Synergistic and Antagonistic Effects of Poultry Manure and Phosphate Rock on Soil P Availability, Ryegrass Production, and P Uptake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Growth Chamber Experiment
2.3. Soil Analysis
2.4. Biomass Analysis
2.5. Synergistic and Antagonistic Effect of Mixture
2.6. Statistical Analysis
3. Results
3.1. Total Soil C, N, and P Concentrations
3.2. Soil Phosphorus Forms
3.3. Microbial Biomass P
3.4. Shoot and Root Biomass Production
3.5. Shoot and Root P Concentrations and Uptake
3.6. Relationship between Soil and Plant Parameters
3.7. Synergistic and Antagonistic Effects between PM and RP on Soil and Plant Parameters
4. Discussion
4.1. Impact of Organic and Inorganic P Amendments on C, N, and P Stoichiometry and Microbial Biomass P
4.2. Impact of Organic and Inorganic P Amendments on Nutrient Uptake and Biomass Production and Soil P Forms
4.3. Synergistic and Antagonistic Effects of the Combined Application of PM and RP
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Redel, Y.; Cartes, P.; Demanet, R.; Poblete-Grant, P.; Bol, R.; Mora, M.L.; Velásquez, G. Assessment of phosphorus status influenced by Al and Fe compounds in volcanic grassland soils. J. Soil Sci. Nutr. 2016, 16, 490–506. [Google Scholar] [CrossRef]
- Velásquez, G.; Calabi-Floody, M.; Poblete-Grant, P.; Rumpel, C.; Demanet, R.; Condron, L.; Mora, M. Fertilizer effects on phosphorus fractions and organic matter in Andisols. J. Soil Sci. Nutr. 2016, 16, 294–304. [Google Scholar] [CrossRef]
- Rumpel, C.; Crème, A.; Ngo, P.; Velásquez, G.; Mora, M.; Chabbi, A. The impact of grassland management on biogeochemical cycles involving carbon, nitrogen and phosphorus. J. Soil Sci. Nutr. 2015, 15, 353–371. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Reijnders, L. Phosphorus resources, their depletion and conservation, a review. Resour. Conserv. Recycl. 2014, 93, 32–49. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAO Food Outlook. Biannual Report on Global Food Markets; Food and Agriculture Organization of the United Nations: Roma, Italy, 2018. [Google Scholar]
- Pagliari, P.H.; Laboski, C.A.M. Investigation of the Inorganic and Organic Phosphorus Forms in Animal Manure. J. Environ. Qual. 2012, 41, 901. [Google Scholar] [CrossRef] [PubMed]
- Calabi-Floody, M.; Medina, J.; Rumpel, C.; Condron, L.M.; Hernandez, M.; Dumont, M.; Mora, M.D.L.L. Smart Fertilizers as a Strategy for Sustainable Agriculture. Adv. Agron. 2018, 147, 119–157. [Google Scholar] [CrossRef]
- Redding, M.; Lewis, R.; Kearton, T.; Smith, O. Manure and sorbent fertilisers increase on-going nutrient availability relative to conventional fertilisers. Sci. Total Environ. 2016, 569, 927–936. [Google Scholar] [CrossRef] [Green Version]
- Evers, G.W. Ryegrass-Bermudagrass Production and Nutrient Uptake when Combining Nitrogen Fertilizer with Broiler Litter. Agron. J. 2002, 94, 905–910. [Google Scholar] [CrossRef]
- Pederson, G.A.; Brink, G.E.; Fairbrother, T.E. Nutrient Uptake in Plant Parts of Sixteen Forages Fertilized with Poultry Litter: Nitrogen, Phosphorus, Potassium, Copper, and Zinc. Agron. J. 2002, 94, 895–904. [Google Scholar] [CrossRef]
- Waldrip, H.M.; He, Z.; Erich, M.S. Effects of poultry manure amendment on phosphorus uptake by ryegrass, soil phosphorus fractions and phosphatase activity. Boil. Fertil. Soils 2011, 47, 407–418. [Google Scholar] [CrossRef]
