Effect of Salinity and Water Stress on the Essential Oil Components of Rosemary (Rosmarinus officinalis L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Irrigation Management
2.2. Essential Oil Extraction and Yield Estimation
2.3. Gas Chromatography-Mass Spectrometry
2.4. Statistical Analysis
3. Results and Discussion
3.1. Essential Oil Yield
3.2. Essential Oil Characterization by CG/MS
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Langroudi, M.E.; Sedaghathoor, S.; Bidarigh, S. Effect of different salinity levels on the composition of rosemary (Rosmarinus officinalis) essential oils. Am. Eur. J. Agric. Environ. Sci. 2013, 13, 68–71. [Google Scholar]
- Dabour, N. Water resources and their use in agriculture in Arab countries. J. Econ. Coop. 2006, 27, 1–38. [Google Scholar]
- Mizrahi, I.; Juarez, M.A.; Bandoni, A.L. The essential oil of Rosmarinus officinalis growing in Argentina. J. Essent. Oil Res. 1991, 3, 11–15. [Google Scholar] [CrossRef]
- Lee, C.J.; Chen, L.G.; Chang, T.L.; Ke, W.M.; Lo, Y.-F.; Wang, C.C. The correlation between skin-care effects and phytochemical contents in Lamiaceae plants. Food Chem. 2011, 124, 833–841. [Google Scholar] [CrossRef]
- Almela, L.; Sánchez-Muñoz, B.; Fernández-López, J.A.; Roca, M.J.; Rabe, V. Liquid chromatographic-mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material. J. Chrom. A. 2006, 1120, 221–229. [Google Scholar] [CrossRef]
- Kol, O.; Walia, S.; Dhaliwal, G.S. Essential oils as green pesticides: Potential and constraints. Biopest. Int. 2008, 4, 63–84. [Google Scholar]
- Al-Sereiti, M.R.; Abu-Amer, K.M. Pharmacology of rosemary (Rosmarinus officinalis L.) and therapeutic potentials. Ind. J. Exp. Biol. 1999, 37, 124–130. [Google Scholar]
- Viuda-Martos, M.; Ruíz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J.A. Chemical composition of the essential oils obtained from some spices widely used in Mediterranean region. Acta Chim. Slov. 2007, 54, 921. [Google Scholar]
- Jamshidi, R.; Afzali, Z.; Afzali, D. Chemical composition of hydrodistillation essential oil of rosemary in different origins in Iran and comparison with other countries. Am. Eur. J. Agric. Environ. Sci. 2009, 5, 78–81. [Google Scholar]
- Singh, M.; Guleria, N. Influence of harvesting stage and inorganic and organic fertilizers on yield and oil composition of rosemary (Rosmarinus officinalis L.) in a semi-arid tropical climate. Ind. Crop Prod. 2013, 42, 37–40. [Google Scholar] [CrossRef]
- Barragan Ferrer, D.; Venskutonis, P.R.; Talou, T.; Zebib, B.; Ferrer, J.M.B.; Merah, O. Potential interest of Tussilago farfara L. whole plant of Lithuanian and French origin for essential oil extraction. Am. J. Essent. Oil Nat. Prod. 2016, 4, 12–15. [Google Scholar]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flav. Frag. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Waddell, K.L. Sampling coarse woody debris for multiple attributes in extensive resource inventories. Ecol. Ind. 2002, 1, 139–153. [Google Scholar] [CrossRef]
- Woldendorp, G.; Keenan, R.J.; Barry, S.; Spencer, R.D. Analysis of sampling methods for coarse woody debris. For. Ecol. Manag. 2004, 198, 133–148. [Google Scholar] [CrossRef]
- Allagui, M.B.; Andreotti, V.C.; Cuartero, J. Détermination de critères de sélection pour la tolérance de la tomate à la salinité. À la germination et au stade plantule. Ann. INRAT 1994, 67, 45–65. [Google Scholar]
- Council of Europe. European Pharmacopoeia (2019), 9th ed.; pp. 217–218. Available online: http://online6.edqm.eu/ep908/ (accessed on 21 February 2019).
