Macronutrients in Soil and Wheat as Affected by a Long-Term Tillage and Nitrogen Fertilization in Winter Wheat–Fallow Rotation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Soil Sampling and Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. Effect of Tillage and N Rates on Soil Macronutrients and Soil pH
3.1.1. Total N and Total S
3.1.2. Soil Organic C, Mehlich III Extractable K, Ca, and Mg
3.1.3. Mehlich III Extractable Ca and P
3.1.4. Soil pH
3.2. Soil Macronutrients after 75 Years of Tillage and N Fertilization versus Grass Pasture (GP)
3.2.1. Soil Organic C, Total N, and Total S
3.2.2. Mehlich III Extractable P, K, Ca, and Mg
3.3. Macronutrients Accumulation in Wheat Straw and Grain
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rasmussen, P.E.; Albrecht, S.L.; Smiley, R.W. Soil C and N changes under tillage and cropping systems in semi-arid Pacific Northwest agriculture. Soil Tillage Res. 1998, 47, 197–205. [Google Scholar] [CrossRef]
- Hedley, M.J.; Saggar, S.; Francis, G.S. Chemical fractionation to characterize changes in sulphur and carbon in soil caused by management. Eur. J. Soil Sci. 2004, 55, 79–90. [Google Scholar]
- Awale, R.; Emeson, M.A.; Machado, S. Soil organic carbon pools as early indicators for soil organic matter stock changes under different tillage practices in inland Pacific Northwest. Front. Ecol. Evol. 2017, 5, 96. [Google Scholar] [CrossRef]
- Ghimire, R.; Machado, S.; Bista, P. Soil pH, soil organic matter, and crop yields in winter wheat-summer fallow systems. Agron. J. 2017, 109, 706–717. [Google Scholar] [CrossRef]
- Edwards, J.H.; Wood, C.W.; Thurlow, D.L.; Ruf, M.E. Tillage and crop-rotation effects on fertility status of a Hapludult soil. Soil Sci. Soc. Am. J. 1992, 56, 1577–1582. [Google Scholar] [CrossRef]
- Seddaiu, G.; Iocola, I.; Farina, R.; Orsini, R.; Iezzi, G.; Roggero, P.P. Long term effects of tillage practices and N fertilization in rainfed Mediterranean cropping systems: Durum wheat, sunflower and maize grain yield. Eur. J. Agron. 2016, 77, 166–178. [Google Scholar] [CrossRef]
- Obour, A.K.; Mikha, M.M.; Holman, J.D.; Stahlman, P.W. Changes in soil surface chemistry after fifty years of tillage and nitrogen fertilization. Geoderma 2017, 308, 46–53. [Google Scholar] [CrossRef]
- Blevins, R.L.; Thomas, G.W.; Smith, M.S.; Frye, W.W.; Cornelius, P.L. Changes in soil properties after 10 years continuous non-tilled and conventionally tilled corn. Soil Tillage Res. 1983, 3, 135–146. [Google Scholar] [CrossRef]
- Malhi, S.S.; Lemke, R. Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gas emissions in a second 4-yr rotation cycle. Soil Tillage Res. 2007, 96, 269–283. [Google Scholar] [CrossRef]
- López-Bellido, L.; López-Bellido, R.J.; Castillo, J.E.; López-Bellido, F.J. Effects of long-term tillage, crop rotation and nitrogen fertilization on bread-making quality of hard red spring wheat. Field Crops Res. 2001, 72, 197–210. [Google Scholar] [CrossRef]
- Gürsoy, S.; Sessiz, A.; Malhi, S.S. Short-term effects of tillage and residue management following cotton on grain yield and quality of wheat. Field Crops Res. 2010, 119, 260–268. [Google Scholar] [CrossRef]
- Gollany, H.T.; Allmaras, R.R.; Copeland, S.M.; Albrecht, S.L.; Douglas, J.C.L. Tillage and nitrogen fertilizer influence on carbon and soluble silica relations in a Pacific Northwest mollisol. Soil Sci. Soc. Am. J. 2005, 69, 1102–1109. [Google Scholar] [CrossRef]
