Cereal Root Interactions with Soilborne Pathogens—From Trait to Gene and Back
Abstract
:1. Introduction
2. New Sources of Genetic Resistance to Nematodes of Small-Grain Cereals
3. An Update on Genetic Resistance to Soilborne Fungal Pathogens of Small-Grain Cereals
4. Genes Associated with Disease Resistance against Soilborne Pathogens
5. Mining ‘Omics Data for Leads to Novel Defense Genes
6. Host-Induced Gene Silencing (HIGS)
7. Building a Molecular Toolbox for Engineering of Targeted Disease Resistance
7.1. Materials and Methods for Transcriptomics of Pratylenchus-Challenged Wheat Roots
7.2. Results and Discussion of the Pratylenchus-Wheat Root Transcriptome
7.3. Materials and Methods for the Wheat Orthologue of Arabidopsis DORN1
7.4. Results and Discussion of Candidate Wheat Orthologues of DORN1
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
HIGS | host-induced gene silencing |
GWAS | genome wide association study |
PNW | Pacific Northwest, USA |
QTL | quantitative trait locus/loci |
RNAi | inhibitory RNA |
ROS | reactive oxygen species |
RPKM | reads per kilobase million |
SNP | single nucleotide polymorphism |
SSR | simple sequence repeat |
References
- Mondal, S.; Rutkoski, J.E.; Velu, G.; Singh, P.K.; Crespo-Herrera, L.A.; Guzmán, C.; Bhavani, S.; Lan, C.; He, X.; Singh, R.P. Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches. Front. Plant Sci. 2016, 7, 991. [Google Scholar] [CrossRef]
- O’Leary, G.J.; Aggarwal, P.K.; Calderini, D.F.; Connor, D.J.; Craufurd, P.; Eigenbrode, S.D.; Han, X.; Hatfield, J.L. Challenges and responses to ongoing and projected climate change for dryland cereal production systems throughout the world. Agronomy 2018, 8, 34. [Google Scholar] [CrossRef]
- Dimkpa, S.O.N.; Lahari, Z.; Shrestha, R.; Douglas, A.; Gheysen, G.; Price, A.H. A genome-wide association study of a global rice panel reveals resistance in Oryza sativa to root-knot nematodes. J. Exp. Bot. 2016, 67, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Kumari, C.; Dutta, T.K.; Banakar, P.; Rao, U. Comparing the defence-related gene expression changes upon root-knot nematode attack in susceptible versus resistant cultivars of rice. Sci. Rep. 2016, 6, 22846. [Google Scholar] [CrossRef]
- Wu, L.; Li, H.; Sun, L.; Gao, X.; Qui, D.; Sun, Y.; Wang, X.; Murray, T.D.; Li, H. Characterization of resistance to the cereal cyst nematode in the soft white wheat ‘Madsen’. Plant Dis. 2016, 100, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Petitot, A.-S.; Kyndt, T.; Haidar, R.; Dereeper, A.; Collin, M.; Engler, J.A.; Gheysen, G.; Fernandez, D. Transcriptomic and histological responses of African rice (Oryza glaberrima) to Meloidogyne graminicola provide new insights into root-knot nematode resistance in monocots. Ann. Bot. 2017, 119, 885–899. [Google Scholar] [CrossRef]
- Smiley, R.D.; Dababat, A.A.; Iqbal, S.; Jones, M.G.K.; Maafi, Z.T.; Peng, D.; Subbotin, S.A.; Waeyenberge, L. Cereal cyst nematodes: A complex and destructive group of Heterodera species. Plant Dis. 2017, 101, 1692–1720. [Google Scholar] [CrossRef] [PubMed]
- Scherm, B.; Balmas, V.; Spanu, F.; Pani, G.; Delogu, G.; Pasquali, M.; Migheli, Q. Fusarium culmorum: Causal agent of foot and root rot and head blight on wheat. Mol. Plant Pathol. 2013, 14, 323–341. [Google Scholar] [CrossRef] [PubMed]
- Goto, D.B.; Miyazama, H.; Mar, J.C.; Sato, M. Not to be suppressed? Rethinking the host response at a root-parasite interface. Plant Sci. 2013, 213, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Bohlman, H.; Sobczak, M. The plant cell wall in the feeding sites of cyst nematodes. Front. Plant Sci. 2014, 5, 89. [Google Scholar] [CrossRef] [PubMed]
- Kyndt, T.; Fernandez, D.; Gheysen, G. Plant-parasitic nematode infections in rice: Molecular and cellular insights. Annu. Rev. Phytopathol. 2014, 52, 135–153. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.P.; Hane, J.K.; Stoll, T.; Nicholas Pain, N.; Hastie, M.L.; Kau, P.; Hoogland, C.; Gorman, J.J.; Singh, K.B. Proteomic analysis of Rhizoctonia solani identifies infection-specific, redox associated proteins and insight into adaptation to different plant hosts. Mol. Cell. Proteomics 2016, 15, 1188–1203. [Google Scholar] [CrossRef]
- Holbein, J.; Grundler, F.M.W.; Siddique, S. Plant basal resistance to nematodes: An update. J. Exp. Bot. 2016, 67, 2049–2061. [Google Scholar] [CrossRef] [PubMed]
- Dababat, A.A.; Ferney, G.-B.H.; Erginbas-Orakci, G.; Dreisigacker, S.; Imren, M.; Toktay, H.; Elekcioglu, H.I.; Mekete, T.; Nicol, J.M.; Ansari, O.; et al. Association analysis of resistance to cereal cyst nematodes (Heterodera avenae) and root lesion nematodes (Pratylenchus neglectus and P. thornei) in CIMMYT advanced spring wheat lines for semi-arid conditions. Breed. Sci. 2016, 66, 692–702. [Google Scholar] [CrossRef]
- IRIN News. 2010. Available online: http://www.irinnews.org/report/91012/asia-key-facts-about-rice (accessed on 11 February 2019).