- Petropoulos, S.A.; Daferera, D.; Polissiou, M.G.; Passam, H.C. The effect of water deficit stress on the growth, yield and composition of essential oils of parsley. Sci. Hort. 2008, 115, 393–397. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Daferera, D.; Polissiou, M.G.; Passam, H.C. The effect of salinity on the growth, yield and essential oils of turnip-rooted and leaf parsley cultivated within the Mediterranean region. J. Sci. Food Agric. 2009, 89, 1534–1542. [Google Scholar] [CrossRef]
- Tounekti, T.; Vadel, A.; Bedoui, A.; Khemira, H. NaCl stress affects growth and essential oil composition in rosemary (Rosmarinus officinalis L.). J. Hortic. Sci. Biotechnol. 2015, 83, 267–273. [Google Scholar] [CrossRef]
- Khalid, K.A.; da Silva, J.A.T. Yield, essential oil and pigment content of Calendula officinalis L. flower heads cultivated under salt stress conditions. Sci. Hortic. 2010, 126, 297–305. [Google Scholar] [CrossRef]
- Ozturk, A.; Unlukara, A.; Ipek, A.; Gurbuz, B. Effects of salt stress and water deficit on plant growth and essential oil content of lemon balm (Melissa officinalis L.). Pak. J. Bot. 2004, 36, 787–792. [Google Scholar]
- Moghtader, M.; Mansouri, I.; Farahmand, A.; Mansouri, S.H. Evaluation of antibacterial potential of rosemary extracts for therapeutic agents. In Book of the 3rd Congress of Medicinal Plants; Shahed University: Tehran, Iran, 2007; pp. 535–536. [Google Scholar]
- Ben Taarit, M.; Msaada, K.; Hosni, K.; Marzouk, B. Changes in fatty acid and essential oil composition of sage (Salvia officinalis L.) leaves under NaCl stress. Food Chem. 2010, 119, 951–956. [Google Scholar] [CrossRef]
- Said-Al Ahl, H.A.H.; Omer, E.A. Medicinal and aromatic plants production under salt stress. A. review. Her. Pol. 2011, 57, 73–87. [Google Scholar]
- Acosta-Motos, J.; Ortuño, M.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.; Hernandez, J. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef]
- Neffati, M.; Marzouk, B. Changes in essential oil and fatty acid composition in coriander (Coriandrum sativum L.) leaves under saline conditions. Ind. Crop. Prod. 2008, 28, 137–142. [Google Scholar] [CrossRef]
- Deshmukh, Y.; Khare, P. Effect of salinity stress on growth parameters and metabolites of medicinal plants: A review. In Soil Salinity Management in Agriculture: Technological Advances and Applications, 1st ed.; Gupta, S.K., Goyal, M.R., Eds.; Apple Academic Press: Cleveland, OH, USA, 2017; pp. 160–197. [Google Scholar]
- Ben Taarit, M.; Msaada, K.; Hosni, K.; Marzouk, B. Physiological changes, phenolic content and antioxidant activity of Salvia officinalis L. grown under saline conditions. J. Sci. Food Agric. 2012, 92, 1614–1619. [Google Scholar] [CrossRef]
- Tounekti, T.; Vadel, A.M.; Oñate, M.; Khemira, H.; Munné-Bosch, S. Salt-induced oxidative stress in rosemary plants: Damage or protection? Environ. Exp. Bot. 2011, 71, 298–305. [Google Scholar] [CrossRef]
- Karray-Bouraoui, N.; Rabhi, M.; Neffati, M.; Baldan, B.; Ranieri, A.; Marzouk, B.; Lachaâl, M.; Smaoui, A. Salt effect on yield and composition of shoot essential oil and trichome morphology and density on leaves of Mentha pulegium. Ind. Crop Prod. 2009, 30, 338–343. [Google Scholar] [CrossRef]
Month | 2016 | Average from 1997–2017 | ||
---|---|---|---|---|
Temperatue (°C) | Rainfall (mm) | Temperatue (°C) | Rainfall (mm) | |
January | 16.1 | 231.0 | 6.6 | 84.9 |
February | 14.8 | 178.0 | 7.4 | 156.0 |
March | 20.2 | 8.0 | 10.2 | 98.0 |
