Post-Anthesis Photosynthetic Properties Provide Insights into Yield Potential of Tartary Buckwheat Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Site Description
2.3. Experimental Design and Field Management
2.4. Chlorophyll Content (Chl)
2.5. Soluble Protein (SP)
2.6. Photosynthetic Parameters
2.7. Dry Matter, Yield, Yield Components, and Harvest Index
2.8. Statistical Analyses
3. Results
3.1. Leaf Chl Content
3.2. Leaf SP Content
3.3. Net Photosynthetic Rate (Pn)
3.4. Stomatal Conductance (Gs)
3.5. Intercellular CO2 Concentration (Ci)
3.6. Leaf Transpiration Rate (Tr)
3.7. Total Plant Dry Matter and Harvest Index (HI)
3.8. Grain Yield and Yield Components
3.9. Correlation between Yield and Photosynthetic Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peng, L.X.; Huang, Y.F.; Liu, Y.; Zhang, Z.F.; Lu, L.Y.; Zhao, G. Evaluation of essential and toxic element concentrations in buckwheat by experimental and chemometric approaches. J. Integr. Agric. 2014, 13, 1691–1698. [Google Scholar] [CrossRef]
- Xiang, D.B.; Zhao, G.; Wan, Y.; Tan, M.L.; Song, C.; Song, Y. Effect of planting density on lodging-related morphology, lodging rate, and yield of tartary buckwheat (Fagopyrum tataricum). Plant Prod. Sci. 2016, 19, 479–488. [Google Scholar] [CrossRef]
- Fabjan, N.; Rode, J.; Košir, I.J.; Wang, Z.; Zhang, Z.; Kreft, I. Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. J. Agric. Food Chem. 2003, 51, 6452–6455. [Google Scholar] [CrossRef]
- Zhao, G.; Zhao, J.L.; Peng, L.X.; Zou, L.; Wang, J.B.; Zhong, L.Y.; Xiang, D.B. Effects of yeast polysaccharide on growth and flavonoid accumulation in Fagopyrum tataricum sprout cultures. Molecules 2012, 17, 11335–11345. [Google Scholar] [CrossRef]
- Qin, P.; Wu, L.; Yao, Y.; Ren, G. Changes in phytochemical compositions, antioxidant and α-glucosidase inhibitory activities during the processing of tartary buckwheat tea. Food Res. Int. 2013, 50, 562–567. [Google Scholar] [CrossRef]
- Wang, L.; Yang, X.; Qin, P.; Shan, F.; Ren, G. Flavonoid composition, antibacterial and antioxidant properties of tartary buckwheat bran extract. Ind. Crop Prod. 2013, 49, 312–317. [Google Scholar] [CrossRef]
- Bonafaccia, G.; Marocchini, M.; Kreft, I. Composition and technological properties of the flour and bran from common and Tartary buckwheat. Food Chem. 2003, 80, 9–15. [Google Scholar] [CrossRef]
- Kreft, M. Buckwheat phenolic metabolites in health and disease. Nutr. Res. Rev. 2016, 29, 30–39. [Google Scholar] [CrossRef]
- Li, S.Q.; Zhang, Q.H. Advances in the development of functional foods from buckwheat. Crit. Rev. Food Sci. 2001, 41, 451–464. [Google Scholar] [CrossRef]
- FAOSTAT (Statistics Division of Food and Agriculture Organization of the United Nations). Available online: http://faostat3.fao.org/browse/Q/QC/E (accessed on 4 February 2016).