- Qi, T.; Guo, J.; Peng, H.; Liu, P.; Kang, Z.; Guo, J. Host-induced gene silencing: A powerful strategy to control diseases of wheat and barley. Int. J. Mol. Sci. 2019, 20, 206. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Crops, Barley. 2016. Available online: http://www.fao.org/faostat/ (accessed on 11 February 2019).
- Danchin, E.G.D.; Arguel, M.-J.; Campan-Fournier, A.; Perfus-Barbeoch, L.; Marc Magliano, M.; Rosso, M.-N.; Da Rocha, M.; Da Silva, C.; Nottet, N.; Labadie, K.; Guy, J.; et al. Identification of novel target genes for safer and more specific control of root-knot nematodes from a pan-genome mining. PLoS Pathog. 2013, 9, e1003745. [Google Scholar] [CrossRef] [PubMed]
- Kandoth, P.K.; Mitchum, M.G. War of the worms: How plants fight underground attacks. Curr. Opin. Plant Biol. 2013, 16, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Shahzadi, M.; Zahoor, A.; Dababat, A.A.; Toktay, H.; Bakhsh, A.; Nawaz, M.A.; Li, H. Resistance to cereal cyst nematodes in wheat and barley: An emphasis on classical and modern approaches. Int. J. Mol. Sci. 2019, 20, 432. [Google Scholar] [CrossRef]
- Siddique, S.; Grundler, F.M.W. Parasitic nematodes manipulate plant development to establish feeding sites. Curr. Opin. Microbiol. 2018, 46, 102–108. [Google Scholar] [CrossRef]
- Aditya, J.; Lewis, J.; Shirley, N.J.; Tan, H.-T.; Henderson, M.; Fincher, G.B.; Burton, R.A.; Mather, D.E.; Tucker, M.R. The dynamics of cereal cyst nematode infection differ between susceptible and resistant barley cultivars and lead to changes in (1,3;1,4)-b-glucan levels and HvCslF gene transcript abundance. New Phytol. 2015, 207, 135–147. [Google Scholar] [CrossRef]
- Zheng, M.; Long, H.; Zhao, Y.; Li, L.; Xu, D.; Zhang, H.; Liu, F.; Deng, G.; Pan, Z.; Yu, M. RNA-seq based identification of candidate parasitism genes of cereal cyst nematode (Heterodera avenae) during incompatible infection to Aegilops variabilis. PLoS ONE 2015, 10, e0141095. [Google Scholar] [CrossRef]
- Zhan, L.-P.; Peng, D.-L.; Wang, X.-L.; Kong, L.-A.; Peng, H.; Liu, S.-M.; Liu, Y.; Huang, W.-K. Priming effect of root-applied silicon on the enhancement of induced resistance to the root-knot nematode Meloidogyne graminicola in rice. BMC Plant Biol. 2018, 18, 50. [Google Scholar] [CrossRef]
- Thompson, A.L.; Mahoney, A.K.; Smiley, R.W.; Paulitz, T.C.; Hulbert, S.; Garland-Campbell, K. Resistance to multiple soil-borne pathogens of the Pacific Northwest, USA is colocated in a wheat recombinant inbred line population. G3 Genes Genomes Genet. 2017, 7, 1109–1116. [Google Scholar] [CrossRef]
- Smiley, R.D. Root-lesion nematodes reduce yield of intolerant wheat and barley. Agron. J. 2009, 101, 1322–1335. [Google Scholar] [CrossRef]
- Zhang, L.; Lilley, C.J.; Imren, M.; Knox, J.P.; Urwin, P.E. The complex cell wall composition of syncytia induced by plant parasitic cyst nematodes reflects both function and host plant. Front. Plant Sci. 2017, 8, 1087. [Google Scholar] [CrossRef]
- Fosu-Nyarko, J.; Jones, M.G.K. Advances in understanding the molecular mechanisms of root lesion nematode host interactions. Annu. Rev. Phytopathol. 2016, 54, 253–278. [Google Scholar] [CrossRef]
- Kim, D.-W.; Kim, G.-Y.; Kim, H.-K.; Kim, J.; Jeon, S.J.; Lee, C.W.; Lee, H.B.; Yun, S.-H. Characterization of nivalenol-producing Fusarium culmorum isolates obtained from the air at a rice paddy field in Korea. Plant Pathol. J. 2016, 32, 182–189. [Google Scholar] [CrossRef]
- Pasquali, M.; Spanu, F.; Scherm, B.; Balmas, V.; Hoffmann, L.; Hammond-Kosack, K.E.; Beyer, M.; Migheli, Q. FcStuA from Fusarium culmorum controls wheat foot and root rot in a toxin dispensable manner. PLoS ONE 2013, 8, e57429. [Google Scholar] [CrossRef]
- Voss-Fels, K.P.; Qian, L.; Gabur, I.; Obermeier, C.; Hickey, L.T.; Werner, C.R.; Kontowski, S.; Frisch, M.; Friedt, W.; Snowdon, R.J.; et al. Genetic insights into underground responses to Fusarium graminearum infection in wheat. Sci. Rep. 2018, 8, 13153. [Google Scholar] [CrossRef]
- Paulitz, T.C. Low input no-till cereal production in the Pacific Northwest of the US: The challenges of root diseases. Eur. J. Plant Pathol. 2006, 115, 271–281. [Google Scholar] [CrossRef]
- NASS (National Agricultural Statistics Service). Data and Statistics for Washington State Field Crops. Available online: https://www.nass.usda.gov/Statistics_by_State/Washington/index.php (accessed on 13 February 2019).