April | 22.7 | 16.0 | 12.2 | 131.0 |
May | 26.1 | 25.0 | 12.1 | 67.7 |
June | 27.6 | 3.0 | 17.85 | 11.8 |
July | 31.9 | 0.0 | 21.4 | 4.1 |
August | 32.8 | 0.0 | 20.95 | 7.0 |
September | 29.4 | 20.0 | 15.85 | 17.5 |
October | 29.0 | 18.0 | 12.1 | 44.3 |
November | 18.0 | 145 | 10.6 | 87.6 |
December | 16.8 | 101.0 | 7.3 | 51.3 |
Mean | 23.5 | 15.4 | ||
Sum | 745.0 | 773.6 |
Compound | Irrigation Management | Chemical Group | |||||
---|---|---|---|---|---|---|---|
NIR | TW | SW | |||||
RT | % | RT | % | RT | % | ||
α-pinene | 10.896 | 17.426 | 10.200 | 18.222 | 10.183 | 17.003 | Monoterpene |
Eucalyptol (1,8 cineol) | 16.467 | 15.558 | 16.561 | 14.149 | 16.470 | 15.365 | Oxygenated monoterpene |
Camphene | 10.490 | 13.291 | 10.935 | 12.160 | 10.923 | 7.727 | Monoterpene |
Linalool | 21.865 | 3.002 | / | / | / | / | Oxygenated monoterpene |
1,3-Cyclopentadiene, 1,2,5,5-tetramethyl | 23.020 | 0.559 | / | / | / | / | Other |
Camphor | 24.731 | 14.581 | / | / | 24.679 | 13.720 | Ketone |
Borneol | 26.824 | 12.454 | 26.941 | 11.214 | 26.824 | 14.132 | Oxygenated monoterpene |
D-verbenone | 29.718 | 15.136 | 24.841 | 8.081 | 29.414 | 5.023 | Ketone |
Bornyl acetate | 38.138 | 0.030 | 34.450 | 4.213 | 34.412 | 3.159 | Oxygenated monoterpene |
Cyclohexane | 42.919 | 0.445 | / | / | / | / | Hydrocarbon |
Limonene | 57.360 | 0.700 | / | / | / | / | Monoterpene |
Dodecane | / | / | / | / | 14.821 | 8.420 | Hydrocarbon |
Caryophyllene | / | / | / | / | 45.058 | 5.800 | Sesquiterpene |
Caryophyllene oxide | / | / | 52.925 | 14.430 | 52.909 | 1.739 | Oxygenated sesquiterpene |
β-pinene | / | / | 11.229 | 3.512 | / | / | Monoterpene |
Trans verbenol | / | / | 12.595 | 4.876 | / | / | Oxygenated monoterpene |
β-myrcene | / | / | 13.624 | 1.678 | / | / | Monoterpene |
linalyl_isobutyrate | / | / | 22.003 | 3.122 | / | / | Oxygenated monoterpene |
Benzenemethanol, α methyl | / | / | 57.366 | 0.906 | / | / | Other |
dibutylphtalate | / | / | 97.735 | 2.845 | / | / | Ester |
Chemical group (%) | |||||||
Monoterpenes | 31.417 | 35.572 | 33.150 | ||||
Oxygeneted monoterpenes | 31.044 | 34.452 | 32.656 | ||||
Sesquiterpenes | ― | ― | 5.800 | ||||
Oxygeneted sesquiterpenes | ― | 17.552 | 1.739 | ||||
Ketone | 29.717 | 8.081 | 18.743 | ||||
Hydrocarbons | 0.445 | ― | ― | ||||
Esters | ― | 2.845 | ― | ||||
Others | 0.559 | 0.906 | ― | ||||
Total (%) | 93.182 | 99.408 | 92.088 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarmoum, R.; Haid, S.; Biche, M.; Djazouli, Z.; Zebib, B.; Merah, O. Effect of Salinity and Water Stress on the Essential Oil Components of Rosemary (Rosmarinus officinalis L.). Agronomy 2019, 9, 214. https://doi.org/10.3390/agronomy9050214
Sarmoum R, Haid S, Biche M, Djazouli Z, Zebib B, Merah O. Effect of Salinity and Water Stress on the Essential Oil Components of Rosemary (Rosmarinus officinalis L.). Agronomy. 2019; 9(5):214. https://doi.org/10.3390/agronomy9050214
Chicago/Turabian StyleSarmoum, Radhia, Soumia Haid, Mohamed Biche, Zahreddine Djazouli, Bachar Zebib, and Othmane Merah. 2019. "Effect of Salinity and Water Stress on the Essential Oil Components of Rosemary (Rosmarinus officinalis L.)" Agronomy 9, no. 5: 214. https://doi.org/10.3390/agronomy9050214
APA StyleSarmoum, R., Haid, S., Biche, M., Djazouli, Z., Zebib, B., & Merah, O. (2019). Effect of Salinity and Water Stress on the Essential Oil Components of Rosemary (Rosmarinus officinalis L.). Agronomy, 9(5), 214. https://doi.org/10.3390/agronomy9050214