- Li, C.F.; Tao, Z.Q.; Liu, P.; Zhang, J.W.; Zhuang, K.Z.; Dong, S.T.; Zhao, M. Increased grain yield with improved photosynthetic characters in modern maize parental lines. J. Integr. Agric. 2015, 14, 1735–1744. [Google Scholar] [CrossRef]
- Iqbal, M.; Khan, K.; Sher, H.; Rahman, H.; Al-Yemeni, M.N. Genotypic and phenotypic relationship between physiological and grain yield related traits in four maize (Zea mays L.) crosses of subtropical climate. Sci. Res. Essays 2011, 6, 2864–2872. [Google Scholar]
- Zlatev, Z.; Lidon, F.C. An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir. J. Food Agric. 2012, 24, 57–72. [Google Scholar]
- Jiang, D.; Dai, T.; Jing, Q.; Cao, W.; Zhou, Q.; Zhao, H.; Fan, X. Effects of long-term fertilization on leaf photosynthetic characteristics and grain yield in winter wheat. Photosynthetica 2004, 42, 439–446. [Google Scholar] [CrossRef]
- Subrahmanyam, D.; Subash, N.; Haris, A.; Sikka, A.K. Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought. Photosynthetica 2006, 44, 125–129. [Google Scholar] [CrossRef]
- Khan, H.R.; Paull, J.G.; Siddique, K.H.M.; Stoddard, F.L. Faba bean breeding for drought-affected environments: A physiological and agronomic perspective. Field Crops Res. 2010, 115, 279–286. [Google Scholar] [CrossRef]
- Sui, X.L.; Mao, S.L.; Wang, L.H.; Zhang, B.X.; Zhang, Z.X. Effect of Low Light on the Characteristics of Photosynthesis and Chlorophyll a Fluorescence During Leaf Development of Sweet Pepper. J. Integr. Agric. 2012, 11, 1633–1643. [Google Scholar] [CrossRef]
- Afreen, F.; Zobayed, S.M.A.; Kozai, T. Photoautotrophic culture of Coffea arabusta somatic embryos: Photosynthetic ability and growth of different stage embryos. Ann. Bot. 2002, 90, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Shimono, H.; Hasegawa, T.; Fujimura, S.; Lwama, K. Responses of leaf photosynthesis and plant water status in rice to low water temperature at different growth stages. Field Crops Res. 2004, 89, 71–83. [Google Scholar] [CrossRef]
- Zhao, G.; Shang, F. Tartary Buckwheat of China; Science Press: Beijing, China, 2009; pp. 50–75. [Google Scholar]
- Xiang, D.B.; Peng, L.X.; Zhao, J.L.; Zou, L.; Zhao, G.; Song, C. Effect of drought stress on yield, chlorophyll contents and photosynthesis in tartary buckwheat (Fagopyrum tataricum). J. Food Agric. Environ. 2013, 11, 1358–1363. [Google Scholar]
- Wu, H.; Xiang, J.; Zhang, Y.P.; Zhang, Y.K.; Peng, S.B.; Chen, H.Z.; Zhu, D.F. Effects of post-anthesis nitrogen uptake and translocation on photosynthetic production and rice yield. Sci. Rep. 2018, 8, 12891. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Wang, K.J.; Jiang, G.M.; Liu, M.Z.; Niu, S.L.; Gao, L.M. Post-anthesis changes in photosynthetic traits of maize hybrids released in different years. Field Crops Res. 2005, 93, 108–115. [Google Scholar] [CrossRef]
- Xu, C.S.; Xia, Z.Q.; Zhou, X.J.; Huang, J.; Huang, Z.Q.; Liu, Y.; Jiang, Y.W.; Casteel, S.; Zhang, C.K. Physiological and transcriptomic responses of reproductive stage soybean to drought stress. Plant Cell Rep. 2018, 37, 1611–1624. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.L.; Sheehy, J.E. Supercharging rice photosynthesis to increase yield. New Phytol. 2006, 171, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Rogers, A.; Allen, D.J.; Davey, P.A.; Morgan, P.B.; Ainsworth, E.A.; Bernacchi, C.J.; Cornic, G.; Dermody, O.; Dohleman, F.G.; Heaton, E.A.; et al. Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their life-cycle under Free-Air Carbon dioxide Enrichment. Plant Cell Environ. 2004, 27, 449–458. [Google Scholar] [CrossRef]