- Jaaffar, A.K.M.; Paulitz, T.C.; Schroeder, K.L.; Thomashow, L.S.; Weller, D.M. Molecular characterization, morphological characteristics, virulence, and geographic distribution of Rhizoctonia spp. in Washington State. Phytopathology 2016, 106, 459–473. [Google Scholar] [CrossRef]
- Beccari, G.; Covarelli, L.; Nicholson, P. Infection processes and soft wheat response to root rot and crown rot caused by Fusarium culmorum. Plant Pathol. 2011, 60, 671–684. [Google Scholar] [CrossRef]
- Gasparis, S.; Kała, M.; Przyborowski, M.; Łyżnik, L.A.; Orczyk, W.; Nadolska-Orczyk, A. A simple and efficient CRISPR/Cas9 platform for induction of single and multiple, heritable mutations in barley (Hordeum vulgare L.). Plant Methods 2018, 14, 111. [Google Scholar] [CrossRef]
- Fiaz, S.; Ahmad, S.; Noor, M.A.; Wang, X.; Younas, A.; Riaz, A.; Riaz, A.; Ali, F. Applications of the CRISPR/Cas9 system for rice grain quality improvement: Perspectives and opportunities. Int. J. Mol. Sci. 2019, 20, 888. [Google Scholar] [CrossRef]
- Lawrenson, T.; Harwood, W.A. Creating targeted gene knockouts in barley using CRISPR/Cas9. Methods Mol. Biol. 2019, 1900, 217–232. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Wang, K. Generation of marker-free transgenic rice using CRISPR/Cas9 system controlled by floral specific promoters. J. Genet. Genomics 2019, 46, 61–64. [Google Scholar] [CrossRef]
- Zhang, Z.; Hua, L.; Gupta, A.; Tricoli, D.; Edwards, K.J.; Yang, B.; Li, W. Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnol. J. 2019. [Google Scholar] [CrossRef]
- Tanaka, K.; Choi, J.; Cao, Y.; Stacey, G. Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants. Front. Plant Sci. 2014, 5, 446. [Google Scholar] [CrossRef]
- Choi, J.; Tanaka, K.; Cao, Y.; Qi, Y.; Qiu, J.; Liang, Y.; Lee, S.Y.; Stacey, G. Identification of a plant receptor for extracellular ATP. Science 2014, 343, 290–294. [Google Scholar] [CrossRef]
- Bouwmeester, K.; de Sain, M.; Weide, R.; Gouget, A.; Klamer, S.; Canut, H.; Govers, F. The lectin receptor kinase LecRK-I.9 is a novel phytophthora resistance component and a potential host target for a RXLR effector. PLoS Pathog. 2011, 7, e1001327. [Google Scholar] [CrossRef]
- Bouwmeester, K.; Han, M.; Blanco-Portales, R.; Song, W.; Weide, R.; Guo, L.-Y.; van der Vossen, E.A.G.; Govers, F. The Arabidopsis lectin receptor kinase LecRK-I.9 enhances resistance to Phytophthora infestans in Solanaceous plants. Plant Biotechnol. J. 2014, 12, 10–16. [Google Scholar] [CrossRef]
- Balagué, C.; Gouge, A.; Bouchez, O.; Souriac, C.; Haget, N.; Boutet-Mercey, S.; Govers, F.; Roby, D.; Canut, H. The Arabidopsis thaliana lectin receptor kinase LecRK-I.9 is required for full resistance to Pseudomonas syringae and affects jasmonate signaling. Mol. Plant Biol. 2017, 18, 937–948. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, D.; Zhang, T.; Koo, A.J.; Stacey, G.; Tanaka, K. Extracellular ATP acts on jasmonate signaling to reinforce plant defense. Plant Physiol. 2018, 176, 511–523. [Google Scholar] [CrossRef]
- Choi, J.; Tanaka, K.; Liang, Y.; Cao, Y.; Lee, S.Y.; Stacey, G. Extracellular ATP, a danger signal, is recognized by DORN1 in Arabidopsis. Biochem. J. 2014, 463, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Cao, Y.; Li, H.; Kim, D.; Ahsan, N.; Thelen, J.; Stacey, G. Extracellular ATP elicits DORN1-mediated RBOHD phosphorylation to regulate stomatal aperture. Nat. Commun. 2017, 8, 2265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Coninck, B.; Timmermans, P.; Vos, C.; Cammue, B.P.A.; Kazan, K. What lies beneath: Belowground defense strategies in plants. Trends Plant Sci. 2015, 20, 91–101. [Google Scholar] [CrossRef]
- Khazaei, H.; Street, K.; Bari, A.; Mackay, M.; Stoddard, F.L. The FIGS (Focused Identification of Germplasm Strategy) approach identifies traits related to drought adaptation in Vicia faba genetic resources. PLoS ONE 2013, 8, e63107. [Google Scholar] [CrossRef]
- Marone, D.; Panio, G.; Ficco, D.B.M.; Russo, M.A.; De Vita, P.; Papa, R.; Rubiales, D.; Cattivelli, L.; Mastrangelo, A.M. Characterization of wheat DArT markers: Genetic and functional features. Mol. Genet. Genomics 2012, 287, 741–753. [Google Scholar] [CrossRef]
- Avni, R.; Nave, M.; Eilam, T.; Sela, H.; Alekperov, C.; Peleg, Z.; Dvorak, J.; Korol, A.; Distelfeld, A. Ultra-dense genetic map of durum wheat x wild emmer wheat developed using the 90K iSelect SNP genotyping assay. Mol. Breed. 2014, 34, 1549–1562. [Google Scholar] [CrossRef]
- Wenzl, P.; Carling, J.; Kudrna, D.; Jaccoud, D.; Huttner, E.; Kleinhofs, A.; Kilian, A. Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc. Natl. Acad. Sci. USA 2004, 101, 9915–9920. [Google Scholar] [CrossRef]
- Poland, J.; Endelman, J.; Dawson, J.; Rutkoski, J.; Wu, S.; Manes, Y.; Dreisigacker, S.; Crossa, J.; Sánchez-Villeda, H.; Sorrells, M.; et al. Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 2012, 5, 103–113. [Google Scholar] [CrossRef]