- Foust, R.; Phillips, M.; Hull, K.; Yehorova, D. Changes in Arsenic, Copper, Iron, Manganese and Zinc Levels Resulting from the Application of Poultry Litter to Agricultural Soils. Toxics 2018, 6, 28. [Google Scholar] [CrossRef]
- Song, K.; Xue, Y.; Zheng, X.; Lv, W.; Qiao, H.; Qin, Q.; Yang, J. Effects of the continuous use of organic manure and chemical fertilizer on soil inorganic phosphorus fractions in calcareous soil. Sci. Rep. 2017, 7, 327. [Google Scholar] [CrossRef] [Green Version]
- Zapata, F.; Roy, R.N. Utilización de Las Rocas Fosfóricas Para Una Agricultura Sostenible; Food and Agriculture Organization of the United Nations: Roma, Italy, 2007; p. 15. [Google Scholar]
- Rajan, S.S.S.; Fox, R.L.; Upsdell, M.; Saunders, W.M.H. Influence of pH, time and rate of application on phosphate rock dissolution and availability to pastures. Nutr. Cycl. Agroecosyst. 1991, 28, 85–93. [Google Scholar] [CrossRef]
- Abbasi, M.K.; Mansha, S.; Rahim, N.; Ali, A. Agronomic Effectiveness and Phosphorus Utilization Efficiency of Rock Phosphate Applied to Winter Wheat. Agron. J. 2013, 105, 1606. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, M.K.; Musa, N.; Manzoor, M. Mineralization of soluble P fertilizers and insoluble rock phosphate in response to phosphate-solubilizing bacteria and poultry manure and their effect on the growth and P utilization efficiency of chilli (Capsicum annuum L.). Biogeosciences 2015, 12, 4607–4619. [Google Scholar] [CrossRef]
- Baize, D.; Girard, M.C. Référentiel Pédologique; Editions Quae: Versailles, France, 2008. (In French) [Google Scholar]
- Hedley, M.J.; Stewart, J.W.B.; Chauhan, B.S. Changes in Inorganic and Organic Soil Phosphorus Fractions Induced by Cultivation Practices and by Laboratory Incubations. Soil Sci. Soc. Am. J. 1982, 46, 970–976. [Google Scholar] [CrossRef]
- Murphy, B.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Harris, D.; Horwáth, W.R.; van Kessel, C. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci. Soc. Am. J. 2001, 65, 1853–1856. [Google Scholar] [CrossRef]
- Brookes, P.C.; Powlson, D.S.; Jenkinson, D.S. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 1982, 14, 319–329. [Google Scholar] [CrossRef]
- Baligar, V.C.; Fageria, N.K.; He, Z.L. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal. 2001, 32, 921–950. [Google Scholar] [CrossRef]
- Lupwayi, N.; Lea, T.; Beaudoin, J.; Clayton, G. Soil microbial biomass, functional diversity and crop yields following application of cattle manure, hog manure and inorganic fertilizers. Can. J. Soil Sci. 2005, 85, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ding, X.; Peng, Y.; George, T.S.; Feng, G. Closing the Loop on Phosphorus Loss from Intensive Agricultural Soil: A Microbial Immobilization Solution? Front. Microbiol. 2018, 9, 1–4. [Google Scholar] [CrossRef]
- Giles, C.D.; Cade-Menun, B.J.; Liu, C.W.; Hill, J.E. The short-term transport and transformation of phosphorus species in a saturated soil following poultry manure amendment and leaching. Geoderma 2015, 257–258, 134–141. [Google Scholar] [CrossRef]