- Ou, Z.Y.; Peng, C.L.; Lin, G.Z. Photosynthetic Characteristics in flag leaves of super high-yielding hybrid rice Peiai64S/E32 and its parents grown in the field. Acta Agron. Sin. 2005, 2, 209–213. [Google Scholar]
- Zhang, L.H.; Zhao, H.X.; Tan, G.B.; Yan, W.P.; Fang, X.Q.; Meng, X.M.; Bian, S.F. Influence of water and fertilizer coupling on photosynthetic characters and yield of soybean. Soybean Sci. 2010, 2, 268–271. [Google Scholar]
- Wang, C.; She, H.Z.; Liu, X.B.; Hu, D.; Ruan, R.W.; Shao, M.B.; Zhang, L.Y.; Zhou, L.B.; Zhang, G.B.; Wu, D.Q.; et al. Effects of fertilization on leaf photosynthetic characteristics and grain yield in tartary buckwheat Yunqiao1. Photosynthetica 2017, 55, 77–84. [Google Scholar] [CrossRef]
- Fayez, K.A.; Hassanein, A.M. Chlorophyll Synthesis Retardation and Ultrastructural Alterations to Solanum tuberosum Chloroplasts in Solanum nigrum Cells. Photosynthetica 2000, 38, 37–44. [Google Scholar] [CrossRef]
- Maydup, M.L.; Antonietta, M.; Guiamet, J.J.; Graciano, C.; López, J.R.; Tambussi, E.A. The contribution of ear photosynthesis to grain filling in bread wheat (Triticum aestivum L.). Field Crops Res. 2010, 119, 48–58. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, X.; Zhou, F.; Zhang, Z. Accessing the agronomic and photosynthesis-related traits of high-yielding winter wheat mutants induced by ultra-high pressure. Field Crops Res. 2017, 213, 165–173. [Google Scholar] [CrossRef]
- Thakur, A.K.; Mandal, K.G.; Mohanty, R.K.; Ambast, S.K. Rice root growth, photosynthesis, yield and water productivity improvements through modifying cultivation practices and water management. Agric. Water Manag. 2018, 206, 67–77. [Google Scholar] [CrossRef]
- Wang, A.H.; Xia, M.Z.; Cai, G.Z.; Dai, H.Y. Buckwheat new variety XiQiao No. 2 with high yield and excellent quality. Seed 2009, 10, 110–112. [Google Scholar]
- Wang, X.S.; Yang, C.X. Comparative study of different tartary buckwheat cultivars in hilly region of NingXia Province. Modern Agric. Sci. Technol. 2009, 11, 171–172. [Google Scholar]
- Mao, C.; Cheng, G.Y.; Cai, F.; Sun, J.N. Breeding and cultivation technology of new buckwheat variety Qianku No. 3. Seed 2010, 7, 111–113. [Google Scholar]
- Wang, H.; Yang, Y.; Yang, M.J.; Shi, J.B.; Guo, Z.X. Screening of tartary buckwheat varieties in the Northern Shanxi area. J. Shanxi Agric. Sci. 2013, 41, 321–323. [Google Scholar]
- Wang, Y.; Liang, C.G.; Sun, Y.H.; Yu, W.J.; Liao, K.; Huang, Y.W.; Shi, T.X.; Chen, Q.J.; Meng, Z.Y. The yield and quality of tartary buckwheat varieties and the response to low nitrogen. J. Guizhou Normal Univ. (Nat. Sci.) 2017, 6, 66–72. [Google Scholar]
- Pang, X.Y.; Bao, W.K.; Zhang, Y.M. Evaluation of soil fertility under different Cupressus chengiana forests using multivariate approach. Pedosphere 2006, 16, 602–615. [Google Scholar] [CrossRef]
- Xiong, Q.E. Guide for Plant Physiology Experiment; Sichuan Science and Technology Press: Chengdu, China, 2009; pp. 85–86. [Google Scholar]