- Phan, N.T.; De Waele, D.; Lorieux, M.; Xiong, L.; Bellafiore, S. A hypersensitivity-like response to Meloidogyne graminicola in rice (Oryza sativa). Phytopathology 2018, 108, 521–528. [Google Scholar] [CrossRef]
- Zhao, K.; Tung, C.-W.; Eizenga, G.C.; Wright, M.H.; Ali, M.L.; Price, A.H.; Norton, G.J.; Rafiqul Islam, M.; Reynolds, A.; Mezey, J.; et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat. Commun. 2011, 2, 467. [Google Scholar] [CrossRef]
- Pariyar, S.R.; Dababat, A.A.; Sannemann, W.; Erginbas-Orakci, G.; Elashry, A.; Siddique, S.; Morgounov, A.; Leon, J.; Grundler, F.M.W. Genome-wide association study in wheat identifies resistance to the cereal cyst nematode Heterodera filipjevi. Phytopathology 2016, 106, 1128–1138. [Google Scholar] [CrossRef]
- Galal, A.; Sharma, S.; Abou-Elwafa, S.F.; Sharma, S.; Kopisch-Obuch, F.; Laubach, E.; Perovic, D.; Ordon, F.; Jung, C. Comparative QTL analysis of root lesion nematode resistance in barley. Theor. Appl. Genet. 2014, 127, 1399–1407. [Google Scholar] [CrossRef]
- Thompson, A.L.; Smiley, R.W.; Paulitz, T.C.; Garland-Campbell, K. Identification of resistance to Pratylenchus neglectus and Pratylenchus thornei in Iranian landrace accessions of wheat. Crop Sci. 2016, 56, 654–672. [Google Scholar] [CrossRef]
- Buerstmayr, H.; Steiner, B.; Hartl, L.; Griesser, M.; Angerer, N.; Lengauer, D.; Miedaner, T.; Schneider, B.; Lemmens, M. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor. Appl. Genet. 2003, 107, 503–508. [Google Scholar] [CrossRef]
- Okubara, P.A.; Jones, S.S. Seedling resistance to Rhizoctonia and Pythium in wheat chromosome group 4 addition lines from Thinopyrum spp. Can. J. Plant Pathol. 2011, 33, 415–422. [Google Scholar] [CrossRef]
- Okubara, P.A.; Dickman, M.B.; Blechl, A.E. Molecular and genetic aspects of controlling the soilborne necrotrophic pathogens Rhizoctonia and Pythium. Plant Sci. 2014, 128, 61–70. [Google Scholar] [CrossRef]
- Mahoney, A.; Babiker, E.; Paulitz, T.; See, D.; Okubara, P.; Hulbert, S. Characterizing and mapping resistance in synthetic-derived wheat to Rhizoctonia root rot in a green bridge environment. Phytopathology 2016, 106, 1170–1176. [Google Scholar] [CrossRef]
- Mahoney, A.K.; Babiker, E.M.; See, D.R.; Paulitz, T.C.; Okubara, P.A.; Hulbert, S.H. Analysis and mapping of Rhizoctonia root rot resistance traits from the synthetic wheat (Triticum aestivum L.) line SYN-172. Mol. Breed. 2017, 37, 130. [Google Scholar] [CrossRef]
- Warr, A.; Robert, C.; Hume, D.; Archibald, A.; Deeb, N.; Watson, M. Exome sequencing: Current and future perspectives. G3 Genes Genomes Genet. 2015, 5, 1543–1550. [Google Scholar] [CrossRef]
- Kyndt, T.; Nahar, K.; Haegeman, A.; De Vleesschauwer, D.; Hofte, M.; Gheysen, G. Comparing systemic defence-related gene expression changes upon migratory and sedentary nematode attack in rice. Plant Biol. 2012, 14 (Suppl. 1), 73–82. [Google Scholar] [CrossRef]
- Ji, H.; Gheysen, G.; Denil, S.; Lindsey, K.; Topping, J.F.; Nahar, K.; Haegeman, A.; De Vos, W.H.; Trooskens, G.; Van Criekinge, W.; et al. Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminicola in rice roots. J. Exp. Bot. 2013, 64, 3885–3898. [Google Scholar] [CrossRef]
- Lagudah, E.S.; Moullet, O.; Appels, R. Map-based cloning of a gene sequence encoding a nucleotide-binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. Genome 1997, 40, 659–665. [Google Scholar] [CrossRef]
- Cortese, M.R.; Fanelli, E.; De Giorgi, C. Characterization of nematode resistance gene analogs in tetraploid wheat. Plant Sci. 2003, 164, 71–75. [Google Scholar] [CrossRef]
- Simonetti, E.; Alba, E.; Montes, M.J.; Delibes, A.; López-Braña, I. Analysis of ascorbate peroxidase genes expressed in resistant and susceptible wheat lines infected by the cereal cyst nematode, Heterodera avenae. Plant Cell Rep. 2010, 29, 1169–1178. [Google Scholar] [CrossRef]
- Barloy, D.; Lemoine, J.; Abelard, P.; Tanguy, A.M.; Rivoal, R.; Jahier, J. Marker-assisted pyramiding of two cereal cyst nematode resistance genes from Aegilops variabilis in wheat. Mol. Breed. 2007, 20, 31–40. [Google Scholar] [CrossRef]
- Huang, Q.; Li, L.; Zheng, M.; Chen, F.; Long, H.; Deng, G.; Pan, Z.; Liang, J.; Li, Q.; Yu, M.; et al. The tryptophan decarboxylase 1 gene from Aegilops variabilis no.1 regulate the resistance against cereal cyst nematode by altering the downstream secondary metabolite contents rather than auxin synthesis. Front. Plant Sci. 2018, 9, 1297. [Google Scholar] [CrossRef]
- Pelagio-Flores, R.; Ortíz-Castro, R.; Méndez-Bravo, A.; Macías-Rodríguez, L.; López-Bucio, J. Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana. Plant Cell Physiol. 2011, 52, 490–508. [Google Scholar] [CrossRef]