- Gollany, H.T. CQESTR Simulation of dryland agroecosystem soil organic carbon changes under climate change scenarios. In Synthesis and Modeling of Greenhouse Gas Emissions and Carbon Storage in Agricultural and Forest Systems to Guide Mitigation and Adaptation. Advances in Agricultural Systems Modeling; Del Grosso, S., Ahuja, L., Parton, W., Eds.; ASA-CSSA-SSSA: Madison, WI, USA, 2016; pp. 59–87. [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Papp, C.; Harms, T. Comparison of digestion methods for total elemental analysis of peat and separation of its organic and inorganic components. Analyst 1985, 110, 237–243. [Google Scholar] [CrossRef]
- Rasmussen, P.E.; Rhode, C.R. Long-term tillage and nitrogen fertilization effects on organic nitrogen and carbon in a semiarid soil. Soil Sci. Soc. Am. J. 1988, 52, 1114–1117. [Google Scholar] [CrossRef]
- Mazzoncini, M.; Sapkota, T.B.; Bàrberi, P.; Antichi, D.; Risaliti, R. Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content. Soil Tillage Res. 2011, 114, 165–174. [Google Scholar] [CrossRef]
- Prasad, R.; Power, J. Soil Fertility Management for Sustainable Agriculture; CRC Press: Boca Raton, FL, USA; New York, NY, USA, 1997; ISBN 9781566702546. [Google Scholar]
- Kopittke, P.M.; Dalal, R.C.; Menzies, N.W. Changes in exchangeable cations and micronutrients in soils and grains of long-term, low input cropping systems of subtropical Australia. Geoderma 2017, 285, 293–300. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Hons, F.M. Soil-profile distribution of primary and secondary plant-available nutrients under conventional and no tillage. Soil Tillage Res. 1996, 39, 229–239. [Google Scholar] [CrossRef]
- Ussiri, D.A.N.; Lal, R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Tillage Res. 2009, 104, 39–47. [Google Scholar] [CrossRef]
- Ai, Z.; Wang, G.; Liang, C.; Liu, H.; Zhang, J.; Xue, S.; Liu, G. The effects of nitrogen addition on the uptake and allocation of macro and micronutrients in Bothriochloa ischaemum on loess plateau in China. Front. Plant Sci. 2017, 8, 1476. [Google Scholar] [CrossRef]
- Mahler, L.R.; Hammel, J.E.; Harder, R.W. The influence of crop rotation and tillage methods on the distribution of extractable boron in Northern Idaho Soils. Soil Sci. 1985, 139, 67–73. [Google Scholar] [CrossRef]
- Wuest, S.B.; Gollany, H.T. Soil organic carbon and nitrogen after application of nine organic amendments. Soil Sci. Soc. Am. J. 2013, 77, 237–245. [Google Scholar] [CrossRef]
- Sakadevan, K.; Mackay, A.D.; Hedley, M.J. Sulphur cycling in New Zealand hill country pastures. II. The fate of fertilizer sulphur. J. Soil Sci. 1993, 44, 615–624. [Google Scholar] [CrossRef]
- Germida, J.J.; Janzen, H.H. Factors affecting the oxidation of elemental sulfur in soils. Fertil. Res. 1993, 35, 101–114. [Google Scholar] [CrossRef]
- Elliott, E.T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci. Soc. Am. J. 1986, 50, 627–633. [Google Scholar] [CrossRef]
- Malhi, S.S.; Lemke, R.; Wang, Z.H.; Chhabra, B.S. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil Tillage Res. 2006, 90, 171–183. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.; Zhang, J.; Liu, W.; Dang, Z.; Cao, W.; Qiang, Q. Effects of mulch, N fertilizer, and plant density on wheat yield, wheat nitrogen uptake, and residual soil nitrate in a dryland area of China. Nutr. Cycl. Agroecosyst. 2009, 85, 109–121. [Google Scholar] [CrossRef]
