59 ± 0.4h | 2.5 ± 0.09g | 52.7 ± 0.2j |
Ulva lactuca L. | 12.35 ± 0.22a | 5.51 ± 0.29h | 62.40 ± 0.2i | 5.10 ± 0.13i | 0.62 ± 0.04i | 63.7 ± 0.8h | |
Cystoseria spp. | 6.27 ± 0.24d | 5.9 ± 0.11gh | 66.41 ± 0.9h | 31.1 ± 0.47e | 2.89 ± 0.1f | 76.6 ± 0.5e | |
Gelidium crinale | 8.49 ± 0.17b | 0.10 ± 0.02j | 15.4 ± 0.2k | 6.1 ± 0.01i | 2.71 ± 0.01fg | 72.6 ± 0.4f | |
75 | Control | 0.54 ± 0.06e | 6.44 ± 0.16f | 72.15 ± 0.12g | 23.09 ± 0.82g | 3.69 ± 0.02e | 57.9 ± 1.47i |
Ulva lactuca L. | 7.35 ± 0.1c | 9.01 ± 0.33d | 99.16 ± 0.84d | 32.58 ± 0.42d | 2.2 ± 0.21h | 71.7 ± 1.34g | |
Cystoseria spp. | 5.60 ± 0.1e | 8.75 ± 0.25de | 96.40 ± 1.0e | 35.1 ± 0.61c | 4.66 ± 0.01c | 80.6 ± 0.4c | |
Gelidium crinale | 5.96 ± 0.14d | 4.8 ± 0.2i | 54.90 ± 0.19j | 24.60 ± 0.2f | 3.86 ± 0.04de | 79.90.2cd | |
150 | Control | 0.24 ± 0.02j | 12.23 ± 0.25b | 132.91 ± 0.2b | 29.6 ± 0.71e | 3.97±0.24d | 58.3 ± 0.7i |
Ulva lactuca L. | 4.88 ± 0.78f | 21.37 ± 0.13a | 228.9 ± 1.1a | 35.1 ± 0.73c | 2.66 ± 0.14g | 79.4 ± 0.6d | |
Cystoseria spp. | 1.51 ± 0.16i | 10.66 ± 0.39c | 116.5 ± 1.8c | 66.09 ± 1.2a | 9.16 ± 0.24a | 86.8 ± 0.3a | |
Gelidium crinale | 4.4 ± 0.1g | 8.35 ± 0.1e | 92.15 ± 0.83f | 40.6 ± 0.63b | 5.32 ± 0.18b | 84.8 ± 0.2b | |
L.S.D. at 5% | 0.31 | 0.21 | 1.3 | 0.9 | 0.21 | 0.79 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashem, H.A.; Mansour, H.A.; El-Khawas, S.A.; Hassanein, R.A. The Potentiality of Marine Macro-Algae as Bio-Fertilizers to Improve the Productivity and Salt Stress Tolerance of Canola (Brassica napus L.) Plants. Agronomy 2019, 9, 146. https://doi.org/10.3390/agronomy9030146
Hashem HA, Mansour HA, El-Khawas SA, Hassanein RA. The Potentiality of Marine Macro-Algae as Bio-Fertilizers to Improve the Productivity and Salt Stress Tolerance of Canola (Brassica napus L.) Plants. Agronomy. 2019; 9(3):146. https://doi.org/10.3390/agronomy9030146
Chicago/Turabian StyleHashem, H. A., H. A. Mansour, S. A. El-Khawas, and R. A. Hassanein. 2019. "The Potentiality of Marine Macro-Algae as Bio-Fertilizers to Improve the Productivity and Salt Stress Tolerance of Canola (Brassica napus L.) Plants" Agronomy 9, no. 3: 146. https://doi.org/10.3390/agronomy9030146
APA StyleHashem, H. A., Mansour, H. A., El-Khawas, S. A., & Hassanein, R. A. (2019). The Potentiality of Marine Macro-Algae as Bio-Fertilizers to Improve the Productivity and Salt Stress Tolerance of Canola (Brassica napus L.) Plants. Agronomy, 9(3), 146. https://doi.org/10.3390/agronomy9030146