- Kang, S.; Kang, K.; Lee, K.; Back, K. Characterization of tryptamine 5-hydroxylase and serotonin synthesis in rice plants. Plant Cell Rep. 2007, 26, 2009–2015. [Google Scholar] [CrossRef]
- Motallebi, P.; Tonti, S.; Niknam, V.; Ebrahimzadeh, H.; Pisi, A.; Nipoti, P.; Hashemi, M.; Prodi, A. Induction of basal resistance by methyl jasmonate against Fusarium culmorum in bread wheat. Cereal Res. Commun. 2017, 45, 248–259. [Google Scholar] [CrossRef]
- Kyndt, T.; Denil, S.; Haegeman, A.; Trooskens, G.; De Meyer, T.; Van Criekinge, W.; Gheysen, G. Transcriptional reprogramming by root knot and migratory nematode infection in rice. New Phytol. 2012, 196, 887–900. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.L.; Smiley, R.W.; Garland-Campbell, K. Registration of the LouAu (Louise/IWA8608077) wheat recombinant inbred line mapping population. J. Plant Regist. 2015, 9, 424–429. [Google Scholar] [CrossRef]
- Xie, M.; Zhang, J.; Tschaplinski, T.J.; Tuskan, G.A.; Chen, J.-G.; Muchero, W. Regulation of lignin biosynthesis and its role in growth-defense tradeoffs. Front. Plant Sci. 2018, 9, 1427. [Google Scholar] [CrossRef]
- Kong, L.-A.; Wu, D.-Q.; Huang, W.-K.; Peng, H.; Wang, G.-F.; Cui, J.-K.; Liu, S.-M.; Li, Z.-G.; Yang, J.; Peng, D.-L. Large-scale identification of wheat genes resistant to cereal cyst nematode Heterodera Biolavenae using comparative transcriptomic analysis. BMC Genomics 2015, 16, 801. [Google Scholar] [CrossRef]
- Torres, M.A.; Jones, J.D.G.; Dangl, J.L. Reactive oxygen species signaling in response to pathogens. Plant Physiol. 2006, 141, 373–378. [Google Scholar] [CrossRef]
- Baxter, A.; Mittler, R.; Suzuki, N. ROS as key players in plant stress signaling. J. Exp. Bot. 2014, 65, 1229–1240. [Google Scholar] [CrossRef]
- Qiao, F.; Kong, L.-A.; Peng, H.; Huang, W.-K.; Wu, D.-Q.; Liu, S.-M.; Clarke, J.L.; Qiu, D.-W.; Peng, D.-L. Transcriptional profiling of wheat (Triticum aestivum L.) during a compatible interaction with the cereal cyst nematode Heterodera avenae. Sci. Rep. 2019, 9, 2184. [Google Scholar] [CrossRef]
- Maketon, C.; Fortuna, A.-M.; Okubara, P. Cultivar-dependent transcript accumulation in wheat roots colonized by Pseudomonas fluorescens Q8r1-96 wild type and mutant strains. Biol. Control 2012, 60, 216–224. [Google Scholar] [CrossRef]
- Chen, C.; Cui, L.; Chen, Y.; Zhang, H.; Liu, P.; Wu, P.; Qiu, D.; Zou, J.; Yang, D.; Yang, L.; et al. Transcriptional responses of wheat and the cereal cyst nematode Heterodera avenae during their early contact stage. Sci. Rep. 2017, 7, 14471. [Google Scholar] [CrossRef]
- Foley, R.C.; Gleason, C.A.; Anderson, J.P.; Hamann, T.; Singh, K.B. Genetic and Genomic Analysis of Rhizoctonia solani interactions with Arabidopsis; evidence of resistance mediated through NADPH oxidases. PLoS ONE 2013, 8, e56814. [Google Scholar] [CrossRef]
- Guo, G.; Liu, Q.; Smith, N.A.; Liang, G.; Wang, M.-B. RNA silencing in plants: Mechanisms, technologies and applications in horticultural crops. Curr. Genomics 2016, 17, 476–489. [Google Scholar] [CrossRef]
- Cai, Q.; He, B.; Kogel, K.-H.; Jin, H. Cross-kingdom RNA trafficking and environmental RNAi—Natures blueprint for modern crop protection strategies. Curr. Opin. Microbiol. 2018, 46, 58–64. [Google Scholar] [CrossRef]
- Haegeman, A.; Mantelin, S.; Jones, J.T.; Gheysen, G. Functional roles of effectors of plant-parasitic nematodes. Gene 2012, 492, 19–31. [Google Scholar] [CrossRef]
- Presti, L.L.; Lanver, D.; Schweizer, G.; Tanaka, S.; Liang, L.; Tollot, M.; Zuccaro, A.; Reissmann, S.; Kahmann, R. Fungal effectors and plant susceptibility. Annu. Rev. Plant Biol. 2015, 66, 513–545. [Google Scholar] [CrossRef]
- Tan, J.C.H.; Jones, M.G.K.; Fosu-Nyarko, J. Gene silencing in root lesion nematodes (Pratylenchus spp.) significantly reduces reproduction in a plant host. Exp. Parasitol. 2013, 133, 166–178. [Google Scholar] [CrossRef]
- Chen, C.; Liu, S.; Liu, Q.; Niu, J.; Liu, P.; Zhao, J.; Jian, H. An ANNEXIN like protein from the cereal cyst nematode Heterodera avenae suppresses plant defense. PLoS ONE 2015, 10, e0122256. [Google Scholar] [CrossRef]
- Yang, S.; Dai, Y.; Chen, Y.; Yang, J.; Yang, D.; Liu, Q.; Jian, H. Heterodera avenae suppresses plant defenses and promotes parasitism. Front. Plant Sci. 2019, 10, 66. [Google Scholar] [CrossRef]
- Vieira, P.; Eves-van den Akker, S.; Verma, R.; Wantoch, S.; Eisenback, J.D.; Kamo, K. The Pratylenchus penetrans transcriptome as a source for the development of alternative control strategies: Mining for putative genes involved in parasitism and evaluation of in planta RNAi. PLoS ONE 2015, 10, e0144674. [Google Scholar] [CrossRef]
- Smiley, R.; Paulitz, T.; Marshall, J. Controlling Root and Crown Diseases of Small Grain Cereals. PNW 639. Pacific Northwest Extension Publication, 2012; pp. 1–9. Available online: http://smallgrains.wsu.edu/wp-content/uploads/2013/10/Smiley_12_PNW639_RootDis.pdf (accessed on 2 February 2019).