- Ahammed, G.J.; Wen, X.; Airong, L.; Shuangchen, C. COMT1 silencing aggravates heat stress-induced reduction in photosynthesis by decreasing chlorophyll content, photosystem II activity, and electron transport efficiency in tomato. Front. Plant Sci. 2018, 9, 998–1007. [Google Scholar] [CrossRef]
- Silva, M.A.; Jifon, J.L.; Da, S.J.A.G.; Sharma, V. Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Braz. J. Plant Physiol. 2007, 19, 193–201. [Google Scholar] [CrossRef]
- Kura-Hotta, M.; Satoh, K.; Katoh, S. Relationship between photosynthesis and chlorophyll content during leaf senescence of rice seedlings. Plant Cell Physiol. 1987, 28, 1321–1329. [Google Scholar]
- Prawira-Atmaja, M.I.; Khomaini, H.S.; Maulana, H.; Harianto, S.; Rohdiana, D. Changes in chlorophyll and polyphenols content in Camellia sinensis var. sinensis at different stage of leaf maturity. IOP Conf. Ser. Earth Environ. Sci. 2018, 131, 012010. [Google Scholar]
- Zhang, K.; Zhang, Y.; Chen, G.; Tian, J. Genetic analysis of grain yield and leaf chlorophyll content in common wheat. Cereal Res. Commu. 2009, 37, 499–511. [Google Scholar] [CrossRef]
- Cao, X.C.; Chu, Z.; Zhu, L.F.; Zhang, J.H.; Hussain, S.; Wu, L.H.; Jin, Q.Y. Glycine increases cold tolerance in rice via the regulation of n uptake, physiological characteristics, and photosynthesis. Plant Physiol. Biochem. 2017, 112, 251–260. [Google Scholar]
- Biswal, B.; Pandey, J.K. Loss of photosynthesis signals a metabolic reprogramming to sustain sugar homeostasis during senescence of green leaves: Role of cell wall hydrolases. Photosynthetica 2018, 56, 404–410. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, Z.; Tan, X.J.; Jiang, Y.F.; Gao, J.G.; Lin, L.; Wang, Z.H.; Ren, J.; Wang, X.L.; Qin, L.Q.; et al. Association of the molecular regulation of ear leaf senescence/stress response and photosynthesis/metabolism with heterosis at the reproductive stage in maize. Sci. Rep. 2016, 6, 29843. [Google Scholar] [CrossRef]
- Chen, X.; Hao, M.D. Low contribution of photosynthesis and water-use efficiency to improvement of grain yield in Chinese wheat. Photosynthetica 2015, 53, 519–526. [Google Scholar] [CrossRef]
- Wei, H.H.; Meng, T.Y.; Li, C.; Xu, K.; Huo, Z.Y.; Wei, H.Y.; Guo, B.W.; Zhang, H.C.; Dai, Q.G. Comparisons of grain yield and nutrient accumulation and translocation in high-yielding japonica/indica hybrids, indica hybrids, and japonica conventional varieties. Field Crops Res. 2017, 204, 101–109. [Google Scholar] [CrossRef]
- Èatský, J.; Šesták, Z. Photosynthesis during leaf development. In Handbook of Photosynthesis; Pessarakli, M., Ed.; Marcel Dekker: New York, NY, USA, 1997; pp. 633–660. [Google Scholar]
- Breznik, B.; Germ, M.; Gaberščik, A.; Kreft, I. Combined effects of elevated UV-B radiation and the addition of selenium on common (Fagopyrum esculentum Moench) and tartary [Fagopyrum tataricum (L.) Gaertn.] buckwheat. Photosynthetica 2005, 43, 583–589. [Google Scholar] [CrossRef]
- Golob, A.; Stibilj, V.; Nečemer, M.; Kump, P.; Kreft, I.; Hočevara, A.; Gaberščik, A.; Germ, M. Calcium oxalate druses affect leaf optical properties in selenium-treated Fagopyrum tataricum. J. Photochem. Photobiol. B 2018, 180, 51–55. [Google Scholar] [CrossRef]