Nutrients | Soil Depth (cm) | N Application Rate (kg ha−1) | Cultivation Effect 1 | |||||
---|---|---|---|---|---|---|---|---|
0 | 45 | 90 | 135 | 180 | GP | |||
Carbon (g kg−1) | 0–10 | 13.3 b | 13.5 b | 13.8 b | 14.4 b | 14.2 b | 21.8 a | 34% ↓ |
10–20 | 11.4 ab | 11.4 ab | 10.7 ab | 10.6 b | 11.5 ab | 13.6 a | 15% ↓ | |
20–30 | 9.1 a | 8.8 a | 9.1 a | 8.5 a | 9.1 a | 10.3 a | 12% ↓ | |
30–60 | 7.2 ab | 6.6b | 7.9 ab | 6.7 b | 8.4 ab | 9.8 a | 14% ↓ | |
Nitrogen (g kg−1) | 0–10 | 1.2 b | 1.2 b | 1.2 b | 1.4 b | 1.4 b | 2.1 a | 35% ↓ |
10–20 | 1.2 ab | 1.1 b | 1.1 b | 1.1 b | 1.2 ab | 1.4 a | 20% ↓ | |
20–30 | 1.1 a | 1.1 a | 1.0 a | 1.0 a | 1.1 a | 1.2 a | 3% ↓ | |
30–60 | 0.9 a | 0.9 a | 0.9 a | 0.9 a | 1.0 a | 1.1 a | 13%↓ | |
Sulfur (g kg−1) | 0–10 | 0.4 a | 0.4 a | 0.4 a | 0.5 a | 0.4 a | 0.4 a | 7% ↑ |
10–20 | 0.4 a | 0.4 a | 0.4 a | 0.4 a | 0.4 a | 0.4 a | 19% ↑ | |
20–30 | 0.5 a | 0.4 ab | 0.4 ab | 0.4 ab | 0.4 ab | 0.3 b | 41% ↑ | |
30–60 | 0.4 a | 0.4 a | 0.4 a | 0.4 a | 0.4 a | 0.3 a | 21% ↑ |
Nutrients | Soil Depth (cm) | N Rate (kg ha−1) | Cultivation Effect 1 | |||||
---|---|---|---|---|---|---|---|---|
0 | 45 | 90 | 135 | 180 | GP | |||
Phosphorus (mg kg−1) | 0–10 | 34.9 c | 35.2 c | 35.7 c | 56.1 b | 61.1 b | 89.9 a | 32% ↓ |
10–20 | 29.9 b | 29.8 b | 25.3 b | 37.4 b | 40.3 b | 60.6 a | 33% ↓ | |
20–30 | 31.3 b | 30.2 b | 26.6 b | 26.4 b | 26.4 b | 50.9 a | 39% ↓ | |
30–60 | 27.8 b | 25.7 b | 24.9 b | 27.9 b | 23.7 b | 46.4 a | 40% ↓ | |
Potassium (g kg−1) | 0–10 | 0.7 a | 0.7 a | 0.7 a | 0.7 a | 0.8 a | 0.8 a | 6% ↓ |
10–20 | 0.6 ab | 0.5 b | 0.6 ab | 0.7 ab | 0.6 ab | 0.7 a | 3%↓ | |
20–30 | 0.5 a | 0.5 a | 0.6 a | 0.6 a | 0.6 a | 0.6 a | 2% ↓ | |
30–60 | 0.4 b | 0.4 b | 0.4 b | 0.4 b | 0.4 b | 0.6 a | 31% ↓ | |
Calcium (g kg−1) | 0–10 | 0.3 b | 0.3 bc | 0.3 bc | 0.3 bc | 0.2 c | 2.4 a | 86% ↓ |
10–20 | 0.4 b | 0.4 bc | 0.3 bc | 0.4 bc | 0.3 c | 2.4 a | 83% ↓ | |
20–30 | 0.4 b | 0.4 b | 0.4 b | 0.5 b | 0.4 b | 2.4 a | 81% ↓ | |
30–60 | 0.5 bc | 0.5 bc | 0.4c | 0.5 b | 0.5 bc | 2.4 a | 78% ↓ | |
Magnesium (g kg−1) | 0–10 | 0.1 b | 0.1 b | 0.1 b | 0.1 b | 0.1 b | 0.6 a | 77% ↓ |
10–20 | 0.1 b | 0.1 b | 0.1 b | 0.1 b | 0.1 b | 0.6 a | 84% ↓ | |
20–30 | 0.1 b | 0.1 b | 0.1 b | 0.1 b | 0.1 b | 0.6 a | 89% ↓ | |
30–60 | 0.1 b | 0.1 b | 0.1 b | 0.1 b | 0.1 b | 0.6 a | 85% ↓ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiwakoti, S.; Zheljazkov, V.D.; Gollany, H.T.; Kleber, M.; Xing, B. Macronutrients in Soil and Wheat as Affected by a Long-Term Tillage and Nitrogen Fertilization in Winter Wheat–Fallow Rotation. Agronomy 2019, 9, 178. https://doi.org/10.3390/agronomy9040178
Shiwakoti S, Zheljazkov VD, Gollany HT, Kleber M, Xing B. Macronutrients in Soil and Wheat as Affected by a Long-Term Tillage and Nitrogen Fertilization in Winter Wheat–Fallow Rotation. Agronomy. 2019; 9(4):178. https://doi.org/10.3390/agronomy9040178
Chicago/Turabian StyleShiwakoti, Santosh, Valtcho D. Zheljazkov, Hero T. Gollany, Markus Kleber, and Baoshan Xing. 2019. "Macronutrients in Soil and Wheat as Affected by a Long-Term Tillage and Nitrogen Fertilization in Winter Wheat–Fallow Rotation" Agronomy 9, no. 4: 178. https://doi.org/10.3390/agronomy9040178
APA StyleShiwakoti, S., Zheljazkov, V. D., Gollany, H. T., Kleber, M., & Xing, B. (2019). Macronutrients in Soil and Wheat as Affected by a Long-Term Tillage and Nitrogen Fertilization in Winter Wheat–Fallow Rotation. Agronomy, 9(4), 178. https://doi.org/10.3390/agronomy9040178