- Thomson, J.; Bertram, L. Crop Damaging Nematodes Found in New Area. Government of Western Australia, Department of Primary Industries and Regional Development, 2014. Available online: https://www.agric.wa.gov.au/news/media-releases/crop-damaging-nematodes-found-new-area (accessed on 2 February 2019).
- Mokrini, F.; Viaene, N.; Waeyenberge, L.; Dababat, A.A.; Moens, M. Investigation of resistance to Pratylenchus penetrans and P. thornei in international wheat lines and its durability when inoculated together with the cereal cyst nematode Heterodera avenae, using qPCR for nematode quantification. Eur. J. Plant Pathol. 2018, 151, 875–889. [Google Scholar] [CrossRef]
- Haegeman, A.; Bauters, L.; Kyndt, T.; Rahman, M.M.; Gheysen, G. Identification of candidate effector genes in the transcriptome of the rice root knot nematode Meloidogyne graminicola. Mol. Plant Pathol. 2013, 14, 379–390. [Google Scholar] [CrossRef]
- Pallarès, I.; de Groot, N.S.; Iglesias, V.; Sant’Anna, R.; Biosca, A.; Fernàndez-Busquets, X.; Ventura, S. Discovering putative prion-like proteins in Plasmodium falciparum: A computational and experimental analysis. Front. Microbiol. 2018, 9, 1737. [Google Scholar] [CrossRef]
- Kormish, J.D.; McGhee, J.D. The C. elegans lethal gut-obstructed gob-1 gene is trehalose-6-phosphate phosphatase. Dev. Biol. 2005, 287, 35–47. [Google Scholar] [CrossRef]
- Chen, J.; Lin, B.; Huang, Q.; Hu, L.; Zhuo, K.; Liao, J. A novel Meloidogyne graminicola effector, MgGPP, is secreted into host cells and undergoes glycosylation in concert with proteolysis to suppress plant defenses and promote parasitism. PLoS Pathog. 2017, 13, e1006301. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, N.; Liu, J.; Liu, W.; Wang, G.-L. The role of effectors and host immunity in plant–necrotrophic fungal interactions. Virulence 2014, 5, 722–732. [Google Scholar] [CrossRef] [Green Version]
- Castiblanco, V.; Elena Castillo, H.E.; Miedaner, T. Candidate genes for aggressiveness in a natural Fusarium culmorum population greatly differ between Wheat and Rye Head Blight. J. Fungi 2018, 4, 14. [Google Scholar] [CrossRef]
- Castiblanco, V.; Marulanda, J.J.; Würschum, T.; Miedaner, T. Candidate gene based association mapping in Fusarium culmorum for field quantitative pathogenicity and mycotoxin production in wheat. BMC Genet. 2017, 18, 49. [Google Scholar] [CrossRef]
- Lysøe, E.; Pasquali, M.; Breakspear, A.; Kistler, H.C. The transcription factor FgStuAp influences spore development, pathogenicity, and secondary metabolism in Fusarium graminearum. Mol. Plant-Microbe Interact. 2011, 24, 54–56. [Google Scholar] [CrossRef]
- Koch, A.; Kumar, N.; Weber, L.; Keller, H.; Imani, J.; Kogel, K.-H. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase–encoding genes confers strong resistance to Fusarium species. Proc. Natl. Acad. Sci. USA 2013, 110, 19324–19329. [Google Scholar] [CrossRef]
- Yan, G.; Smiley, R.W.; Okubara, P.A.; Skantar, A.; Easley, S.A.; Sheedy, J.G.; Thompson, A.L. Detection and discrimination of Pratylenchus neglectus and P. thornei in DNA extracts from soil. Plant Dis. 2008, 92, 1480–1487. [Google Scholar] [CrossRef]
- Kidwell, K.K.; Shelton, G.B.; Morris, C.F.; Line, R.F.; Miller, B.C.; Davis, M.A.; Konzak, C.F. Registration of ‘Scarlet’ wheat. Crop Sci. 1999, 39, 1255. [Google Scholar] [CrossRef]
- Mueller, O.; Lightfoot, S.; Schroeder, A. RNA integrity number (RIN)—Standardization of RNA quality control. Agilent Appl. Note 2004, 1–8, Publication Number 5989-1165EN. Available online: https://www.agilent.com/cs/library/applications/5989-1165EN.pdf (accessed on 5 January 2019).