- Allakhverdiev, S.I.; Kreslavski, V.D.; Klimov, V.V.; Los, D.A.; Carpentier, R.; Mohanty, P. Heat stress: An overview of molecular responses in photosynthesis. Photosynth. Res. 2008, 98, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.W.; Tezara, W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: A critical evaluation of mechanisms and integration of processes. Ann. Bot. 2009, 103, 561–579. [Google Scholar] [CrossRef]
- Taylor, R.S.; Weaver, D.B.; Wood, C.W.; Van Santen, E. Nitrogen application increases yield and early dry matter accumulation in late-planted soybean. Crop Sci. 2005, 45, 854–858. [Google Scholar] [CrossRef]
- Ehdaie, B.; Alloush, G.A.; Waines, J.G. Genotypic variation in linear rate of grain growth and contribution of stem reserves to grain yield in wheat. Field Crops Res. 2008, 106, 34–43. [Google Scholar] [CrossRef]
- Tang, Y.; Wu, X.; Li, C.; Yang, W.; Huang, M.; Ma, X.; Li, S. Yield, growth, canopy traits and photosynthesis in high-yielding, synthetic hexaploid-derived wheats cultivars compared with non-synthetic wheats. Crop Pasture Sci. 2017, 68, 115. [Google Scholar] [CrossRef]
- Allison, J.C.S. Effect of plant population on the production and distribution of dry matter in maize. Ann. Appl. Biol. 1969, 63, 135–144. [Google Scholar] [CrossRef]
- Mirasson, H.R.; Faraldo, M.L.; Fioretti, M.N.; Miravalles, M.; Brevedan, R.E. Relationship between leaf greenness index and leaf water status in wheat under different tillage systems. Phyton 2010, 79, 183–187. [Google Scholar]
- Sun, Y.Y.; Wang, X.L.; Wang, N.; Chen, Y.L.; Zhang, S.Q. Changes in the yield and associated photosynthetic traits of dry-land winter wheat (Triticum aestivum L.) from the 1940s to the 2010s in Shaanxi Province of China. Field Crops Res. 2014, 167, 1–10. [Google Scholar] [CrossRef]
- Sage, R.F.; Kubien, D.S. The temperature response of C3 and C4 photosynthesis. Plant Cell Environ. 2007, 30, 1086–1106. [Google Scholar] [CrossRef] [PubMed]
- Fischer, R.A.; Aguilar, M.L. Yield potential in a dwarf spring wheat and the effect of carbon dioxide fertilization. Agron. J. 1976, 68, 40–43. [Google Scholar] [CrossRef]
- Xue, J.; Gou, L.; Shi, Z.G.; Zhao, Y.S.; Zhang, W.F. Effect of leaf removal on photosynthetically active radiation distribution in maize canopy and stalk strength. J. Integr. Agric. 2017, 161, 85–96. [Google Scholar] [CrossRef]
Year | Month | Mean Temperature (°C) | Maximum Temperature (°C) | Minimum Temperature (°C) | Precipitation (mm) | Daily Total Radiation (MJ m−2 d−1) |
---|---|---|---|---|---|---|
March | 13.5 | 23.1 | 5.1 | 21.5 | 12.5 | |
April | 19.1 | 27.3 | 11.6 | 38.7 | 17.9 | |
2016 | May | 21.5 | 30.2 | 12.5 | 33.9 | 23.9 |
June | 25.3 | 29.5 | 17.3 | 41.2 | 24.2 | |
March | 12.6 | 23.4 | 5.2 | 19.5 | 13.1 | |
April | 18.5 | 28.0 | 10.4 | 40.2 | 17.6 | |
2017 | May | 22.5 | 33.1 | 17.2 | 45.6 | 23.1 |
June | 24.3 | 31.5 | 17.1 | 39.6 | 25.3 |
Years | Cultivar | 9DAA | From 9 DAA to MS | Proportion | MS | HI |
---|---|---|---|---|---|---|
2016 | XiQiao2 | 2171.5a | 5726.5a | 0.725a | 7898.0a | 0.313a |
QianKu3 | 2185.1a | 5740.8a | 0.724a | 7925.9a | 0.307a | |
LiuKu3 | 2072.5a | 4638.2b | 0.691b | 6710.7b | 0.270b | |
JiuJiang | 2149.9a | 4472.1b | 0.675b | 6622.0b | 0.260b | |