- Singh, A.K.; Sarkar, A.K.; Kumar, A.; Singh, B.P. Effect of Long-term Use of Mineral Fertilizers, Lime and Farmyard Manure on the Crop Yield, Available Plant Nutrient and Heavy Metal Status in an Acidic Loam soil. J. Indian Soc. Soil Sci. 2009, 57, 362–365. [Google Scholar]
- Agbede, T.M.; Ojeniyi, S.O. Tillage and poultry manure effects on soil fertility and sorghum yield in southwestern Nigeria. Soil Tillage Res. 2009, 104, 74–81. [Google Scholar] [CrossRef]
- Kaleeswari, R.K.; Subramanian, S. Chemical reactivity of phosphate rocks—A review. Agric. Rev. 2001, 22, 121–126. [Google Scholar]
- Ghosh, P.K.; Tripathi, A.K.; Bandyopadhyay, K.K.; Manna, M.C. Assessment of nutrient competition and nutrient requirement in soybean/sorghum intercropping system. Eur. J. Agron. 2009, 31, 43–50. [Google Scholar] [CrossRef]
- Arcand, M.M.; Schneider, K. Plant- and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: A review. Ann. Braz. Acad. Sci. 2006, 78, 791–807. [Google Scholar] [CrossRef]
- Antil, R.S.; Singh, M. Effects of organic manures and fertilizers on organic matter and nutrients status of the soil. Arch. Agron. Soil Sci. 2007, 53, 519–528. [Google Scholar] [CrossRef]
- Akande, M.O.; Adediran, J.A.; Oluwatoyinbo, F.I. Effects of rock phosphate amended with poultry manure on soil available P and yield of maize and cowpea. Afr. J. Biotechnol. 2005, 4, 444–448. [Google Scholar]
- Qureshi, S.A.; Rajput, A.; Memon, M.; Solangi, M.A. Nutrient composition of rock phosphate enriched compost from various organic wastes. E3 J. Sci. Res. 2014, 2, 47–51. [Google Scholar]
Soil Type | pH | Corg | C/N | P olsen | K2O | Clay | Silt | Sand |
---|---|---|---|---|---|---|---|---|
g kg−1 | mg kg−1 | Cmol + kg−1 | % | |||||
Moderately acid | 6.1 | 11.9 | 10 | 60 | 0.32 | 14.6 | 68.3 | 16.1 |
Alkaline | 8.5 | 12.1 * | 10 | 11 | 0.26 | 20.7 | 59.8 | 6.8 |
H2O | NaHCO3 | NaOH | HCl | Residual | ||||
---|---|---|---|---|---|---|---|---|
P mg kg−1 | ||||||||
Pi | Po | Pi | Po | Pi | Po | Pi | Po | Pt |
187 ± 8 | 122 ± 43 | 202 ± 3 | 149 ± 30 | 47 ± 4 | 72 ± 13 | 181 ± 9 | 97 ± 8 | 145 ± 7 |
Soil Type | C | N | C/N | Pt | C:Po | C:Pi | N:Pi | N:Po | |
---|---|---|---|---|---|---|---|---|---|
g kg−1 | mg kg−1 | ||||||||
Moderate acid | Control | 10.5 Ca * | 1.2 Da | 8.9 Aa | 100.2 Ca | 344.9 Ba | 192.2 Bb | 21.6 Cb | 38.6 Ba |
RP | 11.0 Ca | 1.4 Ca | 7.7 Ba | 97.3 Ca | 314.4 Cb | 194.4 Bb | 25.3 Bb | 40.9 Bb | |
PM | 16.5 Aa | 2.0 Aa | 8.5 Aa | 132.1 Aa | 356.4 Ba | 255.9 Aa | 30.2 Aa | 42.1 Ba | |
PMRP | 13.7 Ba | 1.7 Ba | 8.3 Aa | 118.0 Ba | 414.9 Aa | 210.5 Aa | 25.3 Bb | 49.8 Aa | |
Alkaline | Control | 11.5 Ba | 1.3 Ba | 9.2 Aa | 103.2 Ba | 365.3 Ba | 241.9 Aa | 26.3 Ba | 39.8 Ba |
RP | 12.0 Ba | 1.7 Ab | 7.2 Aa | 103.5 Ba | 399.7 Aa | 239.2 Aa | 33.3 Aa | 55.6 Aa | |
PM | 14.8 Aa | 1.7 Ab | 8.8 Ba | 127.2 Aa | 383.2 Ba | 244.1 Aa | 28.1 Ba | 44.3 Ba | |
PMRP | 13.4 ABa | 1.6 Aa | 8.7 Aa | 120.8 Aa | 275.0 Cb | 290.1 Aa | 33.5 Aa | 31.8 Bb |
Soil Type | Treatment | P conc | P uptake | P Use Efficiency | ||
---|---|---|---|---|---|---|
Shoot | Root | Shoot | Root | |||
g kg−1 | mg | % of input | ||||
Moderate acid | Control | 7.2 Da | 1.4 Da | 3.6 Ba | 3.6 Ca | - |
RP | 12.5 Ca | 2.2 Ca | 3.5 Ba | 4.6 Ca | 6 Ca | |
PM | 24.2 Aa | 3.8 Aa | 4.9 Aa | 14.8 Aa | 28 Aa | |
PMRP | 16.6 Ba | 2.8 Ba | 5.0 Aa | 8.7 Ba | 14 Ba | |
Alkaline | Control | 1.4 Db | 1.7 Ba | 2.6 Bb | 1.1 Cb | - |