- Compeau, P.E.C.; Pevzner, P.A.; Tesler, G. How to apply de Bruijn graphs to genome Assembly. Nat. Biotechnol. 2011, 29, 987–991. [Google Scholar] [CrossRef]
- Alaux, M.; Rogers, J.; Letellier, T.; Flores, R.; Alfama, F.; Pommier, C.; Mohellibi, N.; Durand, S.; Kimmel, E.; Michotey, C.; et al. Linking the International Wheat Genome Sequencing Consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biol. 2018, 19, 111. [Google Scholar] [CrossRef]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Meth. 2008, 5, 621–628. [Google Scholar] [CrossRef]
- Okubara, P.A.; Steber, C.M.; DeMacon, V.L.; Walter, N.L.; Paulitz, T.C.; Kidwell, K.K. EMS-treated hexaploid wheat genotype Scarlet has enhanced tolerance to the soilborne necrotrophic pathogens Rhizoctonia solani AG-8 and R. oryzae. Theor. Appl. Genet. 2009, 119, 293–303. [Google Scholar] [CrossRef]
- Hanks, S.K.; Hunter, T. Protein kinases 6. The eukaryotic protein kinase superfamily: Kinase (catalytic) domain structure and classification. FASEB J. 1995, 9, 576–596. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Tanaka, K.; Cao, Y.; Cho, S.H.; Xu, D.; Stacey, G. Computational analysis of the ligand binding site of the extracellular ATP receptor, DORN1. PLoS ONE 2016, 11, e0161894. [Google Scholar] [CrossRef]
- Eddy, S.R. Accelerated profile HMM searches. PLoS Comput. Biol. 2011, 7, e1002195. [Google Scholar] [CrossRef]
- Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E.L.L. Predicting transmembrane protein topology with a Hidden Markov Model: Application to complete genomes. J. Mol. Biol. 2001, 305, 567–580. [Google Scholar] [CrossRef]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Nicholas, K.B.; Nicholas, H.B., Jr. GeneDoc: A Tool for Editing and Annotating Multiple Sequence Alignments; Pittsburgh Supercomputing Center’s National Resource for Biomedical Supercomputing: Pittsburgh, PA, USA, 1997. [Google Scholar]
- Jewell, J.B.; Sowders, J.M.; He, R.; Willis, M.A.; Gang, D.R.; Tanaka, K. Extracellular ATP shapes a defense-related transcriptome both independently and along with other defense signaling pathways. Plant Physiol. 2019, 179. [Google Scholar] [CrossRef]
- Okubara, P.A.; Call, D.R.; Kwak, Y.; Skinner, D.Z. Induction of defense gene homologues in wheat roots during interactions with Pseudomonas fluorescens. Biol. Control 2010, 55, 118–125. [Google Scholar] [CrossRef]
- Koch, A.; Kogel, K.-H. New wind in the sails: Improving the agronomic value of crop plants through RNAi-mediated gene silencing. Plant Biotechnol. J. 2014, 12, 821–831. [Google Scholar] [CrossRef]
- Sahoo, K.K.; Tripathi, A.K.; Pareek, A.; Sopory, S.K.; Singla-Pareek, S.L. An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods 2011, 7, 49. [Google Scholar] [CrossRef]
- Ozawa, K. A High-efficiency Agrobacterium -mediated transformation system of rice (Oryza sativa L.). Methods Mol. Biol. 2012, 847, 51–57. [Google Scholar] [CrossRef]
- Imani, J.; Li, L.; Schäfer, P.; Kogel, K.-H. STARTS—A stable root transformation system for rapid functional analyses of proteins of the monocot model plant barley. Plant J. 2011, 67, 726–735. [Google Scholar] [CrossRef]
- Barros, J.; Serrani-Yarce1, J.C.; Chen, F.; Baxter, D.; Venables, B.J.; Dixon, R.A. Role of bifunctional ammonia-lyase in grass cell wall biosynthesis. Nat. Plants 2016, 2, 16050. [Google Scholar] [CrossRef]
- Mascher, M.; Richmond, T.A.; Gerhardt, D.J.; Himmelbach, A.; Clissold, L.; Sampath, D.; Ayling, S.; Steuernagel, B.; Pfeifer, M.; D’Ascenzo, M.; et al. Barley whole exome capture: A tool for genomic research in the genus Hordeum and beyond. Plant J. 2013, 76, 494–505. [Google Scholar] [CrossRef]
- Henry, I.M.; Nagalakshmi, U.; Lieberman, M.C.; Ngo, K.J.; Krasileva, K.V.; Vasquez-Gross, H.; Akhunova, A.; Akhunov, E.; Dubcovsky, J.; Tai, T.H.; et al. Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. Plant Cell 2015, 26, 1382–1397. [Google Scholar] [CrossRef]
- King, R.; Bird, N.; Ramirez-Gonzalez, R.; Coghill, J.A.; Patil, A.; Hassani-Pak, K.; Uauy, C.; Phillips, A.L. Mutation scanning in wheat by exon capture and next-generation sequencing. PLoS ONE 2015, 10, e0137549. [Google Scholar] [CrossRef]
- Okubara, P.A.; Pawlowski, K.; Murphy, T.M.; Berry, A.M. Symbiotic roots nodules of the actinorhizal plant Datisca glomerata express rubisco activase mRNA. Plant Physiol. 1999, 120, 411–420. [Google Scholar] [CrossRef]
RPKM 1 | Fold-induction 2 | ||||||
---|---|---|---|---|---|---|---|
Annotation/locus ID 3 | Cont | Pn | Pt | Pn+Pt | Pn | Pt | Pn+Pt |
Actin-11 LENGTH=377 | |||||||
Traes_5DS_54E3C6084.1 | 7.51 | 66.43 | 15.96 | 67.9 | 8.84 | 2.12 | 9.04 |