2017 | XiQiao2 | 2005.8a | 5574.5a | 0.736a | 7580.3a | 0.306a |
QianKu3 | 2179.1a | 5738.1a | 0.725ab | 7917.2a | 0.318a | |
LiuKu3 | 2006.8a | 4763.5b | 0.704b | 6770.3b | 0.276b | |
JiuJiang | 2178.5a | 4473.0c | 0.672c | 6651.5b | 0.263b | |
Mean | 2016 | 2144.8a | 5144.4a | 0.704a | 7289.2a | 0.287a |
2017 | 2092.6a | 5137.3a | 0.709a | 7229.8a | 0.291a | |
Mean | XiQiao2 | 2088.7a | 5650.5a | 0.730a | 7739.2a | 0.309a |
QianKu3 | 2182.1a | 5739.4a | 0.725a | 7921.6a | 0.312a | |
LiuKu3 | 2039.6a | 4700.9b | 0.697b | 6740.5b | 0.273b | |
JiuJiang | 2164.2a | 4472.5c | 0.674c | 6636.8b | 0.262b | |
ANOVA | ||||||
Year (Y) | 1.51 NS | 0.016 NS | 1.79 NS | 0.46 NS | 0.90 NS | |
F-Value | Cultivar (C) | 2.44 NS | 130.50 ** | 47.10 ** | 58.10 ** | 44.10 ** |
Y × C | 1.23 NS | 1.53 NS | 0.91 NS | 2.11 NS | 0.88 NS |
Years | Cultivar | Effective Plants per m2 | Grains per Plant | 1000-Grain Weight (g) | Yield (kg ha−1) |
---|---|---|---|---|---|
2016 | XiQiao2 | 116.7a | 133.8b | 20.97ab | 2470.1a |
QianKu3 | 116.5a | 144.3a | 21.50a | 2429.2a | |
LiuKu3 | 117.3a | 105.0c | 19.97bc | 1809.5b | |
JiuJiang | 116.0a | 110.4c | 19.33c | 1723.2b | |
2017 | XiQiao2 | 117.6a | 134.8a | 19.83ab | 2318.4a |
QianKu3 | 113.3a | 140.7a | 20.90a | 2518.1a | |
LiuKu3 | 118.0a | 105.4b | 19.23b | 1871.5b | |
JiuJiang | 116.1a | 111.0b | 19.53b | 1752.3b | |
Mean | 2016 | 116.7a | 123.4a | 20.4a | 2108.0a |
2017 | 116.3a | 123.0a | 19.9a | 2115.1a | |
Mean | XiQiao2 | 117.2a | 134.3b | 20.4b | 2394.3a |
QianKu3 | 115.0a | 142.5a | 21.1a | 2473.7a | |
LiuKu3 | 117.7a | 105.2d | 19.6c | 1840.5b | |
JiuJiang | 116.0a | 110.7c | 19.4c | 1737.8b | |
ANOVA | |||||
Year (Y) | 0.18 NS | 0.14 NS | 4.11 NS | 0.017 NS | |
F-Value | Cultivar (C) | 1.45 NS | 291.8 ** | 8.44 NS | 47.9 ** |
Y × C | 0.98 NS | 0.65 NS | 2.19 NS | 1.81 NS |
Item | The 6th Leaf | The 7th Leaf | The 8th Leaf | The 9th Leaf |
---|---|---|---|---|
Pn | 0.890 ** | 0.965 ** | 0.961 ** | 0.964 ** |
Gs | 0.939 ** | 0.942 ** | 0.942 ** | 0.933 ** |
Ci | −0.949 ** | −0.933 ** | −0.901 ** | −0.963 ** |
Tr | 0.954 ** | 0.953 ** | 0.946 ** | 0.952 ** |
Chl | 0.972 ** | 0.970 ** | 0.970 ** | 0.923 ** |
SP | 0.974 ** | 0.974 ** | 0.899 ** | 0.883 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, D.; Ma, C.; Song, Y.; Wu, Q.; Wu, X.; Sun, Y.; Zhao, G.; Wan, Y. Post-Anthesis Photosynthetic Properties Provide Insights into Yield Potential of Tartary Buckwheat Cultivars. Agronomy 2019, 9, 149. https://doi.org/10.3390/agronomy9030149
Xiang D, Ma C, Song Y, Wu Q, Wu X, Sun Y, Zhao G, Wan Y. Post-Anthesis Photosynthetic Properties Provide Insights into Yield Potential of Tartary Buckwheat Cultivars. Agronomy. 2019; 9(3):149. https://doi.org/10.3390/agronomy9030149
Chicago/Turabian StyleXiang, Dabing, Chengrui Ma, Yue Song, Qi Wu, Xiaoyong Wu, Yanxia Sun, Gang Zhao, and Yan Wan. 2019. "Post-Anthesis Photosynthetic Properties Provide Insights into Yield Potential of Tartary Buckwheat Cultivars" Agronomy 9, no. 3: 149. https://doi.org/10.3390/agronomy9030149
APA StyleXiang, D., Ma, C., Song, Y., Wu, Q., Wu, X., Sun, Y., Zhao, G., & Wan, Y. (2019). Post-Anthesis Photosynthetic Properties Provide Insights into Yield Potential of Tartary Buckwheat Cultivars. Agronomy, 9(3), 149. https://doi.org/10.3390/agronomy9030149