RP | 4.9 Cb | 2.1 Ba | 3.0 Ba | 2.8 Ba | 5 Ca | |
PM | 17.7 Ab | 3.3 Aa | 3.8 Ab | 9.7 Ab | 25 Aa | |
PMRP | 11.3 Bb | 3.0 Aa | 3.8 Ab | 6.9 Aa | 16 Ba |
Soil | Soil Parameters | Shoot Biomass | Root Biomass | P Uptake | |
---|---|---|---|---|---|
Shoot | Root | ||||
Moderately acid soil | readily-Pi | 0.41 | 0.80 * | 0.87 * | 0.92 * |
readily-Po | 0.51 * | 0.78 * | 0.95 * | 0.96 * | |
moderately-Pi | 0.61 * | 0.59 * | 0.83 * | 0.83 * | |
moderately-Po | −0.07 | −0.43 | −0.37 | −0.39 | |
Less avail.-Pi | –0.10 | −0.44 | −0.40 | −0.45 | |
less-avail. Po | 0.71 * | 0.61 * | 0.93 * | 0.89 * | |
Residual-P | 0.19 | 0.70 * | 0.63 * | 0.74 * | |
Microbial P | 0.62 * | 0.61 * | 0.83 * | 0.78 * | |
Total soil N | 0.65 * | 0.69 * | 0.94 * | 0.91 * | |
Total soil C | 0.52 * | 0.71 * | 0.89 * | 0.88 * | |
Alkaline soil | readily-Pi | 0.94 * | 0.93 * | 0.96 * | 0.91 * |
readily-Po | 0.84 * | 0.82 * | 0.89 * | 0.84 * | |
moderately-Pi | 0.75 * | 0.67 * | 0.75 * | 0.67 * | |
moderately-Po | 0.09 | 0.16 | −0.18 | −0.13 | |
Less avail.-Pi | −0.03 | −0.14 | −0.03 | −0.09 | |
less-avail. Po | 0.30 | 0.38 | 0.33 | 0.39 | |
Residual-P | 0.81 * | 0.80 * | 0.70 * | 0.66 * | |
Microbial P | 0.88 * | 0.84 * | 0.95 * | 0.88 * | |
Total soil N | 0.45 | 0.31 | 0.60 * | 0.51 | |
Total soil C | 0.81 * | 0.80 * | 0.82 * | 0.77 * |
Observed | Expected | Mixture Effect (%) | |||
---|---|---|---|---|---|
Moderately acid soil | Soil | P availability (mg kg−1) | 137.1 ± 21.1 | 132.5 ± 4.9 | 9.9 ± 1.8 |
Shoot | Biomass (g) | 1.9 ± 0.5 | 1.6 ± 0.4 | 25.5 ± 3.9 | |
P uptake (mg) | 9.4 ± 1.3 | 12.3 ± 1.2 | −23.6 ± 1.8 | ||
Root | Biomass (g) | 1.16 ± 0.3 | 0.65 ± 0.2 | 91.3 ± 4.9 | |
P uptake (mg) | 1.5 ± 1.1 | 3.97 ± 0.9 | −59.6 ± 3.7 | ||
Alkaline soil | Soil | P availability (mg kg−1) | 133.5 ± 15.0 | 114.4 ± 9.5 | 17.5 ± 3.0 |
Shoot | Biomass (g) | 2.1 ± 0.5 | 2.38 ± 0.2 | −13.1 ± 1.9 | |
P uptake (mg) | 9.97 ± 0.3 | 11.6 ± 0.5 | −13.6 ± 2.6 | ||
Root | Biomass (g) | 0.78 ± 0.1 | 0.81 ± 0.1 | −3.3 ± 1.2 | |
P uptake (mg) | 5.5 ± 2.1 | 5.82 ± 1.2 | 1.8 ± 0.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poblete-Grant, P.; Biron, P.; Bariac, T.; Cartes, P.; Mora, M.d.L.L.; Rumpel, C. Synergistic and Antagonistic Effects of Poultry Manure and Phosphate Rock on Soil P Availability, Ryegrass Production, and P Uptake. Agronomy 2019, 9, 191. https://doi.org/10.3390/agronomy9040191
Poblete-Grant P, Biron P, Bariac T, Cartes P, Mora MdLL, Rumpel C. Synergistic and Antagonistic Effects of Poultry Manure and Phosphate Rock on Soil P Availability, Ryegrass Production, and P Uptake. Agronomy. 2019; 9(4):191. https://doi.org/10.3390/agronomy9040191
Chicago/Turabian StylePoblete-Grant, Patricia, Philippe Biron, Thierry Bariac, Paula Cartes, María de La Luz Mora, and Cornelia Rumpel. 2019. "Synergistic and Antagonistic Effects of Poultry Manure and Phosphate Rock on Soil P Availability, Ryegrass Production, and P Uptake" Agronomy 9, no. 4: 191. https://doi.org/10.3390/agronomy9040191
APA StylePoblete-Grant, P., Biron, P., Bariac, T., Cartes, P., Mora, M. d. L. L., & Rumpel, C. (2019). Synergistic and Antagonistic Effects of Poultry Manure and Phosphate Rock on Soil P Availability, Ryegrass Production, and P Uptake. Agronomy, 9(4), 191. https://doi.org/10.3390/agronomy9040191