Traes_5DS_54E3C6084.2 | 5.12 | 66.32 | 20.31 | 55.05 | 12.95 | 3.97 | 10.75 |
Aldose reductase | |||||||
Traes_2DL_787806003.1 | 16.81 | 16.47 | 77 | 75.05 | ns | 4.58 | 4.46 |
Ascorbate peroxidase | |||||||
Traes_4BL_19FA6DCAD.1 | 71.83 | 411.76 | 87.15 | 374.33 | 5.73 | ns | 5.21 |
Traes_4BL_19FA6DCAD.2 | 54.76 | 392.67 | 61.9 | 331.86 | 7.17 | ns | 6.06 |
CAP superfamily | |||||||
Traes_3AL_A5024B415.1 | 9.84 | 50.01 | 21.86 | 68.9 | 5.08 | 2.22 | 7 |
Traes_3DL_4345A6DD4.1 | 10.04 | 53.19 | 27.22 | 79.85 | 5.3 | 2.71 | 7.95 |
Catalase peroxidase | |||||||
Traes_4AS_9EEABCE1C.1 | 150.71 | 758.44 | 185.84 | 706.01 | 5.03 | ns | 4.68 |
Traes_4DL_8CE055F15.1 | 109.26 | 436.8 | 126.79 | 421.09 | 4 | ns | 3.85 |
Traes_4DL_8CE055F15.3 | 87.02 | 314.44 | 101.59 | 300.4 | 3.61 | ns | 4.18 |
Dehydrin DHN2 | |||||||
Traes_5DL_134F29727.1 | 26.6 | 18.52 | 161.92 | 133.76 | ns | 6.09 | 5.03 |
Germin-like protein 2 | |||||||
Traes_5BL_72B476ADC.1 | 37.71 | 43.4 | 101.9 | 89.97 | ns | 2.7 | 2.39 |
Traes_5DL_935157A12.1 | 33.74 | 32.37 | 192.6 | 182.7 | ns | 5.71 | 5.41 |
Glutathione S-transferase family protein | |||||||
Traes_1BS_DDE53AF02.1 | 59.14 | 82.81 | 121.57 | 136.68 | ns | 2.06 | 2.31 |
Traes_1AS_00BD72553.1 | 36.93 | 55.63 | 174.03 | 198.09 | ns | 4.71 | 5.36 |
Traes_1DS_1A966E69F.1 | 7.32 | 9.47 | 59.26 | 56.77 | ns | 8.09 | 7.75 |
Traes_1AL_1A9EB2CBB.1 | 43.74 | 53.71 | 150.97 | 154.02 | ns | 3.45 | 3.52 |
Traes_5DL_D6E35133A.1 | 27.55 | 19.76 | 156.28 | 153.48 | ns | 5.67 | 5.57 |
Traes_5BL_051A88B95.2 | 27.22 | 24.66 | 111.51 | 121.77 | ns | 4.1 | 4.47 |
Traes_5BL_051A88B95.3 | 24.72 | 22.7 | 125.01 | 121.75 | ns | 5.06 | 4.92 |
Late embryogenesis abundant protein 76 | |||||||
Traes_1DL_9942FD49C.1 | 9.53 | 7.57 | 438.41 | 362.76 | ns | 46 | 38.07 |
Traes_1AL_26674CB2F.1 | 3.57 | 1.61 | 184.77 | 157.89 | ns | 51.71 | 44.19 |
Late embryogenesis abundant protein 155 | |||||||
Traes_3B_4F509404E.1 | 5.3 | 3.02 | 236.19 | 235.9 | ns | 44.56 | 44.5 |
Traes_3B_4F509404E.2 | 3.73 | 3.35 | 217.61 | 213.13 | ns | 58.37 | 57.17 |
Late embryogenesis abundant protein, group 3 | |||||||
Traes_1BL_85E4C2FE1.1 | 10 | 6 | 263.51 | 249.8 | ns | 26.35 | 24.98 |
Traes_1AL_34404D5D8.2 | 7.34 | 3.79 | 149.17 | 140.26 | ns | 20.31 | 19.1 |
Traes_1BL_5CD8FB94C.2 | 4.09 | 2.62 | 152.77 | 145.16 | ns | 37.36 | 35.5 |
Traes_1AL_34404D5D8.4 | 3.91 | 1.83 | 80.85 | 74.72 | ns | 20.68 | 19.12 |
Traes_1BL_5CD8FB94C.3 | 3.12 | 2.58 | 132.86 | 128.74 | ns | 42.58 | 41.26 |
Traes_1BL_85E4C2FE1.2 | 2.61 | 2.46 | 69.06 | 64.1 | ns | 26.46 | 24.56 |
Traes_1BL_8EA4F6001.1 | 2.42 | 1.2 | 61.75 | 64.26 | ns | 25.49 | 26.52 |
Traes_1BL_5CD8FB94C.5 | 2.31 | 1.21 | 51.63 | 47.21 | ns | 22.35 | 20.44 |
Traes_1BL_8EA4F6001.1 | 2.09 | 1.94 | 63.53 | 69.99 | ns | 30.35 | 33.44 |
Traes_1BL_5CD8FB94C.1 | 1.89 | 0.88 | 55.33 | 49.77 | ns | 29.31 | 26.36 |
Major pollen allergen Bet v 1-D/H | |||||||
Traes_4AS_C5AE1BBDD.1 | 21.2 | 60.77 | 150.59 | 169.3 | 2.87 | 7.1 | 7.98 |
Major pollen allergen Bet v 1-F/I | |||||||
Traes_2DL_B766A2857.1 | 45.11 | 94.39 | 201.8 | 215.2 | 2.09 | 4.47 | 4.77 |
Traes_2DL_B766A2857.2 | 41.7 | 87.33 | 179.9 | 191.89 | 2.09 | 4.31 | 4.6 |
Traes_4DL_5C688784F.1 | 36.53 | 56.19 | 145.46 | 154.27 | ns | 3.98 | 4.22 |
Traes_2DL_194C61EBA.1 | 33.63 | 53.16 | 137.44 | 145.51 | ns | 4.09 | 4.33 |
Metacaspase 1 | |||||||
Traes_5AL_8D5A83BF8.1 | 98.48 | 82.64 | 122.31 | 216.42 | ns | ns | 4.2 |
Pathogenesis-related protein 1 | |||||||
Traes_2DL_9D278D4C1.1 | 39.84 | 65.82 | 169.57 | 167.29 | ns | 4.26 | 4.2 |
Unknown protein | |||||||
Traes_1DS_5F13D45E6.3 | 171.05 | 368.87 | 177.81 | 365.82 | 2.16 | ns | 2.14 |
Traes_1DS_5F13D45E6.1 | 48.48 | 119.79 | 52.23 | 122.46 | 2.47 | ns | 2.53 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okubara, P.A.; Peetz, A.B.; Sharpe, R.M. Cereal Root Interactions with Soilborne Pathogens—From Trait to Gene and Back. Agronomy 2019, 9, 188. https://doi.org/10.3390/agronomy9040188
Okubara PA, Peetz AB, Sharpe RM. Cereal Root Interactions with Soilborne Pathogens—From Trait to Gene and Back. Agronomy. 2019; 9(4):188. https://doi.org/10.3390/agronomy9040188
Chicago/Turabian StyleOkubara, Patricia A., Amy B. Peetz, and Richard M. Sharpe. 2019. "Cereal Root Interactions with Soilborne Pathogens—From Trait to Gene and Back" Agronomy 9, no. 4: 188. https://doi.org/10.3390/agronomy9040188
APA StyleOkubara, P. A., Peetz, A. B., & Sharpe, R. M. (2019). Cereal Root Interactions with Soilborne Pathogens—From Trait to Gene and Back. Agronomy, 9(4), 188. https://doi.org/10.3390/agronomy9040188